

Welcome to E-XFL.COM

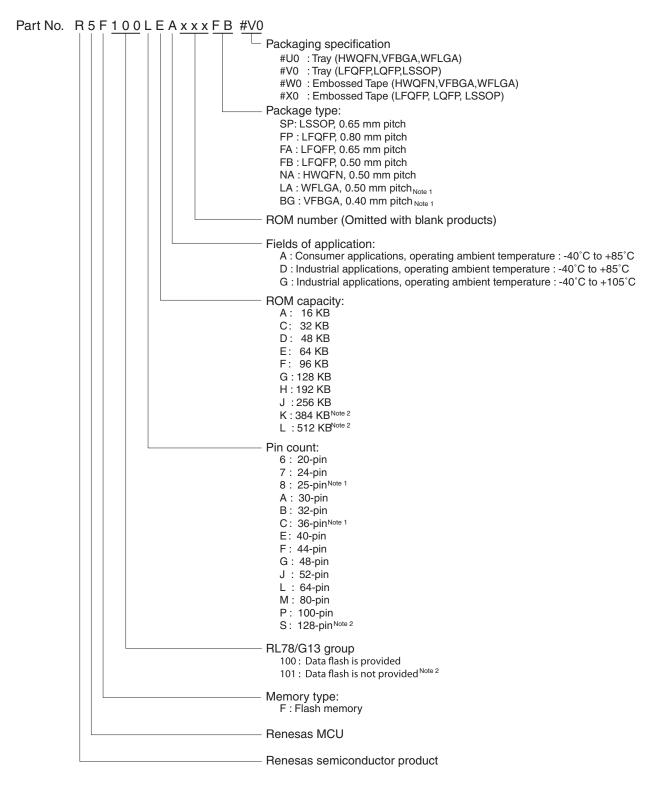
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

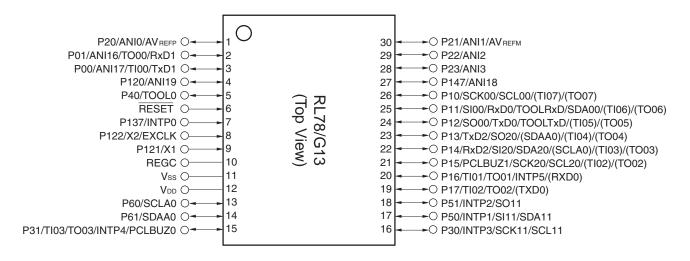
Ξ·ΧΕΙ


Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101lhafb-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 List of Part Numbers

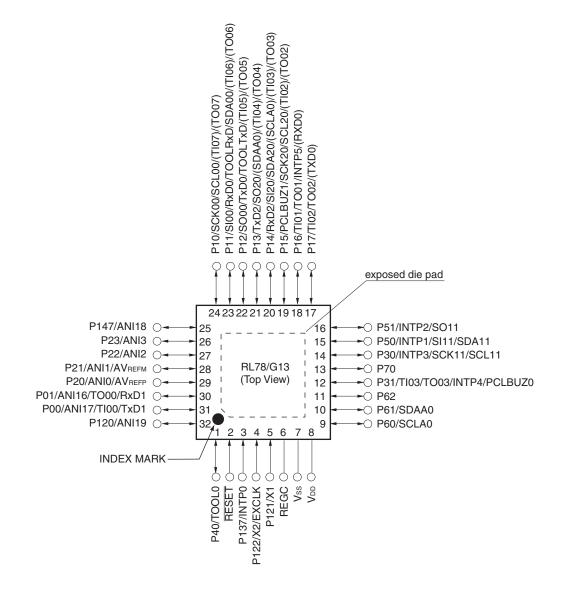


- **Notes** 1. Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}C$)", and "G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$)"
 - **2.** Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}C$)", and "D: Industrial applications ($T_A = -40$ to $+85^{\circ}C$)"

