

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101ljdfb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	-)													
Flash	Data	RAM		RL78/G13										
ROM	flash		20 pins	24 pins	25 pins	30 pins	32 pins	36 pins						
128	8 KB	12	-	-	-	R5F100AG	R5F100BG	R5F100CG						
KB	-	KB	_	-	_	R5F101AG	R5F101BG	R5F101CG						
96 KB	8 KB	8 KB	-	_	_	R5F100AF	R5F100BF	R5F100CF						
ND	-		-	-	-	R5F101AF	R5F101BF	R5F101CF						
64	4 KB	4 KB	R5F1006E	R5F1007E	R5F1008E	R5F100AE	R5F100BE	R5F100CE						
KB	-	Note	R5F1016E	R5F1017E	R5F1018E	R5F101AE	R5F101BE	R5F101CE						
48	4 KB	3 KB	R5F1006D	R5F1007D	R5F1008D	R5F100AD	R5F100BD	R5F100CD						
ĸВ	-		R5F1016D	R5F1017D	R5F1018D	R5F101AD	R5F101BD	R5F101CD						
32	4 KB	2 KB	R5F1006C	R5F1007C	R5F1008C	R5F100AC	R5F100BC	R5F100CC						
KB	-		R5F1016C	R5F1017C	R5F1018C	R5F101AC	R5F101BC	R5F101CC						
16 KB	4 KB	2 KB	R5F1006A	R5F1007A	R5F1008A	R5F100AA	R5F100BA	R5F100CA						
ΝD	_		R5F1016A	R5F1017A	R5F1018A	R5F101AA	R5F101BA	R5F101CA						

O ROM, RAM capacities

Flash	Data	RAM				RL78	3/G13			
ROM	flash		40 pins	44 pins	48 pins	52 pins	64 pins	80 pins	100 pins	128 pins
512	8 KB	32 KB	-	R5F100FL	R5F100GL	R5F100JL	R5F100LL	R5F100ML	R5F100PL	R5F100SL
КВ	-	Note	-	R5F101FL	R5F101GL	R5F101JL	R5F101LL	R5F101ML	R5F101PL	R5F101SL
384	8 KB	24 KB	-	R5F100FK	R5F100GK	R5F100JK	R5F100LK	R5F100MK	R5F100PK	R5F100SK
KB	-		_	R5F101FK	R5F101GK	R5F101JK	R5F101LK	R5F101MK	R5F101PK	R5F101SK
256	8 KB	20 KB	_	R5F100FJ	R5F100GJ	R5F100JJ	R5F100LJ	R5F100MJ	R5F100PJ	R5F100SJ
КВ	_	Note	_	R5F101FJ	R5F101GJ	R5F101JJ	R5F101LJ	R5F101MJ	R5F101PJ	R5F101SJ
192	8 KB	16 KB	R5F100EH	R5F100FH	R5F100GH	R5F100JH	R5F100LH	R5F100MH	R5F100PH	R5F100SH
KB	-		R5F101EH	R5F101FH	R5F101GH	R5F101JH	R5F101LH	R5F101MH	R5F101PH	R5F101SH
128	8 KB	12 KB	R5F100EG	R5F100FG	R5F100GG	R5F100JG	R5F100LG	R5F100MG	R5F100PG	-
KB	-		R5F101EG	R5F101FG	R5F101GG	R5F101JG	R5F101LG	R5F101MG	R5F101PG	_
96	8 KB	8 KB	R5F100EF	R5F100FF	R5F100GF	R5F100JF	R5F100LF	R5F100MF	R5F100PF	_
KB	_		R5F101EF	R5F101FF	R5F101GF	R5F101JF	R5F101LF	R5F101MF	R5F101PF	-
64	4 KB	4 KB	R5F100EE	R5F100FE	R5F100GE	R5F100JE	R5F100LE	-	_	_
КВ	_	Note	R5F101EE	R5F101FE	R5F101GE	R5F101JE	R5F101LE	-	_	_
48	4 KB	3 KB ^{Note}	R5F100ED	R5F100FD	R5F100GD	R5F100JD	R5F100LD	-	_	_
KB	_		R5F101ED	R5F101FD	R5F101GD	R5F101JD	R5F101LD	-	-	-
32	4 KB	2 KB	R5F100EC	R5F100FC	R5F100GC	R5F100JC	R5F100LC	-	-	-
КВ	_		R5F101EC	R5F101FC	R5F101GC	R5F101JC	R5F101LC	-	_	_
16	4 KB	2 KB	R5F100EA	R5F100FA	R5F100GA	_	_	-	-	-
KB	_		R5F101EA	R5F101FA	R5F101GA	-	-	-	-	-

