

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101lhdfb-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

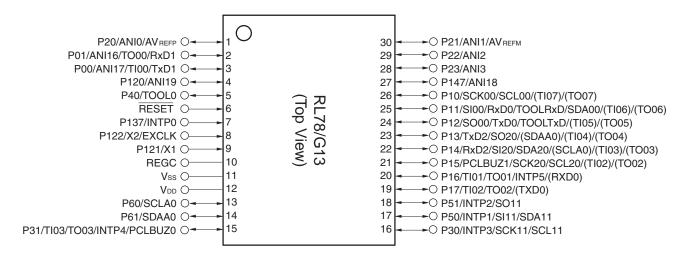
Table 1-1. List of Ordering Part Numbers

Dia	Destaurs	Data flash		(3/12)
Pin count	Package	Data flash	Fields of Application	Ordering Part Number
36 pins	36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)	Mounted	A	R5F100CAALA#U0, R5F100CCALA#U0, R5F100CDALA#U0, R5F100CEALA#U0, R5F100CFALA#U0, R5F100CGALA#U0 R5F100CAALA#W0, R5F100CCALA#W0, R5F100CDALA#W0, R5F100CEALA#W0, R5F100CFALA#W0, R5F100CGALA#W0
			G	R5F100CAGLA#U0, R5F100CCGLA#U0, R5F100CDGLA#U0, R5F100CEGLA#U0, R5F100CFGLA#U0, R5F100CGGLA#U0 R5F100CAGLA#W0, R5F100CCGLA#W0, R5F100CDGLA#W0, R5F100CEGLA#W0, R5F100CFGLA#W0, R5F100CGGLA#W0
		Not mounted	A	R5F101CAALA#U0, R5F101CCALA#U0, R5F101CDALA#U0, R5F101CEALA#U0, R5F101CFALA#U0, R5F101CGALA#U0 R5F101CAALA#W0, R5F101CCALA#W0, R5F101CDALA#W0, R5F101CEALA#W0, R5F101CFALA#W0, R5F101CGALA#W0
40 pins	40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)	Mounted	A	R5F100EAANA#U0, R5F100ECANA#U0, R5F100EDANA#U0, R5F100EEANA#U0, R5F100EFANA#U0, R5F100EGANA#U0, R5F100EHANA#U0 R5F100EAANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EEANA#W0, R5F100EFANA#W0, R5F100EGANA#W0, R5F100EHANA#W0
			D	R5F100EADNA#U0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EEDNA#U0, R5F100EFDNA#U0, R5F100EGDNA#U0, R5F100EHDNA#U0 R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EDDNA#W0, R5F100EEDNA#W0, R5F100EFDNA#W0, R5F100EGDNA#W0, R5F100EHDNA#W0
			G	R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EDGNA#U0, R5F100EEGNA#U0, R5F100EFGNA#U0, R5F100EGGNA#U0, R5F100EHGNA#U0 R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EDGNA#W0, R5F100EEGNA#W0, R5F100EFGNA#W0, R5F100EGGNA#W0, R5F100EHGNA#W0
		Not mounted	A	R5F101EAANA#U0, R5F101ECANA#U0, R5F101EDANA#U0, R5F101EEANA#U0, R5F101EFANA#U0, R5F101EGANA#U0, R5F101EHANA#U0 R5F101EAANA#W0, R5F101ECANA#W0, R5F101EDANA#W0, R5F101EEANA#W0, R5F101EFANA#W0, R5F101EGANA#W0, R5F101EHANA#W0
			D	R5F101EADNA#U0, R5F101ECDNA#U0, R5F101EDDNA#U0, R5F101EEDNA#U0, R5F101EFDNA#U0, R5F101EGDNA#U0, R5F101EHDNA#U0 R5F101EADNA#W0, R5F101ECDNA#W0, R5F101EDDNA#W0, R5F101EEDNA#W0, R5F101EFDNA#W0, R5F101EGDNA#W0, R5F101EHDNA#W0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