1.3.4 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

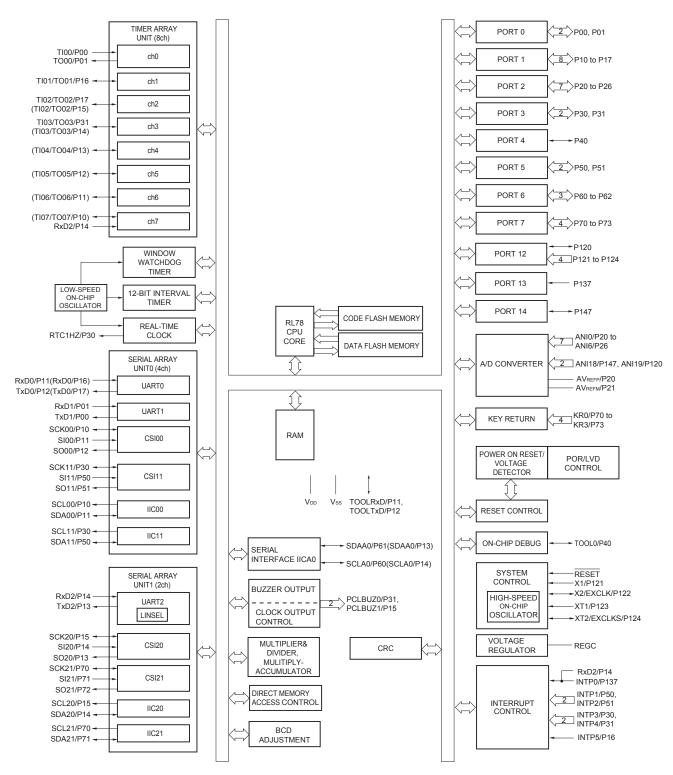
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.3.5 32-pin products

• 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.
- 3. It is recommended to connect an exposed die pad to V_{ss} .

1.5.7 40-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

^{3.} When setting to PIOR = 1

lt o	m	40	nin	11	nin	10	nin	EO	nin	64	(2) nin
Ite		40-			-pin		-pin	52	-pin I		-pin
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx
Clock output/buzz	er output	:	2		2		2		2		2
·		(Main s • 256 Hz	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: f_{MAIN} = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: f_{SUB} = 32.768 kHz operation) 								
8/10-bit resolution	A/D converter	9 channe	ls	10 chanr	nels	10 chanr	nels	12 chan	nels	12 chanr	nels
Serial interface		[40-pin, 4	4-pin prod	ducts]		J				J	
		 CSI: 1 CSI: 2 [48-pin, 5 CSI: 2 CSI: 1 CSI: 2 [64-pin pi CSI: 2 CSI: 2 CSI: 2 	channel/s channels/ 2-pin proo channels/ channels/ roducts] channels/ channels/ channels/	implified I ² simplified ducts] simplified I ² simplified I ² simplified simplified	C: 1 chani I ² C: 2 chai I ² C: 2 chai C: 1 chani I ² C: 2 chai I ² C: 2 chai I ² C: 2 chai	nnels/UAR nel/UART: nnels/UAR nnels/UAR nnels/UAR	1 channe T (UART : 1 channe T (UART : T (UART : T: 1 chann T: 1 chann	l supporting nel l supporting nel	g LIN-bus): g LIN-bus): g LIN-bus):	1 channel	I
	I ² C bus	1 channe		1 channe		1 channe		1 channe		1 channe	
Multiplier and divid		 16 bits × 16 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 									
		 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 									
DMA controller		2 channe	ls								
Vectored	Internal	2	27	:	27	2	27		27	2	27
interrupt sources	External		7		7		10		12		13
Key interrupt			4		4		6		8		8
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 									
Power-on-reset ci	rcuit	Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.)									
Voltage detector		• Rising edge : 1.67 V to 4.06 V (14 stages) • Falling edge : 1.63 V to 3.98 V (14 stages)									
On-chip debug fur	nction	Provided									
Power supply volta		$V_{_{DD}} = 1.6 \text{ to } 5.5 \text{ V} (T_{_{A}} = -40 \text{ to } +85^{\circ}\text{C})$ $V_{_{DD}} = 2.4 \text{ to } 5.5 \text{ V} (T_{_{A}} = -40 \text{ to } +105^{\circ}\text{C})$									
Operating ambien	t temperature	$T_A = 40$ to +85°C (A: Consumer applications, D: Industrial applications) $T_A = 40$ to +105°C (G: Industrial applications)									

