

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

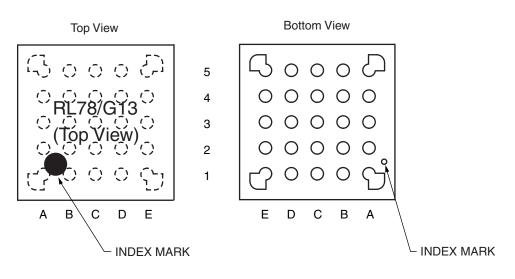
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 $\Xi \cdot X \in I$

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101lfdfb-50

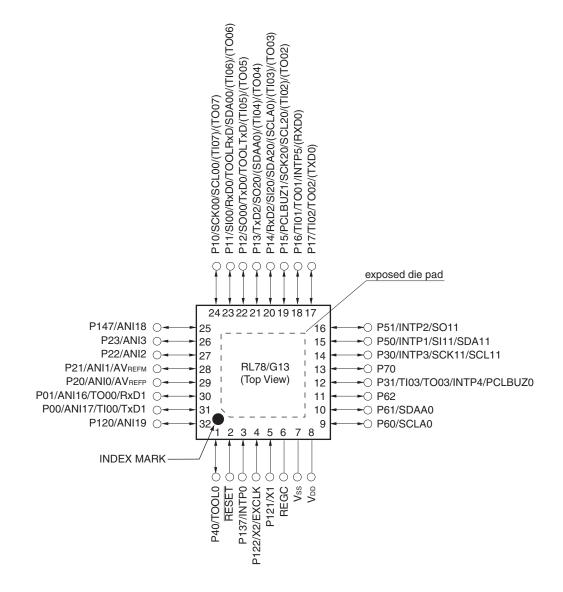

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.3 25-pin products

• 25-pin plastic WFLGA (3 × 3 mm, 0.50 mm pitch)

	А	В	С	D	E	_
5	P40/TOOL0	RESET	P01/ANI16/ TO00/RxD1	P22/ANI2	P147/ANI18	5
4	P122/X2/ EXCLK	P137/INTP0	P00/ANI17/ TI00/TxD1	P21/ANI1/ AVrefm	P10/SCK00/ SCL00	4
3	P121/X1	Vdd	P20/ANI0/ AV _{REFP}	P12/SO00/ TxD0/ TOOLTxD	P11/SI00/ RxD0/ TOOLRxD/ SDA00	3
2	REGC	Vss	P30/INTP3/ SCK11/SCL11	P17/Tl02/ TO02/SO11	P50/INTP1/ SI11/SDA11	2
1	P60/SCLA0	P61/SDAA0	P31/TI03/ TO03/INTP4/ PCLBUZ0	P16/TI01/ TO01/INTP5	P130	1
	А	В	С	D	E	

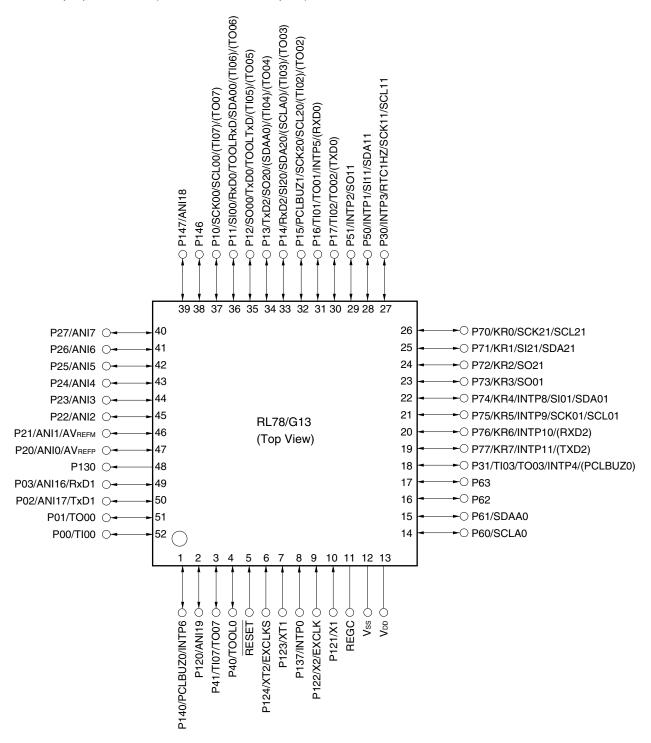

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see **1.4 Pin Identification**.