Note The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = 6 to 8, A to C, E to G, J, L): Start address FF300H

R5F100xE, R5F101xE (x = 6 to 8, A to C, E to G, J, L): Start address FEF00H

R5F100xJ, R5F101xJ (x = F, G, J, L, M, P): R5F100xL, R5F101xL (x = F, G, J, L, M, P, S): Start address FAF00H Start address F7F00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Table 1-1.	List of	Ordering	Part	Numbers
------------	---------	----------	------	---------

				(7/12)
Pin count	Package	Data flash	Fields of Application	Ordering Part Number
52 pins	52-pin plastic	Mounted	А	R5F100JCAFA#V0, R5F100JDAFA#V0, R5F100JEAFA#V0,
	LQFP (10 × 10			R5F100JFAFA#V0, R5F100JGAFA#V0, R5F100JHAFA#V0,
	mm, 0.65 mm			R5F100JJAFA#V0, R5F100JKAFA#V0, R5F100JLAFA#V0
	pitch)			R5F100JCAFA#X0, R5F100JDAFA#X0, R5F100JEAFA#X0,
				R5F100JFAFA#X0, R5F100JGAFA#X0, R5F100JHAFA#X0,
				R5F100JJAFA#X0, R5F100JKAFA#X0, R5F100JLAFA#X0
			D	R5F100JCDFA#V0, R5F100JDDFA#V0, R5F100JEDFA#V0,
				R5F100JFDFA#V0, R5F100JGDFA#V0, R5F100JHDFA#V0,
				R5F100JJDFA#V0, R5F100JKDFA#V0, R5F100JLDFA#V0
			R5F100JCDFA#X0, R5F100JDDFA#X0, R5F100JEDFA#X0,	
				R5F100JFDFA#X0, R5F100JGDFA#X0, R5F100JHDFA#X0,
			R5F100JJDFA#X0, R5F100JKDFA#X0, R5F100JLDFA#X0	
			G	R5F100JCGFA#V0, R5F100JDGFA#V0, R5F100JEGFA#V0,
				R5F100JFGFA#V0,R5F100JGGFA#V0,R5F100JHGFA#V0,
				R5F100JJGFA#V0
				R5F100JCGFA#X0, R5F100JDGFA#X0, R5F100JEGFA#X0,
				R5F100JFGFA#X0,R5F100JGGFA#X0, R5F100JHGFA#X0,
				R5F100JJGFA#X0
		Not	А	R5F101JCAFA#V0, R5F101JDAFA#V0, R5F101JEAFA#V0,
		mounted		R5F101JFAFA#V0, R5F101JGAFA#V0, R5F101JHAFA#V0,
				R5F101JJAFA#V0, R5F101JKAFA#V0, R5F101JLAFA#V0
				R5F101JCAFA#X0, R5F101JDAFA#X0, R5F101JEAFA#X0,
				R5F101JFAFA#X0, R5F101JGAFA#X0, R5F101JHAFA#X0,
				R5F101JJAFA#X0, R5F101JKAFA#X0, R5F101JLAFA#X0
			D	R5F101JCDFA#V0, R5F101JDDFA#V0, R5F101JEDFA#V0,
				R5F101JFDFA#V0, R5F101JGDFA#V0, R5F101JHDFA#V0,
				R5F101JJDFA#V0, R5F101JKDFA#V0, R5F101JLDFA#V0
				R5F101JCDFA#X0, R5F101JDDFA#X0, R5F101JEDFA#X0,
				R5F101JFDFA#X0, R5F101JGDFA#X0, R5F101JHDFA#X0,
				R5F101JJDFA#X0, R5F101JKDFA#X0, R5F101JLDFA#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3 Pin Configuration (Top View)

1.3.1 20-pin products

• 20-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see 1.4 Pin Identification.