<R>

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Юн1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	Iol1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins] [5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory programming mode			
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 4}$	VDD = 5.0 V		0.62	1.89	mA
Current	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.62	1.89	mA
			mode	fiH = 24 MHz ^{Note 4}	VDD = 5.0 V		0.50	1.48	mA
					VDD = 3.0 V		0.50	1.48	mA
				fi⊢ = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.12	mA
					V _{DD} = 3.0 V		0.44	1.12	mA
			LS (low-	fiH = 8 MHz ^{Note 4}	$V_{DD} = 3.0 V$		290	620	μA
			speed main) mode ^{Note 7}		$V_{DD} = 2.0 V$		290	620	μA
			LV (low-	fin = 4 MHz ^{Note 4}	VDD = 3.0 V		460	700	μA
			voltage main) mode ^{Note 7} HS (high- speed main)		V _{DD} = 2.0 V		460	700	μA
				fмx = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.14	mA
	mode ^{Not}	speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.48	1.34	mA	
				$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		0.31	1.14	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.48	1.34	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		0.21	0.68	mA
			$V_{DD} = 5.0 V$	Resonator connection		0.28	0.76	mA	
			$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	0.68	mA	
				Vdd = 3.0 V	Resonator connection		0.28	0.76	mA
	LS (low-	LS (low-	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	390	μA	
			speed main) mode ^{Note 7}	Vdd = 3.0 V	Resonator connection		160	450	μA
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	390	μA
				VDD = 2.0 V	Resonator connection		160	450	μA
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.66	μA
			clock operation	$T_A = -40^{\circ}C$	Resonator connection		0.50	0.85	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.38	0.66	μA
				T _A = +25°C	Resonator connection		0.57	0.85	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.47	3.49	μA
				$T_A = +50^{\circ}C$	Resonator connection		0.66	3.68	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.80	6.10	μA
				T _A = +70°C	Resonator connection		0.99	6.29	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		1.52	10.46	μA
				$T_A = +85^{\circ}C$	Resonator connection		1.71	10.65	μA
	DD3	STOP	$T_A = -40^{\circ}C$	1	1	1	0.19	0.54	μA
		mode ^{Note 8}	T _A = +25°C			1	0.26	0.54	μA
			T _A = +50°C				0.35	3.37	μA
			$T_{A} = +70^{\circ}C$				0.68	5.98	μΑ
			$T_A = +70^{\circ}C$ $T_A = +85^{\circ}C$				1.40	10.34	μΑ

(Notes and Remarks are listed on the next page.)