1.3.5 32-pin products

• 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)

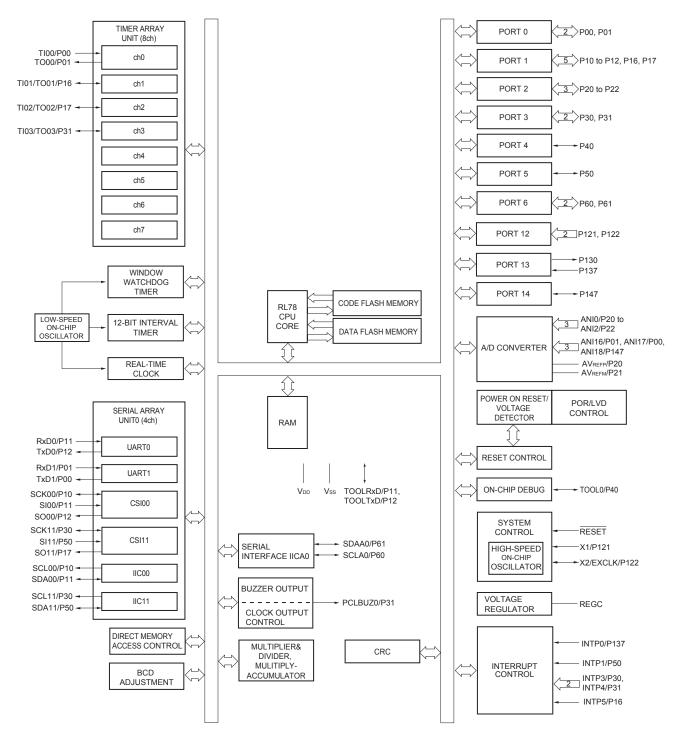
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to V_{ss} .

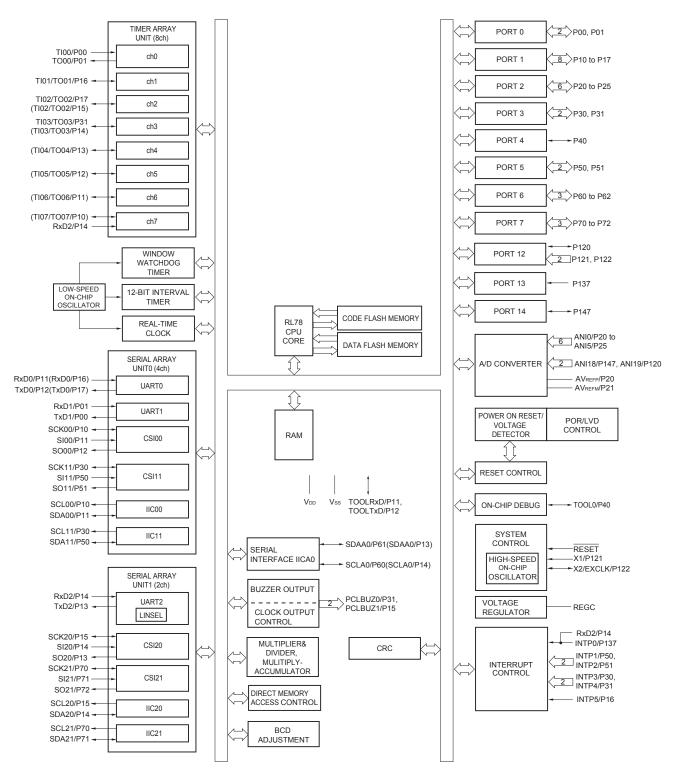
1.3.10 52-pin products

• 52-pin plastic LQFP (10 × 10 mm, 0.65 mm pitch)



Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.



1.5.3 25-pin products

1.5.6 36-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

- The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).
- 4. When setting to PIOR = 1