1.5.3 25-pin products

1.5.11 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

- The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).
- 4. When setting to PIOR = 1

												(2/2	.)
Ite	m	20-	·pin	24-	pin	25-	pin	30-	pin	32-	-pin	36	-pin
		R5F1006x	R5F1016x	R5F1007x	R5F1017x	R5F1008x	R5F1018x	R5F100Ax	R5F101Ax	R5F100Bx	R5F101Bx	R5F100Cx	R5F101Cx
Clock output/buzze	er output		_		1		1		2		2		2
	• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation)												
8/10-bit resolution	A/D converter	6 chanı	6 channels 6 channels 6 channels 8 channels 8 channels 8 channels										nels
Serial interface Multiplier and divid accumulator	[20-pin, • CSI: • CSI: [30-pin, • CSI: • C	 CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel [30-pin, 32-pin products] CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART (UART supporting LIN-bus): 1 channel [36-pin products] CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 1 channel/UART: 1 channel CSI: 1 channel/simplified I²C: 2 channel/UART: 1 channel CSI: 2 channel/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel CSI: 2 channels/simplified I²C: 2 channels/UART (UART supporting LIN-bus): 1 channel CSI: 2 channel 1 channel 1 channel 1 channel 1 channel 2 bits = 32 bits (Unsigned or signed) 32 bits ÷ 32 bits = 32 bits (Unsigned) 											
DMA controller		2 channels											
Vectored interrupt	Internal	2	23	2	24	2	24	2	27	2	27	2	27
sources	External		3		5		5		6		6		6
Key interrupt													
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 											
Power-on-reset cir	cuit	Powe	ər-on-res ər-down	set: reset:	I.51 V (1 I.50 V (1	ГҮР.) ГҮР.)							
Voltage detector		• Rising edge : 1.67 V to 4.06 V (14 stages) • Falling edge : 1.63 V to 3.98 V (14 stages)											
On-chip debug fun	iction	Provide	ed .										
Power supply volta	age	$V_{DD} = 1.6 \text{ to } 5.5 \text{ V} (T_{A} = -40 \text{ to } +85^{\circ}\text{C})$											
		V _{DD} = 2	.4 to 5.5	V ($T_A = \cdot$	-40 to +1	105°C)							
Operating ambient	temperature	T _A = 40 T _A = 40	∙ to +85°) to +105	C (A: Co 5°C (G: Ir	nsumer ndustrial	applicati applicati	ons, D: I ions)	ndustria	l applica	tions)			

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

 The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User's Manual).

							(2/2)				
Ite	۰m	80-	pin	100	-pin	128	-pin				
		R5F100Mx	R5F101Mx	R5F100Px	R5F101Px	R5F100Sx	R5F101Sx				
Clock output/buzz	er output	;	2	:	2		2				
		 2.44 kHz, 4.8 (Main system) 256 Hz, 512 H (Subsystem c) 	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsuB = 32.768 kHz operation) 								
8/10-bit resolution	A/D converter	17 channels		20 channels		26 channels					
Serial interface		[80-pin, 100-pin	, 128-pin product	ts]							
		 CSI: 2 channe 	 CSI: 2 channels/simplified l²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified l²C: 2 channels/UART: 1 channel CSI: 2 channels/simplified l²C: 2 channels/UART (UART supporting LIN-bus): 1 channel CSI: 2 channels/simplified l²C: 2 channels/UART: 1 channel 								
	I ² C bus	2 channels		2 channels		2 channels					
Multiplier and divid	der/multiply-	• 16 bits × 16 bit	ts = 32 bits (Unsi	igned or signed)							
accumulator		• 32 bits ÷ 32 bi	ts = 32 bits (Unsi	igned)							
		• 16 bits × 16 bit	ts + 32 bits = 32	bits (Unsigned or	signed)						
DMA controller		4 channels	4 channels								
Vectored	Internal	37		3	37	2	41				
interrupt sources	External	1	3	1	3	13					
Key interrupt	-	;	8	8		8					
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 									
Power-on-reset ci	rcuit	Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.)									
Voltage detector		Rising edge : 1.67 V to 4.06 V (14 stages) Falling edge : 1.63 V to 3.98 V (14 stages)									
On-chip debug fur	nction	Provided									
Power supply volt	age	$V_{DD} = 1.6 \text{ to } 5.5$	V ($T_A = -40$ to +8	5°C)							
		$V_{DD} = 2.4$ to 5.5	V ($T_{A} = -40$ to +1	05°C)							
Operating ambien	t temperature	$T_A = 40 \text{ to } +85^{\circ}0$	C (A: Consumer	applications, D: Ir	ndustrial applicat	ions)					
		T _A = 40 to +105	°C (G: Industrial	applications)							