2.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Items	Symbol		Conditions	;	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main	HS (high-	$2.7V{\leq}V_{DD}{\leq}5.5V$	0.03125		1	μS
instruction execution time)		system clock (fmain)	speed main) mode	$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
		operation	LS (low-speed main) mode	$1.8 V \le V_{DD} \le 5.5 V$	0.125		1	μS
			LV (low- voltage main) mode	$1.6 V \le V_{DD} \le 5.5 V$	0.25		1	μS
		Subsystem of operation	clock (fsuв)	$1.8 V \! \le \! V_{DD} \! \le \! 5.5 V$	28.5	30.5	31.3	μS
		In the self	HS (high-	$2.7V{\leq}V_{\text{DD}}{\leq}5.5V$	0.03125		1	μS
		programming mode	speed main) mode	$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μS
			LS (low-speed main) mode	$1.8V\!\leq\!V_{DD}\!\leq\!5.5V$	0.125		1	μS
			LV (low- voltage main) mode	$1.8 V \le V_{DD} \le 5.5 V$	0.25		1	μS
External system clock	fex	$2.7 \text{ V} \leq \text{V}_{DD} \leq$		1	1.0		20.0	MHz
frequency		2.4 V ≤ V _{DD} <			1.0		16.0	MHz
		1.8 V ≤ V _{DD} <			1.0		8.0	MHz
		1.6 V ≤ V _{DD} <			1.0		4.0	MHz
	fexs				32		35	kHz
External system clock input	texh, texl	$2.7 \text{ V} \leq \text{V}_{DD} \leq$	< 5.5 V		24			ns
high-level width, low-level width		2.4 V ≤ V _{DD} <			30			ns
		1.8 V ≤ V _{DD} <			60			ns
		1.6 V ≤ V _{DD} <			120			ns
	texns, texus				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтıн, tтı∟				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fтo	HS (high-spe	eed 4.0 V	$\leq EV_{DD0} \leq 5.5 V$			16	MHz
output frequency		main) mode		\leq EV _{DD0} < 4.0 V			8	MHz
			1.8 V	\leq EV _{DD0} < 2.7 V			4	MHz
			1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LS (low-spee	ed 1.8 V	$\leq EV_{DD0} \leq 5.5 V$			4	MHz
		main) mode	1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-volta main) mode	age 1.6 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	eed 4.0 V	$\leq EV_{DD0} \leq 5.5 V$			16	MHz
frequency		main) mode	2.7 V	\leq EV _{DD0} < 4.0 V			8	MHz
			1.8 V	\leq EV _{DD0} < 2.7 V			4	MHz
			1.6 V	$\leq EV_{DD0} < 1.8 V$			2	MHz
		LS (low-spee	ed 1.8 V	$\leq EV_{DD0} \leq 5.5 V$			4	MHz
		main) mode	1.6 V	$\leq EV_{DD0} < 1.8 V$			2	MHz
		LV (low-volta	age 1.8 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
		main) mode	1.6 V	\leq EV _{DD0} < 1.8 V			2	MHz
Interrupt input high-level width,	tintн,	INTP0	1.6 V	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$	1			μS
low-level width	tintl	INTP1 to INT	[P11 1.6 V	$\leq EV_{DD0} \leq 5.5 V$	1			μS
Key interrupt input low-level	tкв	KR0 to KR7	1.8 V	$\leq EV_{DD0} \leq 5.5 V$	250			ns
width			1.6 V	$\leq EV_{DD0} < 1.8 V$	1			μS
RESET low-level width	trsl				10			μS

(Note and Remark are listed on the next page.)

Parameter	Symbol	C	Conditions	HS (high main)	•	LS (low main)	r-speed Mode	LV (low- main)	-	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 4/fclk	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	125		500		1000		ns
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	250		500		1000		ns
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	500		500		1000		ns
			$\begin{array}{l} 1.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	1000		1000		1000		ns
			$\begin{array}{l} 1.6 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	—		1000		1000		ns
SCKp high-/low-level width	tкнı, tк∟ı	$4.0 V \le EV_{DI}$	5.5 V	tксү1/2 – 12		tксү1/2 – 50		tксү1/2 – 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 5.5 \ V \\ \\ 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V \\ \\ 1.8 \ V \leq EV_{DD0} \leq 5.5 \ V \end{array}$		tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns
				tксү1/2 – 38		tксү1/2 – 50		tксү1/2 – 50		ns
				tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns
		$1.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү1/2 – 100		tксү1/2 – 100		tксү1/2 – 100		ns
		$1.6 V \le EV_{DI}$	$500 \leq 5.5 \text{ V}$	—		tксү1/2 – 100		tксү1/2 – 100		ns
SIp setup time	tsik1	$4.0 V \le EV_{DI}$	$100 \leq 5.5 \text{ V}$	44		110		110		ns
(to SCKp↑) Note 1		$2.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$00 \leq 5.5 \text{ V}$	44		110		110		ns
		$2.4 V \le EV_{DI}$	$0.0 \leq 5.5 \text{ V}$	75		110		110		ns
		$1.8 V \le EV_{DI}$	$0.0 \leq 5.5 \text{ V}$	110		110		110		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$0.0 \leq 5.5 \text{ V}$	220		220		220		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DI}}$	$0.0 \leq 5.5 \text{ V}$			220		220		ns
SIp hold time	tksi1	$1.7 \text{ V} \leq \text{EV}_{\text{DI}}$	5.5 V	19		19		19		ns
(from SCKp \uparrow) Note 2		$1.6 \text{ V} \leq \text{EV}_{\text{DI}}$	5.5 V	—		19		19		ns
Delay time from SCKp↓ to SOp	tkso1	$\begin{array}{l} 1.7 \ V \leq EV_{DI} \\ C = 30 \ pF^{\text{Note}} \end{array}$			25		25		25	ns
output Note 3	-	$1.6 V \le EV_{DI}$ C = 30 pF ^{Note}			_		25		25	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_4 = -40$ to $+85^{\circ}$ C, 1.6 V \leq EVppa = EVpp1 \leq Vpp \leq 5.5 V, Vss = EVssa = EVssa = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Parameter	Symbol		Conditions		speed	high- main) ode		/-speed Mode	voltage	low- e main) ode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Recep- tion	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 4}$		5.3		1.3		0.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate fмск = fclк ^{Note 4}		5.3		1.3		0.6	Mbps
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$			fMCK/6 Notes 1 to 3		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate fмск = fclк ^{Note 4}		5.3		1.3		0.6	Mbps