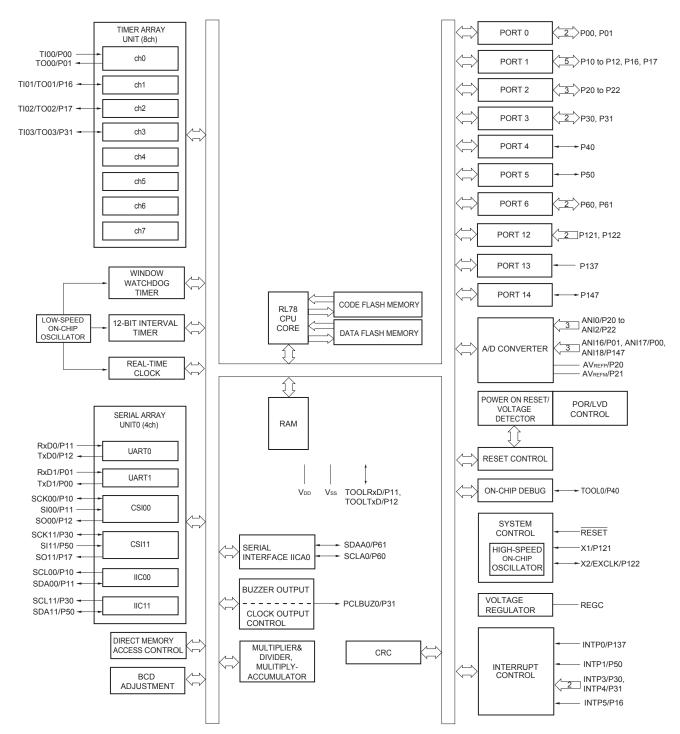
Pin	Package	Data	Fields of	(5/12) Ordering Part Number
count		flash	Application	
48 pins	48-pin plastic	Mounted	A	R5F100GAAFB#V0, R5F100GCAFB#V0, R5F100GDAFB#V0,
	LFQFP (7 \times 7 mm,			R5F100GEAFB#V0, R5F100GFAFB#V0, R5F100GGAFB#V0,
	0.5 mm pitch)			R5F100GHAFB#V0, R5F100GJAFB#V0, R5F100GKAFB#V0,
				R5F100GLAFB#V0
				R5F100GAAFB#X0, R5F100GCAFB#X0, R5F100GDAFB#X0,
				R5F100GEAFB#X0, R5F100GFAFB#X0, R5F100GGAFB#X0,
				R5F100GHAFB#X0, R5F100GJAFB#X0, R5F100GKAFB#X0,
				R5F100GLAFB#X0
			D	R5F100GADFB#V0, R5F100GCDFB#V0, R5F100GDDFB#V0,
				R5F100GEDFB#V0, R5F100GFDFB#V0, R5F100GGDFB#V0,
				R5F100GHDFB#V0, R5F100GJDFB#V0, R5F100GKDFB#V0,
				R5F100GLDFB#V0
				R5F100GADFB#X0, R5F100GCDFB#X0, R5F100GDDFB#X0,
				R5F100GEDFB#X0, R5F100GFDFB#X0, R5F100GGDFB#X0,
				R5F100GHDFB#X0, R5F100GJDFB#X0, R5F100GKDFB#X0,
				R5F100GLDFB#X0
			G	R5F100GAGFB#V0, R5F100GCGFB#V0, R5F100GDGFB#V0,
				R5F100GEGFB#V0, R5F100GFGFB#V0, R5F100GGGFB#V0,
				R5F100GHGFB#V0, R5F100GJGFB#V0
				R5F100GAGFB#X0, R5F100GCGFB#X0, R5F100GDGFB#X0,
				R5F100GEGFB#X0, R5F100GFGFB#X0, R5F100GGGFB#X0,
				R5F100GHGFB#X0, R5F100GJGFB#X0
		Not	А	R5F101GAAFB#V0, R5F101GCAFB#V0, R5F101GDAFB#V0,
		mounted		R5F101GEAFB#V0, R5F101GFAFB#V0, R5F101GGAFB#V0,
				R5F101GHAFB#V0, R5F101GJAFB#V0, R5F101GKAFB#V0,
				R5F101GLAFB#V0
				R5F101GAAFB#X0, R5F101GCAFB#X0, R5F101GDAFB#X0,
				R5F101GEAFB#X0, R5F101GFAFB#X0, R5F101GGAFB#X0,
				R5F101GHAFB#X0, R5F101GJAFB#X0, R5F101GKAFB#X0,
				R5F101GLAFB#X0
			D	R5F101GADFB#V0, R5F101GCDFB#V0, R5F101GDDFB#V0,
				R5F101GEDFB#V0, R5F101GFDFB#V0, R5F101GGDFB#V0,
				R5F101GHDFB#V0, R5F101GJDFB#V0, R5F101GKDFB#V0,
				R5F101GLDFB#V0
				R5F101GADFB#X0, R5F101GCDFB#X0, R5F101GDDFB#X0,
				R5F101GEDFB#X0, R5F101GFDFB#X0, R5F101GGDFB#X0,
				R5F101GHDFB#X0, R5F101GJDFB#X0, R5F101GKDFB#X0,
				R5F101GLDFB#X0

