

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	64
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 17x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LFQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101mfafb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1.	List of	Ordering	Part	Numbers
------------	---------	----------	------	---------

				(5/12)
Pin	Package	Data	Fields of	Ordering Part Number
count		flash	Application	
			Note	
48 pins	48-pin plastic	Mounted	А	R5F100GAAFB#V0, R5F100GCAFB#V0, R5F100GDAFB#V0,
	LFQFP (7 \times 7 mm,			R5F100GEAFB#V0, R5F100GFAFB#V0, R5F100GGAFB#V0,
	0.5 mm pitch)			R5F100GHAFB#V0, R5F100GJAFB#V0, R5F100GKAFB#V0,
				R5F100GLAFB#V0
				R5F100GAAFB#X0, R5F100GCAFB#X0, R5F100GDAFB#X0,
				R5F100GEAFB#X0, R5F100GFAFB#X0, R5F100GGAFB#X0,
				R5F100GHAFB#X0, R5F100GJAFB#X0, R5F100GKAFB#X0,
				R5F100GLAFB#X0
			D	R5F100GADFB#V0, R5F100GCDFB#V0, R5F100GDDFB#V0,
				R5F100GEDFB#V0, R5F100GFDFB#V0, R5F100GGDFB#V0,
				R5F100GHDFB#V0, R5F100GJDFB#V0, R5F100GKDFB#V0,
				R5F100GLDFB#V0
				R5F100GADFB#X0, R5F100GCDFB#X0, R5F100GDDFB#X0,
				R5F100GEDFB#X0, R5F100GFDFB#X0, R5F100GGDFB#X0,
				R5F100GHDFB#X0, R5F100GJDFB#X0, R5F100GKDFB#X0,
				R5F100GLDFB#X0
			G	R5F100GAGFB#V0, R5F100GCGFB#V0, R5F100GDGFB#V0,
				R5F100GEGFB#V0, R5F100GFGFB#V0, R5F100GGGFB#V0,
				R5F100GHGFB#V0, R5F100GJGFB#V0
				R5F100GAGFB#X0, R5F100GCGFB#X0, R5F100GDGFB#X0,
				R5F100GEGFB#X0, R5F100GFGFB#X0, R5F100GGGFB#X0,
				R5F100GHGFB#X0, R5F100GJGFB#X0
		Not	А	R5F101GAAFB#V0, R5F101GCAFB#V0, R5F101GDAFB#V0,
		mounted		R5F101GEAFB#V0, R5F101GFAFB#V0, R5F101GGAFB#V0,
				R5F101GHAFB#V0, R5F101GJAFB#V0, R5F101GKAFB#V0,
				R5F101GLAFB#V0
				R5F101GAAFB#X0, R5F101GCAFB#X0, R5F101GDAFB#X0,
				R5F101GEAFB#X0, R5F101GFAFB#X0, R5F101GGAFB#X0,
				R5F101GHAFB#X0, R5F101GJAFB#X0, R5F101GKAFB#X0,
				R5F101GLAFB#X0
			D	R5F101GADFB#V0, R5F101GCDFB#V0, R5F101GDDFB#V0,
				R5F101GEDFB#V0, R5F101GFDFB#V0, R5F101GGDFB#V0,
				R5F101GHDFB#V0, R5F101GJDFB#V0, R5F101GKDFB#V0,
				R5F101GLDFB#V0
				R5F101GADFB#X0, R5F101GCDFB#X0, R5F101GDDFB#X0,
				R5F101GEDFB#X0, R5F101GFDFB#X0, R5F101GGDFB#X0,
				R5F101GHDFB#X0, R5F101GJDFB#X0, R5F101GKDFB#X0,
		1		R5F101GLDFB#X0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3 Pin Configuration (Top View)

1.3.1 20-pin products

• 20-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark For pin identification, see 1.4 Pin Identification.