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +85°C. 1.8 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V. Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$.

 $2.4~V \leq EV_{\text{DD0}} < 2.7~V$: MAX. 2.6 Mbps

 $1.8~V \leq EV_{\text{DD0}} < 2.4~V$: MAX. 1.3 Mbps

4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: $32 \text{ MHz} (2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$

	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq V_{DD} \leq 5.5 V)

LV (low-voltage main) mode: $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** $V_{b}[V]$: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

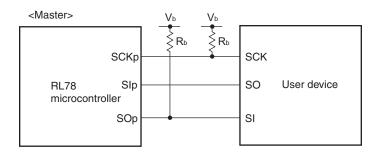
n: Channel number (mn = 00 to 03, 10 to 13)

4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol		Conditions	HS (hig	h-speed Mode	LS (low		`	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 4/fc∟к	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	300		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
			$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}}, \end{array}$	1150		1150		1150		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DI}} \\ 2.7 \ V \leq V_{\text{b}} \leq \end{array}$	4.0 V,	tксү1/2 – 75		tксү1/2 – 75		tксү1/2 – 75		ns
		$C_b = 30 \text{ pF},$ 2.7 V $\leq EV_{DI}$ 2.3 V $\leq V_b \leq$ $C_b = 30 \text{ pF},$	₂₀ < 4.0 V, 2.7 V,	tксү1/2 – 170		tксү1/2 – 170		tксү1/2 – 170		ns
		$1.8 V \le EV_{DI}$ $1.6 V \le V_b \le C_b = 30 \text{ pF},$	2.0 V ^{Note} ,	tксү1/2 – 458		tксү1/2 – 458		tксү1/2 – 458		ns
SCKp low-level width	tĸ∟ı	$4.0 \text{ V} \leq \text{EV}_{\text{DI}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq$ $C_{\text{b}} = 30 \text{ pF},$	∞ ≤ 5.5 V, 4.0 V,	tксү1/2 – 12		tксү1/2 – 50		tксү1/2 – 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DI} \\ 2.3 \ V \leq V_b \leq \end{array}$	₀₀ < 4.0 V, 2.7 V,	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns
		$\label{eq:cb} \begin{split} &C_{\rm b} = 30 \ p F, \\ &1.8 \ V \leq E V_{\rm DI} \\ &1.6 \ V \leq V_{\rm b} \leq \\ &C_{\rm b} = 30 \ p F, \end{split}$	⁰⁰ < 3.3 V, 2.0 V ^{Note} ,	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$


Note Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

<R>

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

(2) I²C fast mode

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD0} = EV_{DD1} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS0} = EV_{SS1} = 0 \text{ V})$