														
Ite	m	20-	pin	24-	pin	25-	pin	30-	pin	32-	-pin	36	36-pin	
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx		
Clock output/buzze	er output	_ 1				1		2	2			2		
		• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation)												
8/10-bit resolution	A/D converter	6 chanr	nels	6 chanı	nels	6 chanr	nels	8 chanr	nels	8 chanı	nels	8 chan	nels	
Serial interface		 [20-pin, 24-pin, 25-pin products] CSI: 1 channel/simplified l²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified l²C: 1 channel/UART: 1 channel [30-pin, 32-pin products] CSI: 1 channel/simplified l²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified l²C: 1 channel/UART (UART supporting LIN-bus): 1 channel [36-pin products] CSI: 1 channel/simplified l²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified l²C: 1 channel/UART (1 channel CSI: 1 channel/simplified l²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified l²C: 2 channel/UART (UART supporting LIN-bus): 1 channel CSI: 2 channels/simplified l²C: 2 channels/UART (UART supporting LIN-bus): 1 channel 												
Multiplier and divid	I ² C bus ler/multiply-		_	1 chani	nel	1 chanr	nel	1 chanı	nel	1 chanı	nel	1 chan	nel	
accumulator		 16 bits 32 bits 16 bits 	– s × 16 b s ÷ 32 b s × 16 b	1 chanı its = 32 k its = 32 k	nel bits (Uns bits (Uns	1 chanr signed or	nel signed)	1		1 chanı	nel	1 chan	nel	
accumulator DMA controller	ler/multiply-	 16 bit 32 bit 16 bit 2 channel 	- s × 16 b s ÷ 32 b s × 16 b nels	1 chanı its = 32 k its = 32 k its + 32 k	nel bits (Uns bits (Uns bits = 32	1 chann signed or signed) bits (Uns	nel signed) signed o	r signed)	1	I				
accumulator	ler/multiply-	 16 bit 32 bit 16 bit 2 chann 	- s × 16 b s ÷ 32 b s × 16 b nels 3	1 chani its = 32 k its = 32 k its + 32 k	nel bits (Uns bits (Uns bits = 32 24	1 chann signed or signed) bits (Uns	nel signed) signed o 24	or signed)	27		27		27	
accumulator DMA controller Vectored interrupt	ler/multiply-	 16 bit 32 bit 16 bit 2 chann 	- s × 16 b s ÷ 32 b s × 16 b nels	1 chani its = 32 k its = 32 k its + 32 k	nel bits (Uns bits (Uns bits = 32	1 chann signed or signed) bits (Uns	nel signed) signed o 24 5	or signed)	1					
accumulator DMA controller Vectored interrupt sources	ler/multiply-	 16 bit. 32 bit. 16 bit. 2 chann 2 chann 2 chann 2 chann 2 chann 9 Rese 9 Intern 9 Intern	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 chani its = 32 b its = 32 b its + 32 b its + 32 b SET pin by watc by volta by volta by volta by RAM	hel bits (Uns bits (Uns bits = 32 24 5 4 5 4 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 chann iigned or iigned) bits (Uns 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	nel signed o 24 5	r signed)	27		27		27	
accumulator DMA controller Vectored interrupt sources Key interrupt	ler/multiply-	 16 bit. 32 bit. 16 bit. 2 chann 2 chann 2 chann 2 nese Interr Interr Interr Interr Interr Interr Powe 	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 chani its = 32 t its = 32 t its + 32 t its + 32 t SET pin by watc by powe by volta t by illega by Illega	hel bits (Uns bits (Uns bits = 32 24 5 5 4 4 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9	1 chann igned or igned) bits (Un: 2 bits (Un: 2 channel of the set ctor ctor exector ctor exector ctor exector ry access TYP.)	nel signed o 24 5	r signed)	27		27		27	