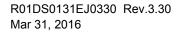

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

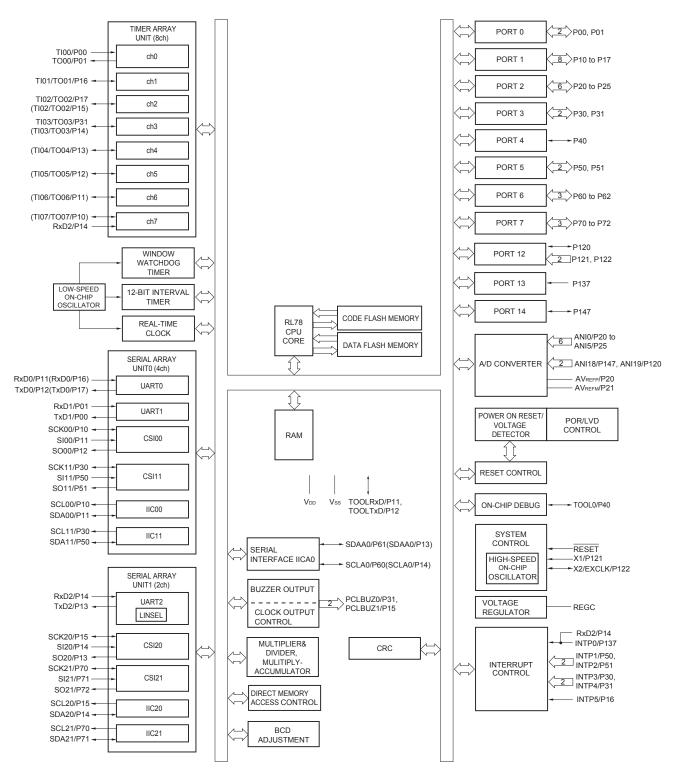
1.3.4 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.


1.5.2 24-pin products

1.5.6 36-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.6 Outline of Functions