Parameter	Symbol	Cor	Conditions		h-speed Mode	``	v-speed Mode	`	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode:	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	400	0	400	0	400	kHz
		fc∟κ≥ 3.5 MHz	$1.8~V \le EV_{\text{DD0}} \le 5.5~V$	0	400	0	400	0	400	kHz
Setup time of restart	tsu:sta	$2.7 V \le EV_{DD0} \le 5.3$	5 V	0.6		0.6		0.6		μs
condition		$1.8 V \le EV_{DD0} \le 5.8$	5 V	0.6		0.6		0.6		μs
Hold time ^{Note 1}	thd:sta	$2.7 V \le EV_{DD0} \le 5.3$	5 V	0.6		0.6		0.6		μs
		$1.8 V \le EV_{DD0} \le 5.8$	5 V	0.6		0.6		0.6		μs
Hold time when SCLA0 =	t∟ow	$2.7 V \le EV_{DD0} \le 5.3$	5 V	1.3		1.3		1.3		μs
"L"		$1.8 V \le EV_{DD0} \le 5.8$	1.3		1.3		1.3		μs	
Hold time when SCLA0 =	tніgн	$2.7 V \le EV_{DD0} \le 5.3$	5 V	0.6		0.6		0.6		μs
"H"		$1.8 V \le EV_{DD0} \le 5.8$	5 V	0.6		0.6		0.6		μs
Data setup time	tsu:dat	$2.7 V \le EV_{DD0} \le 5.3$	5 V	100		100		100		μs
(reception)		$1.8~V \le EV_{\text{DD0}} \le 5.3$	5 V	100		100		100		μs
Data hold time	thd:dat	$2.7 V \le EV_{DD0} \le 5.3$	5 V	0	0.9	0	0.9	0	0.9	μs
(transmission) ^{Note 2}		$1.8 V \le EV_{DD0} \le 5.8$	5 V	0	0.9	0	0.9	0	0.9	μs
Setup time of stop	tsu:sto	$2.7 V \le EV_{DD0} \le 5.8$	5 V	0.6		0.6		0.6		μs
condition		$1.8 V \le EV_{DD0} \le 5.8$	5 V	0.6		0.6		0.6		μs
Bus-free time	t BUF	$2.7 V \le EV_{DD0} \le 5.8$	5 V	1.3		1.3		1.3		μs
		$1.8 V \le EV_{DD0} \le 5.8$	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$			1.3		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

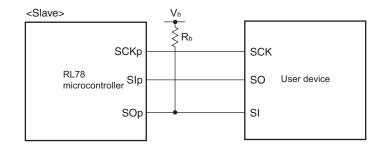
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2	HALT	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		0.62	3.40	mA
Current	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.62	3.40	mA
			mode	$f_{IH} = 24 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		0.50	2.70	mA
					V _{DD} = 3.0 V		0.50	2.70	mA
				fi⊢ = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.90	mA
					V _{DD} = 3.0 V		0.44	1.90	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	2.10	mA
			speed main) mode ^{Note 7}	$V_{DD} = 5.0 V$	Resonator connection		0.48	2.20	mA
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	2.10	mA
			$V_{DD} = 3.0 V$	Resonator connection		0.48	2.20	mA	
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	1.10	mA
				$V_{DD} = 5.0 V$	Resonator connection		0.28	1.20	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	1.10	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.28	1.20	mA
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μA
			clock operation	$T_A = -40^{\circ}C$	Resonator connection		0.47	0.80	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μA
				T _A = +25°C	Resonator connection		0.53	0.80	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μA
				$T_A = +50^{\circ}C$	Resonator connection		0.60	2.49	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μA
				$T_A = +70^{\circ}C$	Resonator connection		0.83	4.22	μA
				$f_{SUB} = 32.768 \text{ kHz}^{Note 5}$	Square wave input		1.09	8.04	μA
				T _A = +85°C	Resonator connection		1.28	8.23	μA
				fsue = 32.768 kHz ^{Note 5}	Square wave input		5.50	41.00	μA
				T _A = +105°C	Resonator connection		5.50	41.00	μA
		STOP	$T_A = -40^{\circ}C$				0.19	0.52	μA
		mode ^{Note 8}	T _A = +25°C				0.25	0.52	μA
			T _A = +50°C				0.32	2.21	μA
			T _A = +70°C				0.55	3.94	μA
			T _A = +85°C					7.95	μA
	$T_{A} = +105^{\circ}$		T _A = +105°C				5.00	40.00	μA

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products	
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{DD1} \le 100 \text{ V}_{DD1} \le 1000 \text{ V}_{DD1} \le 100 \text{ V}_{DD1} = 100 $	$V_{SS} = EV_{SS0} = EV_{SS1} = 0 V) (2/2)$

(Notes and Remarks are listed on the next page.)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	IFIL Note 1				0.20		μA
RTC operating current	RTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	IT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter		When conversion	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.3	1.7	mA
operating current	Notes 1, 6	at maximum speed	Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	ILVD Notes 1, 7				0.08		μA
Self programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO operating current	BGO Notes 1, 8				2.50	12.20	mA
SNOOZE	Isnoz		The mode is performed Note 10		0.50	1.10	mA
operating current	Note 1		The A/D conversion operations are performed, Loe voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		1.20	2.04	mA
		CSI/UART operation	on		0.70	1.54	mA

(3) Peripheral Functions (Common to all products) (TA = -40 to $+105^{\circ}$ C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)


Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.