accumulator DMA controller Vectored interrupt sources Key interrupt Reset	ler/multiply-	16 bit: 32 bit: 16 bit: 2 chann 2 chann 2 Rese Interr Interr Interr Interr Interr Interr Interr Interr Interr Powe	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 channel its = 32 b its = 32 b its = 32 b its + 32 b SET pin by watc by volta by volta by illega by illega set: 1 rreset: 1	hel bits (Uns bits (Uns bits = 32 24 5 24 5 4 5 4 5 4 5 4 5 24 5 5 1 5 1 5 1 5 1 5 1 7 1 5 1 7 1 5 1 7 1 1 5 7 7 1 5 1 7 1 1 5 1 7 1 7	1 chann igned or igned) bits (Un: 2 bits (Un: 2 channel of the set ctor ctor exector ctor exector ctor exector ry access TYP.)	nel signed o 24 5 cution ™ s	r signed)	27		27		27	
accumulator DMA controller Vectored interrupt sources Key interrupt Reset Power-on-reset cir	ler/multiply-	 16 bit. 32 bit. 16 bit. 2 chann 4 chann <	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 channel its = 32 b its = 32 b its = 32 b its + 32 b SET pin by watc by volta by volta by illega by illega set: 1 rreset: 1	hel bits (Uns bits (Uns bits = 32 24 5 24 5 4 5 4 5 4 5 4 5 24 5 5 1 5 1 5 1 5 1 5 1 7 1 5 1 7 1 5 1 7 1 1 5 7 7 1 5 1 7 1 1 5 1 7 1 7	1 chann signed or signed) bits (Uns bits (Uns can be channed) bits (Uns can be channed) can be channed can be channed channed channed can be channed channed channed can be channed channed channed can be channed channed channed channed can be channed	nel signed o 24 5 cution ™ s	r signed)	27		27		27	
accumulator DMA controller Vectored interrupt sources Key interrupt Reset Power-on-reset cir Voltage detector	ler/multiply-	 16 bit. 32 bit. 16 bit. 2 chann 4 chann 4 chann 5 chann 6 chann 7 chann <	$\frac{1}{5} \times 16 \text{ b}$ $\frac{1}{5}$	1 channel its = 32 b its = 32 b its = 32 b its + 32 b SET pin by watc by volta by volta by illega by illega set: 1 rreset: 1	hel bits (Uns bits (Uns bits = 32 24 5 4 5 4 5 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 chann igned or igned) bits (Unstantional bits (Unstantional 2 2 	nel signed o 24 5 cution ™ s	r signed)	27		27		27	
accumulator DMA controller Vectored interrupt sources Key interrupt Reset Power-on-reset cir Voltage detector On-chip debug fur Power supply volta	Internal External cuit age	 16 bit. 32 bit. 16 bit. 2 chann 4 chann 8 Rese 9 Interr 9 Powee 9 Risin 9 Fallin 9 Powee 9 Powee 9 Nove <	$\frac{-}{s \times 16 \text{ b}}$ $\frac{s \times 16 \text{ b}}{s \times 32 \text{ b}}$ $\frac{s \times 16 \text{ b}}{s \times 16 \text{ b}}$	1 chann its = 32 t its = 32 t its = 32 t its + 32 t 2 SET pin t by watc by volta t by illega by RAM t by illega set: 1 reset: 1 f v ($T_a = -$ V ($T_a = -$	nel pits (Uns pits (Uns pits = 32 24 5 hdog tim er-on-res ge detect al instruct l parity e al-memo l.51 V (1 l.50 V (1 l.63 V to l.63 V to -40 to +1 40 to +1	1 chann igned or igned) bits (Unstantional bits (Unstantional constantional	tel signed o 24 5 cution [№] s	r signed)	27 6		27		27	
accumulator DMA controller Vectored interrupt sources Key interrupt Reset Power-on-reset cir Voltage detector On-chip debug fur	Internal External cuit age	• 16 bit • 32 bit • 16 bit 2 chann 2 • Rese • Interr • Interr • Interr • Interr • Interr • Interr • Risin • Rese • Interr • Interr • Interr • Rese • Interr • Interr • Interr • Powe • Risin • Fallin Provide V_{DD} = 1 V_{DD} = 2. T_A = 40	$\frac{-}{s \times 16 \text{ b}}$ $\frac{s \times 16 \text{ b}}{s \times 32 \text{ b}}$ $\frac{s \times 16 \text{ b}}{s \times 16 \text{ b}}$ $s \times 1$	1 channel its = 32 t its = 32 t its = 32 t its = 32 t its + 32 t its + 32 t SET pin by watc by power by volta by illegat by illegat set: 1 it 1	nel pits (Uns pits (Uns pits = 32 24 5 hdog tim er-on-res ge detect al instruct l parity e al-memo l.51 V (T l.50 V (T l.67 V to l.63 V to -40 to +1 -40 to +1 nsumer	1 chann igned or igned) bits (Un: 2 2 her set ctor ry access rry - ry - (YP.) 0 4.06 V (0 3.98 V (B5°C)	nel signed o 24 5 cution ^{№t} s 14 stage 14 stage 14 stage	r signed)	27 6		27		27	