<R>

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 V \le V_{\text{DD}} \le 5.5 V@1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 3}$	Basic	$V_{DD} = 5.0 V$		2.3		mA
Current Note 1		mode	speed main)		operation	$V_{DD} = 3.0 V$		2.3		mA
			mode		Normal	V _{DD} = 5.0 V		5.2	8.5	mA
					operation	V _{DD} = 3.0 V		5.2	8.5	mA
				fin = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		4.1	6.6	mA
					operation	V _{DD} = 3.0 V		4.1	6.6	mA
				fін = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.0	4.7	mA
					operation	V _{DD} = 3.0 V		3.0	4.7	mA
			LS (low-	fi⊢ = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.3	2.1	mA
			speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.3	2.1	mA
			LV (low-	$f_{IH} = 4 \text{ MHz}^{Note 3}$	Normal	V _{DD} = 3.0 V		1.3	1.8	mA
			voltage main) mode		operation	V _{DD} = 2.0 V		1.3	1.8	mA
			HS (high-	fмx = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	5.5	mA
		speed main)	V _{DD} = 5.0 V	operation	Resonator connection		3.6	5.7	mA	
			mode	$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal operation	Square wave input		3.4	5.5	mA
			LS (low- speed main) mode ^{Note 5}	$V_{DD} = 3.0 V$		Resonator connection		3.6	5.7	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal operation Normal operation	Square wave input		2.1	3.2	mA
				$V_{DD} = 5.0 V$		Resonator connection		2.1	3.2	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		2.1	3.2	mA
				$V_{DD} = 3.0 V$		Resonator connection		2.1	3.2	mA
				$f_{MX} = 8 \text{ MHz}^{Note 2},$		Square wave input		1.2	2.0	mA
				V _{DD} = 3.0 V		Resonator connection		1.2	2.0	mA
				$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.2	2.0	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.2	2.0	mA
			Subsystem	fsub = 32.768 kHz	Normal	Square wave input		4.8	5.9	μA
			operation	$T_A = -40^{\circ}C$	operation	Resonator connection		4.9	6.0	μA
				fsub = 32.768 kHz	Normal	Square wave input		4.9	5.9	μA
				T _A = +25°C	operation	Resonator connection		5.0	6.0	μA
				fsue = 32.768 kHz	Normal	Square wave input		5.0	7.6	μA
				$T_A = +50^{\circ}C$	operation	Resonator connection		5.1	7.7	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.2	9.3	μA
				Note 4	operation	Resonator connection		5.3	9.4	μA
				T _A = +70°C						
			fsub = 32.768 kHz	Normal operation	Square wave input		5.7	13.3	μA	
				T _A = +85°C				5.0	13.4	μΑ

(Notes and Remarks are listed on the next page.)

3. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- $\textbf{5.} \quad \textbf{Use it with } EV_{DD0} \geq V_{b}.$
- 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}} \times 100 [\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vbb tolerance (When 20- to 52-pin products)/EVbb tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{DD1} \ge 10^{\circ}\text{C}$
Reference voltage (–) = Vss)