[20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

	Item	20-p	oin	24-	pin	25	-pin	30-	pin	32-	pin	(1/2 36-	pin
		, ד	Ъ	Я	דג	д	גר	Ъ	דג	Ъ	ភ្ល	Ъ	
		5F1	5F1	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F10	5F1(
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Code flash me	emory (KB)	16 to	64	16 t	o 64	161	o 64	16 to	128		128	16 to	128
Data flash me	emory (KB)	4	_	4	_	4	_	4 to 8	_	4 to 8	_	4 to 8	_
RAM (KB)		2 to 4	Note1	2 to	4 ^{Note1}	2 to	4 ^{Note1}	2 to ⁻	12 ^{Note1}	2 to 1	2 ^{Note1}	2 to ⁻	2 ^{Note1}
Address spac	e	1 MB		•		L							
Main system clock	High-speed system clock	X1 (crys HS (High HS (High LS (Low LV (Low	n-speed n-speed -speed	l main) m l main) m main) m	node: 1 t node: 1 t ode: 1 to	o 20 MH o 16 MH o 8 MHz	Iz (V _{DD} = Iz (V _{DD} = (V _{DD} = 1.	2.7 to 5. 2.4 to 5. 8 to 5.5	.5 V), .5 V), V),	EXCLK)			
	High-speed on-chip oscillator	HS (High HS (High LS (Low- LV (Low-	n-speed -speed	l main) m main) m	node: 1 f ode: 1 f	to 16 MH to 8 MHz	Iz (Vdd = 2 (Vdd = 1	2.4 to 5 1.8 to 5.5	.5 V), 5 V),				
Subsystem cl	ock												
Low-speed or	n-chip oscillator	15 kHz (TYP.)										
General-purp	ose registers	(8-bit reg	gister ×	8) × 4 ba	anks								
Minimum inst	ruction execution time	0.03125 μ s (High-speed on-chip oscillator: f _{IH} = 32 MHz operation)											
		0.05 μs ((High-sp	beed sys	tem cloo	ck: fмx =	20 MHz	operatio	n)				
Instruction set		 Data ti Adder Multipli Rotate 	and su lication	btractor/ (8 bits ×	logical o 8 bits)				t, and B	oolean o	peration), etc.	
I/O port	Total	16 20 21 26 28				3	2						
	CMOS I/O	13 (N-ch O [V₀₀ with voltage	.D. I/O nstand	(N-ch C	thstand	(N-ch ([V _{DD} w	5 D.D. I/O thstand ge]: 6)	2 (N-ch C [V⊳⊳ wi voltag	D.D. I/O thstand	2 (N-ch C [V _{DD} wi [*] voltag	D.D. I/O thstand	2 (N-ch C [V _{DD} wi voltag	D.D. I/C
	CMOS input	3		:	3		3	:	3	3	3	3	3
	CMOS output	-		-	-		1	-	-	-	-	-	-
	N-ch O.D. I/O (withstand voltage: 6 V)	-		2	2		2	2	2	3	3	3	3
Timer	16-bit timer	8 channels											
	Watchdog timer						1 cha	nnel					
	Real-time clock (RTC)						1 chan	nel Note 2					
	12-bit interval timer (IT)						1 cha	nnel					
	Timer output	3 channels (PWM outputs: (PWM outputs: 3 ^{Note 3})						4 channels (PWM outputs: 3 ^{Note 3}), 8 channels (PWM outputs: 7 ^{Note 3})					
	RTC output			•				-					
Notes 1.	The flash library us The target products R5F100xD, R5F R5F100xE, R5F For the RAM areas for RL78 Family (I Only the constant	s and sta 101xD (: 101xE () used by R20UT29	$\begin{array}{l} \text{rt addr} \\ x = 6 \ \text{to} \\ x = 6 \ \text{to} \\ \text{the flat} \\ \textbf{944}. \end{array}$	ress of t o 8, A to o 8, A to ash libra	he RAN o C): S o C): S ury, see	A areas Start add Start add Start add Self R	used by dress Ff dress Ff AM list	y the fla F300H EF00H of Flas	sh libra h Self-	ry are s Progra i	hown b mming	Library	

^{2.} Only the constant-period interrupt function when the low-speed on-chip oscillator clock (fiL) is selected

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Юн1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	Iol1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	Iol1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147				20.0 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
	Total of P00 to P04, P07, P32 to	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			70.0	mA	
	-	P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			15.0	mA
			$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			9.0	mA
			$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			4.5	mA
		Total of P05, P06, P10 to P17, P30,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			80.0	mA
		P31, P50 to P57, P60 to P67,	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			35.0	mA
		P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146,	$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			20.0	mA
		P147 (When duty $\leq 70\%^{\text{Note 3}}$)	$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			10.0	mA
	Total of all pins (When duty $\leq 70\%$ ^{Note 3})				150.0	mA	
	Iol2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			5.0	mA

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD0} = EV_{DD1} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS0} = EV_{SS1} = 0 \text{ V})$ (2/5)

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1 and Vss pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and $I_{OL} = 10.0 \text{ mA}$

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	4.0 V \leq EV _{DD0} \leq 5.5 V, I _{OH1} = -10.0 mA	EV _{DD0} - 1.5			V
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	EV _{DD0} - 0.7			V
		P117, P120, P125 to P127, P130, P140 to P147	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -2.0 \text{ mA}$	EV _{DD0} - 0.6			V
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -1.5 \text{ mA}$	EV _{DD0} - 0.5			V
			$eq:logical_lo$	EV _{DD0} - 0.5			V
	Vон2	P20 to P27, P150 to P156	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh2 = -100 μ A	V _{DD} - 0.5			V
Output voltage, low	Vol1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 20 \ mA \end{array}$			1.3	V
		to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:DD1}$			0.7	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:DD1}$			0.6	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:DD1}$			0.4	V
			$eq:local_$			0.4	V
			$eq:local_$			0.4	V
	Vol2	P20 to P27, P150 to P156	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $\text{Iol2} = 400 \ \mu \text{ A}$			0.4	V
	Vol3	P60 to P63	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 15.0 \ \text{mA} \end{array}$			2.0	V
			$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array} \end{array} \label{eq:DD1}$			0.4	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 3.0 \ mA \end{array}$			0.4	V
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 2.0 \ mA \end{array}$			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ lol3 = 1.0 mA			0.4	V