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

[40-pin, 44-pin, 48-pin, 52-pin, 64-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

	lt a sa	40				40		50		(1/2	/	
	Item	40-		44-	pin		pin	52-	pin	64-	pin	
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx	
Code flash m	nemory (KB)	16 to 192		16 to 512		16 to 512		32 to 512		32 to 512		
Data flash m	emory (KB)	4 to 8	_	4 to 8	-	4 to 8	_	4 to 8	_	4 to 8	-	
RAM (KB)		2 to 1	16 ^{Note1}	2 to 3	32 ^{Note1}	2 to 3	32 ^{Note1}	2 to 3	32 ^{Note1}	2 to 32 ^{Note1}		
Address spa	ce	1 MB										
Main system clock	High-speed system clock	HS (High HS (High LS (Low-	-speed m -speed m speed ma	c) oscillatio ain) mode ain) mode in) mode: ain) mode	1 to 20 l 1 to 16 l 1 to 8 M	MHz (Vdd = MHz (Vdd = Hz (Vdd =	= 2.7 to 5. = 2.4 to 5. 1.8 to 5.5	5 V), V),	CLK)			
	High-speed on-chip oscillator	HS (High LS (Low-	-speed m speed ma	ain) mode ain) mode in) mode: ain) mode	1 to 16 M 1 to 8 M	MHz (Vdd = Hz (Vdd =	= 2.4 to 5.5 1.8 to 5.5	5 V), V),				
Subsystem c	lock	XT1 (crys 32.768 k	,	ation, exte	rnal subsy	/stem cloc	k input (E)	KCLKS)				
Low-speed o	n-chip oscillator	15 kHz (ΓYP.)									
General-purp	oose registers	(8-bit reg	ister \times 8)	× 4 banks								
Minimum ins	truction execution time	0.03125	μ s (High-s	speed on-o	hip oscilla	ator: fін = 3	2 MHz op	eration)				
		0.05 <i>μ</i> s (High-spee	ed system	clock: f _{MX}	= 20 MHz	operation)					
		30.5 μs (Subsyster	n clock: fs	ив = 32.76	8 kHz ope	ration)					
Instruction se	ət	AdderMultipl	ication (8	actor/logic bits \times 8 bit	s)			and Boole	ean opera	tion), etc.		
I/O port	Total	0	36	4	10	4	14	2	18	5	8	
	CMOS I/O	(N-ch ([V _{DD} wi	28 D.D. I/O ithstand je]: 10)	(N-ch ([V _{DD} w	31 D.D. I/O ithstand je]: 10)	(N-ch ([V _{DD} w	34 D.D. I/O ithstand je]: 11)	(N-ch ([V _{DD} wi	38 D.D. I/O ithstand je]: 13)	4 (N-ch C [V₀₀ wit voltag	D.D. I/C thstanc	
	CMOS input		5		5		5		5	5	5	
	CMOS output				_		1		1	1	1	
	N-ch O.D. I/O (withstand voltage: 6 V)	:	3		4		4		4	4	1	
Timer	16-bit timer					8 cha	nnels					
	Watchdog timer					1 cha	annel					
	Real-time clock (RTC)					1 cha	annel					
	12-bit interval timer (IT)						annel					
	Timer output	4 channels outputs: 3 8 channels outputs: 7	^{Note 2}), s (PWM	5 channe 8 channe	ls (PWM o ls (PWM o	utputs: 4 [∾] utputs: 7 [∾]	ote ²), ote ²) Note ³			8 channels outputs: 7		
	RTC output	1 channe • 1 Hz (s		i clock: fsu	B = 32 768	kHz)						

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = E to G, J, L): Start address FF300H

- R5F100xE, R5F101xE (x = E to G, J, L): Start address FEF00H
- R5F100xJ, R5F101xJ (x = F, G, J, L): Start address FAF00H
 - Start address F7F00H

R5F100xL, R5F101xL (x = F, G, J, L): For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V @\,1~\text{MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(4) Peripheral Functions (Common to all products)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	IFIL ^{Note 1}				0.20		μA
RTC operating current	RTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	IT ^{Notes 1, 2, 4}				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 5	f⊩ = 15 kHz			0.22		μA
A/D converter	ADC Notes 1, 6	When	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.3	1.7	mA
operating current		conversion at maximum speed	Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		0.5	0.7	mA
A/D converter reference voltage current	ADREF ^{Note 1}				75.0		μA
Temperature sensor operating current	ITMPS ^{Note 1}				75.0		μA
LVD operating current	LVI Notes 1, 7				0.08		μA
Self- programming operating current	IFSP ^{Notes 1, 9}				2.50	12.20	mA
BGO operating current	BGO Notes 1, 8				2.50	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 \text{ V}$		1.20	1.44	mA
		CSI/UART opera	tion		0.70	0.84	mA

Notes 1. Current flowing to V_{DD} .

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.

- 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode.