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$		1.2	±7.0	LSB
			$\begin{array}{l} 1.6 \ V \leq V \text{DD} \leq 5.5 \ V \\ \text{Note 3} \end{array}$		1.2	±10.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI14,	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
		ANTO LO ANIZO	$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μS
Conversion time	on time tconv 10-bit resolution		$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μS
		temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	-scale error ^{Notes 1, 2} Ezs 10-bit resolution		$1.8~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
			$\begin{array}{l} 1.6 \ V \leq V \text{DD} \leq 5.5 \ V \\ \text{Note 3} \end{array}$			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution	solution $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$			±0.60	%FSR
			$\begin{array}{l} 1.6 \ V \leq V \text{DD} \leq 5.5 \ V \\ _{\text{Note 3}} \end{array}$			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$			±4.0	LSB
			$\begin{array}{l} 1.6 \ V \leq V \text{DD} \leq 5.5 \ V \\ _{\text{Note 3}} \end{array}$			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
			$\begin{array}{l} 1.6 \ V \leq V \text{DD} \leq 5.5 \ V \\ \text{Note 3} \end{array}$			±2.5	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		Vdd	V
		ANI16 to ANI26		0		EVDD0	V
	-	Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high	gh-speed main) mode)			V	
		Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (high	voltage gh-speed main) mode)	,	VTMPS25 ^{Note 4}		V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іонт	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lol1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operati	on mode	–40 to +105	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter	Symbol	,		Conditions	,		MIN.	TYP.	, MAX.	Unit
Supply		Operating	HS (high-	fin = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.3		mA
Current Note 1		mode	speed main) mode ^{Note 5}		operatio n	V _{DD} = 3.0 V		2.3		mA
					Normal	$V_{DD} = 5.0 V$		5.2	9.2	mA
					operatio n	VDD = 3.0 V		5.2	9.2	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		4.1	7.0	mA
					operatio n	VDD = 3.0 V		4.1	7.0	mA
				$f_{IH} = 16 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		3.0	5.0	mA
					operatio n	V _{DD} = 3.0 V		3.0	5.0	mA
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.4	5.9	mA
		speed main) mode ^{Note 5}	$V_{DD} = 5.0 V$	operatio n	Resonator connection		3.6	6.0	mA	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$	Normal	Square wave input		3.4	5.9	mA
			$V_{DD} = 3.0 V$	operatio n	Resonator connection		3.6	6.0	mA	
			$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.1	3.5	mA	
				$V_{DD} = 5.0 V$	operatio n	Resonator connection		2.1	3.5	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		2.1	3.5	mA
			Subsystem clock operation	$V_{DD} = 3.0 V$	operatio n	Resonator connection		2.1	3.5	mA
				fsuв = 32.768 kHz	Normal operatio n	Square wave input		4.8	5.9	μA
				$T_A = -40^{\circ}C$		Resonator connection		4.9	6.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.9	5.9	μA
				$T_{A} = +25^{\circ}C$	operatio n	Resonator connection		5.0	6.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.0	7.6	μA
				$T_{A} = +50^{\circ}C$	operatio n	Resonator connection		5.1	7.7	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.2	9.3	μA
				Note 4 $T_A = \pm 70^{\circ}C$	operatio n	Resonator		5.3	9.4	μA
				fsug = 32,768 kHz	Normal	Square wave input		5.7	13.3	//A
				Note 4	operatio	Resonator		5.8	13.4	μA
			-	T _A = +85°C	n	connection				-
				fsub = 32.768 kHz	Normal	Square wave input		10.0	46.0	μA
			Note 4 TA = +105°C	n	Resonator connection		10.0	46.0	μA	

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products	
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	$V_{\rm VSS} = EV_{\rm SS0} = EV_{\rm SS1} = 0 V$ (1/2)

(Notes and Remarks are listed on the next page.)

5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.10 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level
 - thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

4.9 48-pin Products

R5F100GAAFB, R5F100GCAFB, R5F100GDAFB, R5F100GEAFB, R5F100GFAFB, R5F100GGAFB, R5F100GHAFB, R5F100GJAFB, R5F100GKAFB, R5F100GLAFB

R5F101GAAFB, R5F101GCAFB, R5F101GDAFB, R5F101GEAFB, R5F101GFAFB, R5F101GGAFB, R5F101GHAFB, R5F101GJAFB, R5F101GKAFB, R5F101GLAFB

R5F100GADFB, R5F100GCDFB, R5F100GDDFB, R5F100GEDFB, R5F100GFDFB, R5F100GGDFB, R5F100GHDFB, R5F100GJDFB, R5F100GKDFB, R5F100GLDFB

R5F101GADFB, R5F101GCDFB, R5F101GDDFB, R5F101GEDFB, R5F101GFDFB, R5F101GGDFB, R5F101GHDFB, R5F101GJDFB, R5F101GKDFB, R5F101GLDFB