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions	1	1	MIN.	TYP.	MAX.	Unit
Supply current ^{Note 1}	IDD1	Operating	HS (high-	f⊪ = 32 MHz ^{№te 3}	Basic	VDD = 5.0 V		2.1		mA
current		mode	speed main) mode ^{Note 5}		operation	$V_{DD} = 3.0 V$		2.1		mA
			mode		Normal	V _{DD} = 5.0 V		4.6	7.0	mA
					operation	$V_{DD} = 3.0 V$		4.6	7.0	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		3.7	5.5	mA
					operation	$V_{DD} = 3.0 V$		3.7	5.5	mA
				fін = 16 MHz ^{Note 3}	Normal	VDD = 5.0 V		2.7	4.0	mA
					operation	V _{DD} = 3.0 V		2.7	4.0	mA
			LS (low-	fін = 8 MHz ^{Note 3}	Normal	VDD = 3.0 V		1.2	1.8	mA
			speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	1.8	mA
			LV (low-	$f_{IH} = 4 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 3.0 V		1.2	1.7	mA
		voltage main) mode		operation	V _{DD} = 2.0 V		1.2	1.7	mA	
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	4.6	mA
		speed main) mode ^{Note 5}	$V_{DD} = 5.0 V$	operation	Resonator connection		3.2	4.8	mA	
			$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.0	4.6	mA	
			$V_{DD} = 3.0 V$	operation	Resonator connection		3.2	4.8	mA	
			$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	2.7	mA	
				$V_{DD} = 5.0 V$	operation	Resonator connection		1.9	2.7	mA
				fмx = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.9	2.7	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		1.9	2.7	mA
			LS (low-	f _{MX} = 8 MHz ^{Note 2} , N	Normal operation	Square wave input		1.1	1.7	mA
			speed main) mode ^{Note 5}	$V_{DD} = 3.0 V$		Resonator connection		1.1	1.7	mA
				f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	1.7	mA
				$V_{DD} = 2.0 V$	operation	Resonator connection		1.1	1.7	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
			clock operation	Note 4 $T_A = -40^{\circ}C$	operation	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
				^{Note 4} T _A = +25°C	operation	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μA
				Note 4	operation	Resonator		4.3	5.6	μΑ
				T _A = +50°C		connection				
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μA
					operation	Resonator connection		4.4	6.4	μA
				fsuв = 32.768 kHz	Normal	Square wave input	<u> </u>	4.6	7.7	μA
			Note 4 $T_A = +85^{\circ}C$	operation	Resonator		4.7	7.8	μA	

(Notes and Remarks are listed on the next page.)

3. The smaller maximum transfer rate derived by using fMcK/6 or the following expression is the valid maximum transfer rate.

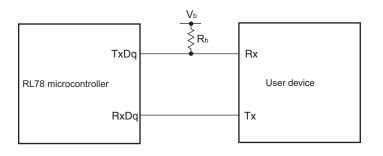
Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}} \times 100 [\%]$

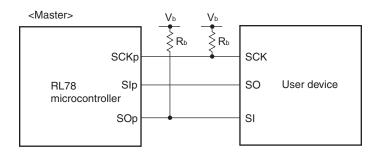
* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- $\textbf{5.} \quad \textbf{Use it with } EV_{DD0} \geq V_{b}.$
- 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.