- **Notes 1.** Transfer rate in the SNOOZE mode : MAX. 1 Mbps
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 00, 01, 02,

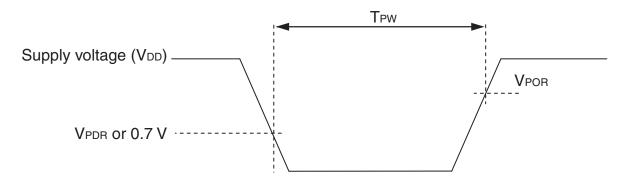
10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))

4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

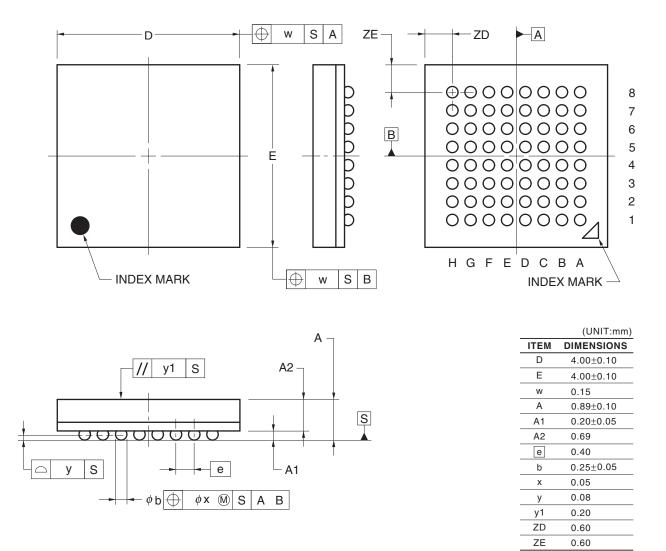


3.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width	TPW		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).



R5F100LCABG, R5F100LDABG, R5F100LEABG, R5F100LFABG, R5F100LGABG, R5F100LHABG, R5F100LJABG

R5F101LCABG, R5F101LDABG, R5F101LEABG, R5F101LFABG, R5F101LGABG, R5F101LHABG, R5F101LJABG

R5F100LCGBG, R5F100LDGBG, R5F100LEGBG, R5F100LFGBG, R5F100LGGBG, R5F100LHGBG, R5F100LJGBG

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-VFBGA64-4x4-0.40	PVBG0064LA-A	P64F1-40-AA2-2	0.03

© 2012 Renesas Electronics Corporation. All rights reserved.

Davi			Description	
Rev.	Date	Page	Summary	
3.00	Aug 02, 2013	81	Modification of figure of AC Timing Test Points	
		81	Modification of description and note 3 in (1) During communication at same potential (UART mode)	
		83	Modification of description in (2) During communication at same potential (CSI mode)	
		84	Modification of description in (3) During communication at same potential (CSI mode)	
		85	Modification of description in (4) During communication at same potential (CSI mode) (1/2)	
		86	Modification of description in (4) During communication at same potential (CSI mode) (2/2)	
		88	Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2)	
		89	Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2)	
		91	Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)	
		92, 93	Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
		94	Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
		95	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2)	
		96	Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2)	
		97	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)	
		98	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)	
		99	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)	
		100	Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)	
		102	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)	
		103	Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)	
		106	Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2)	
		107	Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (2/2)	
		109	Addition of (1) I ² C standard mode	
		111	Addition of (2) I ² C fast mode	
		112	Addition of (3) I ² C fast mode plus	
		112	Modification of IICA serial transfer timing	
		113	Addition of table in 2.6.1 A/D converter characteristics	
		113	Modification of description in 2.6.1 (1)	
		114	Modification of notes 3 to 5 in 2.6.1 (1)	
		115	Modification of description and notes 2, 4, and 5 in 2.6.1 (2)	
		116	Modification of description and notes 3 and 4 in 2.6.1 (3)	
		117	Modification of description and notes 3 and 4 in 2.6.1 (4)	