Remarks 1. fill: Low-speed on-chip oscillator clock frequency

- **2.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Parameter	Symbo I	bo Conditions		、 U	HS (high-speed main) Mode		eed main) de	LV (low-vol Mo	•	Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	2.7 V ≤ E	$EV_{DD0} \leq 5.5 V$	1/fмск+2 0		1/fмск+30		1/fмск+30		ns	
		1.8 V ≤ E	$EV_{DD0} \leq 5.5 \text{ V}$	1/fмск+3 0		1/fмск+30		1/fмск+30		ns	
		$1.7~V \leq EV_{DD0} \leq 5.5~V$		1/fмск+4 0		1/fмск+40		1/fмск+40		ns	
		1.6 V ≤	$EV_{DD0} \leq 5.5 V$			1/fмск+40		1/fмск+40		ns	
SIp hold time (from SCKp↑)	tksi2	$1.8~V \leq EV_{DD0} \leq 5.5~V$		1/fмск+3 1		1/fмск+31		1/fмск+31		ns	
Note 2		1.7 V ≤ E	$EV_{DD0} \leq 5.5 \text{ V}$	1/fмск+ 250		1/fмск+ 250		1/fмск+ 250		ns	
		1.6 V ≤	$EV_{DD0} \leq 5.5 V$	—		1/fмск+ 250		1/fмск+ 250		ns	
Delay time from SCKp↓ to	tkso2	C = 30 pF ^{Note 4}	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/f _{мск+} 44		2/f _{мск+} 110		2/f _{мск+} 110	ns	
SOp output Note 3				$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 75		2/fмск+ 110		2/fмск+ 110	ns
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 110		2/fмск+ 110		2/fмск+ 110	ns	
			$\begin{array}{l} 1.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+ 220		2/fмск+ 220		2/fмск+ 220	ns	
			$\begin{array}{l} 1.6 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		_		2/fмск+ 220		2/fмск+ 220	ns	

(4)	During communication at same potential (CSI mode) (slave mode, SCKp external clock input) (2/2)
	$(T_A = -40 \text{ to } \pm 85^{\circ}\text{C} = 1.6 \text{ V} \leq \text{EV}_{DD0} = \text{EV}_{DD1} \leq \text{V}_{DD1} \leq 5.5 \text{ V}_{D0} \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0.0 \text{ V}_{D1}$

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Parameter	Symbol		Conditions		HS (high-	LS (low	/-speed	LV (low-	Unit
				speed main) Mode		main) Mode		voltage main) Mode			
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Recep- tion	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.6	Mbps
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V \end{array}$			fMCK/6 Notes 1 to 3		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.6	Mbps

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +85°C. 1.8 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V. Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$.

 $2.4~V \leq EV_{\text{DD0}} < 2.7~V$: MAX. 2.6 Mbps

 $1.8~V \leq EV_{\text{DD0}} < 2.4~V$: MAX. 1.3 Mbps

4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: $32 \text{ MHz} (2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$

	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq V_{DD} \leq 5.5 V)

LV (low-voltage main) mode: $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** $V_{b}[V]$: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13)

4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

		$\mathbf{O}, \mathbf{I}, \mathbf{O} \mathbf{V} \leq \mathbf{L} \mathbf{V}$	$V_{DD0} = EV_{DD1} \le V_{DD} \le$	J.J V, V55 - LV	1						
Parameter	Symbol		Conditions		HS (-	LS (speed	low- main)		low- age	Unit
						ode		ode		Mode	
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
			[
Transfer rate			$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$			Note		Note		Note	bps
			$2.7~V \leq V_b \leq 4.0~V$			1		1		1	
				Theoretical		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
				value of the maximum							
				transfer rate							
				C₀ = 50 pF, R₀ =							
				1.4 kΩ, V _b = 2.7							
				V							
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V},$			Note		Note		Note	bps
			$2.3~V \leq V_{b} \leq 2.7~V$			3		3		3	
				Theoretical		1.2		1.2		1.2	Mbps
				value of the		Note 4		Note 4		Note 4	
				maximum							
				transfer rate							
				$C_b = 50 \text{ pF}, R_b =$							
				2.7 kΩ, Vb = 2.3 V							
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$	I		Notes		Notes		Notes	bps
			$1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$			5, 6		5, 6		5, 6	
			-	Theoretical		0.43		0.43		0.43	Mbps
				value of the		Note 7		Note 7		Note 7	
				maximum							
				transfer rate							
				$C_{\rm b}{=}50pF,R_{\rm b}{=}$							
				5.5 kΩ, V₅ = 1.6							
				V							

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) (T_A = -40 to +85°C. 1.8 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V. Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV $_{DD0} \leq$ 5.5 V and 2.7 V \leq V $_{b} \leq$ 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol		<u>< VDD < 5.5 V, Vss =</u> nditions	HS (speed	high-	LS (low			-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ^{Note 1}		$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	24 MHz < fмск	14/ fмск		_		_		ns
			20 MHz < fмск ≤ 24 MHz	12/ fмск		_		_		ns
			8 MHz < fмск ≤ 20 MHz	10/ fмск						ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск				ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$	fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns
			24 MHz < fмск	20/ fмск						ns
			20 MHz < fмск ≤ 24 MHz	16/ fмск						ns
			16 MHz < fмск ≤ 20 MHz	14/ fмск						ns
			8 MHz < fмск ≤ 16 MHz	12/ fмск						ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск				ns
			fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note}} \end{split}$	24 MHz < fмск	48/ fмск		—		—		ns
		2	20 MHz < fмск ≤ 24 MHz	36/ fмск		—		—		ns
			16 MHz < fмск ≤ 20 MHz	32/ fмск		_		_		ns
			8 MHz < fмск ≤ 16 MHz	26/ fмск		_		_		ns
		4	4 MHz < fмск ≤ 8 MHz	16/ fмск		16/ fмск		—		ns
			fмск ≤4 MHz	10/ fмск		10/ fмск		10/ fмск		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