Expression for calculating the transfer rate when 1.8 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

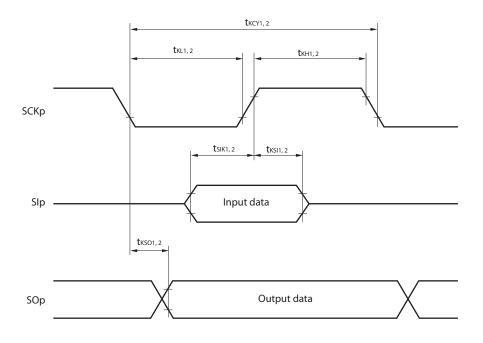
CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

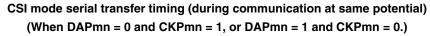
Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	·	0.8EV _{DD0}		EVDDO	V
	VIH2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer $4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	2.2		EVDD0	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDD0	V
			TTL input buffer $2.4 \text{ V} \leq EV_{\text{DD0}} < 3.3 \text{ V}$	1.5		EVDDO	V
	VIH3	P20 to P27, P150 to P156	0.7V _{DD}		VDD	V	
	VIH4	P60 to P63	0.7EVDD0		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EXCL	0.8Vdd		VDD	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		0		0.2EV _{DD0}	V
	VIL2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer 4.0 V \leq EV _{DD0} \leq 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	0		0.5	V
			TTL input buffer 2.4 V \leq EV _{DD0} $<$ 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3VDD	V
	VIL4	P60 to P63		0		0.3EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	(S, RESET	0		0.2VDD	V

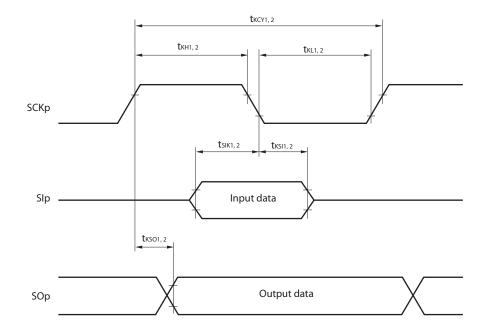
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (3/5)

- Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

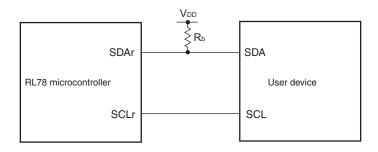


Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current	Idd1	Operating mode	HS (high- speed main) mode ^{Note 5}	$f_{IH} = 32 \text{ MHz}^{Note 3}$	Basic operatio n	V _{DD} = 5.0 V V _{DD} = 3.0 V		2.3 2.3		mA mA
					Normal operatio	V _{DD} = 5.0 V V _{DD} = 3.0 V		5.2 5.2	9.2 9.2	mA mA
				fin = 24 MHz ^{Note 3}	n Normal operatio	V _{DD} = 5.0 V V _{DD} = 3.0 V		4.1 4.1	7.0 7.0	mA mA
				fін = 16 MHz ^{Note 3}	n Normal	$V_{DD} = 5.0 V$		3.0	5.0	mA
					operatio n	$V_{DD} = 3.0 V$		3.0	5.0	mA
			HS (high- speed main)	$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal operatio	Square wave input		3.4	5.9	mA
			mode ^{Note 5}	V _{DD} = 5.0 V	n	Resonator connection		3.6	6.0	mA
			$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ $V_{\text{DD}} = 3.0 \text{ V}$	Normal operatio	Square wave input Resonator		3.4 3.6	5.9 6.0	mA mA	
				fмx = 10 MHz ^{Note 2} ,	n Normal	connection Square wave input		2.1	3.5	mA
			$V_{DD} = 5.0 V$	operatio n	Resonator connection		2.1	3.5	mA	
			Subsystem clock	$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal operatio	Square wave input		2.1	3.5	mA
				V _{DD} = 3.0 V	n	Resonator connection		2.1	3.5	mA
				fsub = 32.768 kHz	Normal operatio	Square wave input		4.8	5.9	μA
			operation	$T_A = -40^{\circ}C$	n	Resonator connection		4.9	6.0	μA
				fsub = 32.768 kHz	Normal operatio	Square wave input		4.9	5.9	μA
				T _A = +25°C	n	Resonator connection		5.0	6.0	μA
				fsub = 32.768 kHz	Normal operatio n	Square wave input Resonator		5.0 5.1	7.6 7.7	μA μA
				T _A = +50°C f _{SUB} = 32.768 kHz	Normal	connection Square wave input		5.2	9.3	μA
				$T_{A} = +70^{\circ}C$	operatio n	Resonator connection		5.3	9.4	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.7	13.3	μA
				operatio n	Resonator connection		5.8	13.4	μA	
			fs∪B = 32.768 kHz Note 4	Normal operatio	Square wave input Resonator		10.0	46.0 46.0	μA A	
				T _A = +105°C	n	connection		10.0	40.0	μA