R5F100GAGFB, R5F100GCGFB, R5F100GDGFB, R5F100GEGFB, R5F100GFGFB, R5F100GGGFB, R5F100GHGFB, R5F100GJGFB

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

4.11 64-pin Products

R5F100LCAFA, R5F100LDAFA, R5F100LEAFA, R5F100LFAFA, R5F100LGAFA, R5F100LHAFA, R5F100LJAFA, R5F100LLAFA

R5F101LCAFA, R5F101LDAFA, R5F101LEAFA, R5F101LFAFA, R5F101LGAFA, R5F101LHAFA, R5F101LJAFA, R5F101LLAFA

R5F100LCDFA, R5F100LDDFA, R5F100LEDFA, R5F100LFDFA, R5F100LGDFA, R5F100LHDFA, R5F100LJDFA, R5F100LLDFA

R5F101LCDFA, R5F101LDDFA, R5F101LEDFA, R5F101LFDFA, R5F101LGDFA, R5F101LHDFA, R5F101LJDFA, R5F101LLDFA

R5F100LCGFA, R5F100LDGFA, R5F100LEGFA, R5F100LFGFA, R5F100LGGFA, R5F100LHGFA, R5F100LJGFA

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

		Description		
Rev.	Date	Page	Summary	
3.00	Aug 02, 2013	81	Modification of figure of AC Timing Test Points	
		81	Modification of description and note 3 in (1) During communication at same potential (UART mode)	
		83	Modification of description in (2) During communication at same potential (CSI mode)	
		84	Modification of description in (3) During communication at same potential (CSI mode)	
		85	Modification of description in (4) During communication at same potential (CSI mode) (1/2)	
		86	Modification of description in (4) During communication at same potential (CSI mode) (2/2)	
		88	Modification of table in (5) During communication at same potential (simplified I ² C mode) (1/2)	
		89	Modification of table and caution in (5) During communication at same potential (simplified I ² C mode) (2/2)	
		91	Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)	
		92, 93	Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
		94	Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
		95	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2)	
		96	Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2)	
		97	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)	
		98	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)	
		99	Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)	
		100	Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)	
		102	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2)	
		103	Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2)	
		106	Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2)	
		107	Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (2/2)	
		109	Addition of (1) I ² C standard mode	
		111	Addition of (2) I ² C fast mode	
		112	Addition of (3) I ² C fast mode plus	
		112	Modification of IICA serial transfer timing	
		113	Addition of table in 2.6.1 A/D converter characteristics	
		113	Modification of description in 2.6.1 (1)	
		114	Modification of notes 3 to 5 in 2.6.1 (1)	
		115	Modification of description and notes 2, 4, and 5 in 2.6.1 (2)	
		116	Modification of description and notes 3 and 4 in 2.6.1 (3)	
		117	Modification of description and notes 3 and 4 in 2.6.1 (4)	

		Description		
Rev.	Date	Page	Summary	
3.00	Aug 02, 2013	118	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics	
		118	Modification of table and note in 2.6.3 POR circuit characteristics	
		119	Modification of table in 2.6.4 LVD circuit characteristics	
		120	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode	
		120	Renamed to 2.6.5 Power supply voltage rising slope characteristics	
		122	Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes	
		123	Modification of caution 1 and description	
		124	Modification of table and remark 3 in Absolute Maximum Ratings (T _A = 25°C)	
		126	Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics	
		126	Modification of table in 3.2.2 On-chip oscillator characteristics	
		127	Modification of note 3 in 3.3.1 Pin characteristics (1/5)	
		128	Modification of note 3 in 3.3.1 Pin characteristics (2/5)	
		133	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2)	
		135	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64- pin products (2/2)	
		137	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products (1/2)	
		139	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (2/2)	
		140	Modification of (3) Peripheral Functions (Common to all products)	
		142	Modification of table in 3.4 AC Characteristics	
		143	Addition of Minimum Instruction Execution Time during Main System Clock Operation	
		143	Modification of figure of AC Timing Test Points	
		143	Modification of figure of External System Clock Timing	
		145	Modification of figure of AC Timing Test Points	
		145	Modification of description, note 1, and caution in (1) During communication at same potential (UART mode)	
		146	Modification of description in (2) During communication at same potential (CSI mode)	
		147	Modification of description in (3) During communication at same potential (CSI mode)	
		149	Modification of table, note 1, and caution in (4) During communication at same potential (simplified I ² C mode)	
		151	Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)	
		152 to 154	Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)	
		155	Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)	
		156	Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)	
		157, 158	Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)	
		160, 161	Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode)	