2.5.2 Serial interface IICA

(1) I^2C standard mode

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

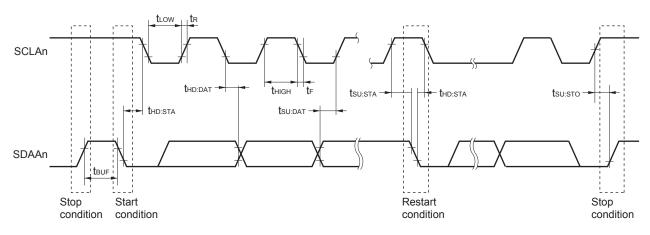
Parameter	Symbol	Conditions			HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Standard	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
		mode:	$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	0	100	0	100	0	100	kHz
		fclk≥ 1 MHz	$1.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$	0	100	0	100	0	100	kHz
			$1.6 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$	_		0	100	0	100	kHz
Setup time of restart	tsu:sta	2.7 V ≤ EV _{DD0} :	≤ 5.5 V	4.7		4.7		4.7		μs
condition		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		4.7		4.7		4.7		μS
		1.6 V ≤ EV _{DD0} ≤	5.5 V	-		4.7		4.7		μS
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \leq EV_{DD0}$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			4.0		4.0		μS
		$1.8 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μS
		$1.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μS
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		_	_	4.0		4.0		μS
Hold time when SCLA0 =	t∟ow	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μS
"L"		$1.8 V \le EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μS
		$1.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		4.7		4.7		4.7		μS
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		-		4.7		4.7		μs
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μS
		$1.8 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μS
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μs
		1.6 V ≤ EV _{DD0} ≤	≤5.5 V	-		4.0		4.0		μS
Data setup time	tsu:dat	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	250		250		250		ns
(reception)		$1.8 V \le EV_{DD0}$	≤ 5.5 V	250		250		250		ns
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	250		250		250		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	≤ 5.5 V	-		250		250		ns
Data hold time	thd:dat	$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
(transmission) ^{Note 2}		$1.8 V \le EV_{DD0}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μS
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	≤ 5.5 V	-		0	3.45	0	3.45	μs
Setup time of stop	e of stop tsu:s⊤o 2.7 V ≤ EVDD0		≤ 5.5 V	4.0		4.0		4.0		μs
condition		$1.8 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μS
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	4.0		4.0		4.0		μS
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	≤ 5.5 V	-		4.0		4.0		μS
Bus-free time	t BUF	$2.7 V \le EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μS
		$1.8 V \le EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		$1.7 V \le EV_{DD0}$	≤ 5.5 V	4.7		4.7		4.7		μs
		1.6 V ≤ EV _{DD0} ≤	≤ 5.5 V	-		4.7		4.7		μS

(Notes, Caution and Remark are listed on the next page.)

(3) I²C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD0} = EV_{DD1} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS0} = EV_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: $2.7 V \le EV_{DD0} \le 5.5 V$ fcLk \ge 10 MHz		0	1000	_		—		kHz
Setup time of restart condition	tsu:sta	$2.7 V \leq EV_{DD0} \leq 5.8$	$7 V \le EV_{DD0} \le 5.5 V$ 0.26 —				μS			
Hold time ^{Note 1}	thd:sta	$2.7 V \le EV_{DD0} \le 5.8$	ε 5.5 V 0.26 —		—		μS			
Hold time when SCLA0 = "L"	t∟ow	$2.7~V \leq EV_{DD0} \leq 5.5~V$		0.5		—		—		μS
Hold time when SCLA0 = "H"	tніgн	$2.7 V \leq EV_{DD0} \leq 5.5$	5 V	0.26		_	_	_	-	μS
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.9$	5 V	50		_	_	_	_	μS
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		0	0.45	_	_	_	_	μS
Setup time of stop condition	tsu:sto	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		0.26		_	_	_	_	μS
Bus-free time	tвиғ	$2.7 V \le EV_{DD0} \le 5.8$	5 V	0.5		_	_	-	_	μS


<R>

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: $C_b = 120 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0, 1