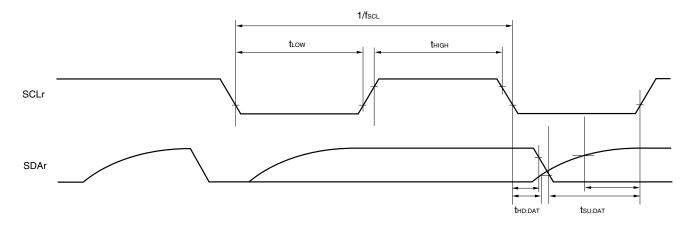

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products	
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (1/2)	


(Notes and Remarks are listed on the next page.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)



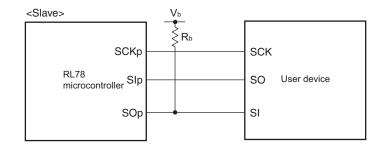
Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)


2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fmck: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m

= 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

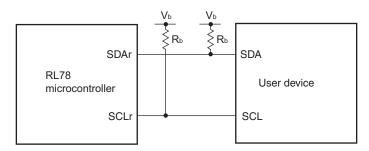
- **Notes 1.** Transfer rate in the SNOOZE mode : MAX. 1 Mbps
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 128-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

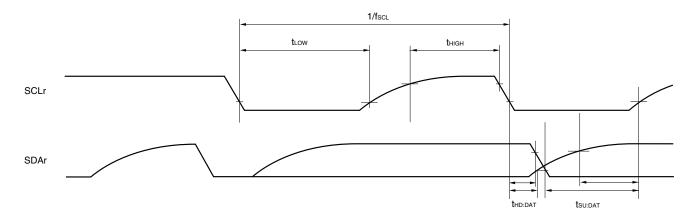
- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 00, 01, 02,

10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

3. fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))


4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12, 13)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

	Reference Voltage					
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = VBGR			
Input channel	Reference voltage (-) = AVREFM	Reference voltage (-) = Vss	Reference voltage (-) = AVREFM			
ANI0 to ANI14	Refer to 3.6.1 (1).	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4) .			
ANI16 to ANI26	Refer to 3.6.1 (2).					
Internal reference voltage	Refer to 3.6.1 (1) .		-			
Temperature sensor output						
voltage						

(1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(T_A = -40 to +105°C, 2.4 V \leq AV_{REFP} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFM} = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±3.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V \text{DD} \le 5.5~V$	2.125		39	μS
			$2.7~V \le V_{DD} \le 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal reference	$2.7~V \le V \text{DD} \le 5.5~V$	3.5625		39	μs
	sensor output voltage (HS (high-speed main) mode)	$2.4~V \le V \text{dd} \le 5.5~V$	17		39	μs	
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 2.4 \hspace{.1in} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 2.4 \hspace{.1cm} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±0.25	%FSR
Integral linearity error	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 2.4 \hspace{.1cm} V \hspace{.1cm} \leq \hspace{.1cm} AV_{\text{REFP}} \hspace{.1cm} \leq \hspace{.1cm} 5.5 \\ V \end{array}$			±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 2.4 \hspace{.1cm} V \leq AV_{\text{REFP}} \leq 5.5 \\ V \end{array}$			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage output (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)			VBGR Note 4		V
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)			VTMPS25 Note	4	V

(Notes are listed on the next page.)

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}0} = \text{EV}_{\text{SS}1} = 0 \text{ V}, \text{ Reference voltage (+)} = 10^{\circ}\text{C}, 10^{$	
VDD, Reference voltage (-) = Vss)	

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		ANI16 to ANI26	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal reference	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \le V \text{DD} \le 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
Differential linearity error	DLE	10-bit resolution	$2.4~V \leq V \text{dd} \leq 5.5~V$			±2.0	LSB
Analog input voltage	Vain	ANI0 to ANI14 ANI16 to ANI26		0		VDD	V
				0		EVDD0	V
		Internal reference voltage output (2.4 V \leq VDD \leq 5.5 V, HS (high-		VBGR Note 3		V	
		Temperature sensor output vo (2.4 V \leq VDD \leq 5.5 V, HS (high-	,	VTMPS25 Note :	3	V	

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- $\ensuremath{\textbf{2.}}$ This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