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (1/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{∾te 1}	Іон1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$2.4~V \leq EV_{DD0} \leq 5.5~V$			-3.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-30.0	mA
		P125 to P127, P130, P140 to P145	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-10.0	mA
			$2.4~V \leq EV_{\text{DD0}} < 2.7~V$			-5.0	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 (When duty $\leq 70\%$ ^{Note 3})				-30.0	mA
			$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-19.0	mA
			$2.4~V \leq EV_{DD0} < 2.7~V$			-10.0	mA
	Іон2	Total of all pins (When duty ≤ 70% ^{№te 3})	$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$			-60.0	mA
		Per pin for P20 to P27, P150 to P156	2,4 V \leq V_{DD} \leq 5.5 V			-0.1 ^{Note 2}	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.
 - 2. Do not exceed the total current value.
 - 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and $I_{OH} = -10.0 \text{ mA}$
 - Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

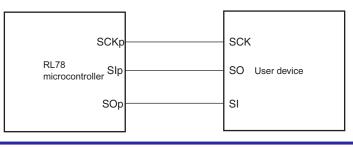
- Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter is in operation.
- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- **9.** Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode in the RL78/G13 User's Manual.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Parameter	Symbol	Conditions		HS (high-speed ma	Unit	
				MIN.	MAX.	
SCKp cycle time Note 5	t ксү2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5$	20 MHz < fмск	16/f мск		ns
		V	fмск ≤ 20 MHz	12/f мск		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5$	16 MHz < fмск	16/f мск		ns
		V	fмск \leq 16 MHz	12/fмск		ns
		$2.4 \ V \leq EV_{DD0} \leq 5.5 \ V$		16/fмск		ns
				12/fмск and 1000		ns
SCKp high-/low-level width	tкн2, tкL2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 14		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 16		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5$	V	tксү2/2 – 36		ns
SIp setup time	tsik2	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск+40		ns
(to SCKp↑) ^{Note 1}		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск+60		ns
SIp hold time (from SCKp↑) ^{№te 2}	tksi2	$2.4~V \leq EV_{\text{DD0}} \leq 5.5$	V	1/fмск+62		ns
Delay time from SCKp↓ to SOp output	tkso2	C = 30 pF Note 4	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+66	ns
Note 3			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$		2/fмск+113	ns

(3)	During communication at same potential (CSI mode) (slave mode, SCKp external clock input)
	$(T_A = -40 \text{ to } \pm 105^{\circ}\text{C} 24 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 55 \text{ V}_{D0} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0.\text{ V}_{D1}$

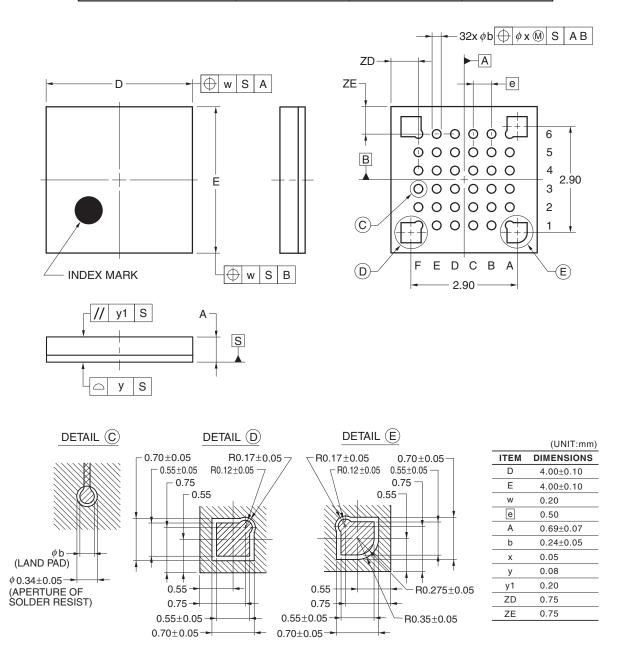

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), p: Changel number (n = 0, ta 2) an EMA number (n = 0, 1, 4, 5, 0, 14)
 - n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)
 - 2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode connection diagram (during communication at same potential)



4.6 36-pin Products

R5F100CAALA, R5F100CCALA, R5F100CDALA, R5F100CEALA, R5F100CFALA, R5F100CGALA R5F101CAALA, R5F101CCALA, R5F101CDALA, R5F101CEALA, R5F101CFALA, R5F101CGALA R5F100CAGLA, R5F100CCGLA, R5F100CDGLA, R5F100CEGLA, R5F100CFGLA, R5F100CGGLA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA36-4x4-0.50	PWLG0036KA-A	P36FC-50-AA4-2	0.023

©2012 Renesas Electronics Corporation. All rights reserved.