1.4 Pin Identification

ANI0 to ANI14,		REGC:	Regulator capacitance
ANI16 to ANI26:	Analog input	RESET:	Reset
AVREFM:	A/D converter reference	RTC1HZ:	Real-time clock correction clock
	potential (– side) input		(1 Hz) output
AVREFP:	A/D converter reference	RxD0 to RxD3:	Receive data
	potential (+ side) input	SCK00, SCK01, SCK10,	
EVDD0, EVDD1:	Power supply for port	SCK11, SCK20, SCK21,	
EVsso, EVss1:	Ground for port	SCLA0, SCLA1:	Serial clock input/output
EXCLK:	External clock input (Main	SCLA0, SCLA1, SCL00,	
	system clock)	SCL01, SCL10, SCL11,	
EXCLKS:	External clock input	SCL20,SCL21, SCL30,	
	(Subsystem clock)	SCL31:	Serial clock output
INTP0 to INTP11:	Interrupt request from	SDAA0, SDAA1, SDA00,	
	peripheral	SDA01,SDA10, SDA11,	
KR0 to KR7:	Key return	SDA20,SDA21, SDA30,	
P00 to P07:	Port 0	SDA31:	Serial data input/output
P10 to P17:	Port 1	SI00, SI01, SI10, SI11,	
P20 to P27:	Port 2	SI20, SI21, SI30, SI31:	Serial data input
P30 to P37:	Port 3	SO00, SO01, SO10,	
P40 to P47:	Port 4	SO11, SO20, SO21,	
P50 to P57:	Port 5	SO30, SO31:	Serial data output
P60 to P67:	Port 6	TI00 to TI07,	
P70 to P77:	Port 7	TI10 to TI17:	Timer input
P80 to P87:	Port 8	TO00 to TO07,	
P90 to P97:	Port 9	TO10 to TO17:	Timer output
P100 to P106:	Port 10	TOOL0:	Data input/output for tool
P110 to P117:	Port 11	TOOLRxD, TOOLTxD:	Data input/output for external device
P120 to P127:	Port 12	TxD0 to TxD3:	Transmit data
P130, P137:	Port 13	Vdd:	Power supply
P140 to P147:	Port 14	Vss:	Ground
P150 to P156:	Port 15	X1, X2:	Crystal oscillator (main system clock)
PCLBUZ0, PCLBUZ1:	Programmable clock	XT1, XT2:	Crystal oscillator (subsystem clock)
	output/buzzer output		

1.5.9 48-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register** (**PIOR**) in the RL78/G13 User's Manual.

[40-pin, 44-pin, 48-pin, 52-pin, 64-pin products]

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

										(1/	(2)	
	Item	40-	pin	44	pin	48-	pin	52-	pin	64-	pin	
		R5F100Ex	R5F101Ex	R5F100Fx	R5F101Fx	R5F100Gx	R5F101Gx	R5F100Jx	R5F101Jx	R5F100Lx	R5F101Lx	
Code flash me	emory (KB)	16 t	o 192	16 t	o 512	16 to	o 512	32 to	o 512	32 to	o 512	
Data flash me	mory (KB)	4 to 8	_	4 to 8	_	4 to 8	_	4 to 8	_	4 to 8	_	
RAM (KB)	,	2 to ⁻	16 ^{Note1}	2 to 3	32 ^{Note1}	2 to 3	32 ^{Note1}	2 to 3	32 ^{Note1}	2 to 3	2 to 32 ^{Note1}	
Address spac	e	1 MB										
Main system clock	High-speed system clock High-speed on-chip	X1 (cryst HS (High HS (High LS (Low- LV (Low- HS (High	al/ceramic n-speed ma n-speed ma speed ma voltage m n-speed ma	e) oscillation ain) mode ain) mode in) mode: ain) mode ain) mode	on, externa : 1 to 20 l : 1 to 16 l 1 to 8 M : 1 to 4 M : 1 to 32 N	al main sys MHz (Vdd : MHz (Vdd = IHz (Vdd = IHz (Vdd =	etem clock = 2.7 to 5. = 2.4 to 5. 1.8 to 5.5 1.6 to 5.5 = 2.7 to 5.8	input (EX 5 V), 5 V), V), V), V)	CLK)			
	oscillator	HS (High LS (Low- LV (Low-	n-speed ma speed ma voltage m	ain) mode in) mode: ain) mode	1 to 16 M 1 to 8 M 1 to 4 M	MHz (Vdd = Hz (Vdd = Hz (Vdd =	= 2.4 to 5.9 1.8 to 5.5 1.6 to 5.5	5 V), V), V)				
Subsystem clo	ock	XT1 (cry 32.768 k	stal) oscilla Hz	ation, exte	rnal subsy	/stem cloc	k input (E)	XCLKS)				
Low-speed or	-chip oscillator	15 kHz (TYP.)									
General-purpo	ose registers	(8-bit register \times 8) \times 4 banks										
Minimum instr	ruction execution time	0.03125	μ s (High-s	peed on-o	chip oscilla	ator: f⊮ = 3	2 MHz op	eration)				
		0.05 <i>μ</i> s (High-spee	d system	clock: fmx	= 20 MHz	operation)				
		30.5 µs (Subsyster	n clock: fs	ив = 32.76	8 kHz ope	ration)					
Instruction set		 Data transfer (of to bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 										
I/O port	Total	3	36	2	10	2	4	4	18	5	58	
	CMOS I/O	(N-ch ([V⊳⊳ w voltag	28 O.D. I/O ithstand ge]: 10)	(N-ch ⊄ [V⊳⊳ w voltag	31 O.D. I/O ithstand ge]: 10)	(N-ch ([V⊳⊳ w voltag	34 D.D. I/O ithstand je]: 11)	3 (N-ch 0 [V⊳⊳ wi voltag	88 D.D. I/O thstand je]: 13)	∠ (N-ch ([V₀⊳ wi voltag	I8 D.D. I/O ithstand je]: 15)	
	CMOS input		5		5		5		5		5	
	CMOS output		-		_		1		1		1	
	N-ch O.D. I/O (withstand voltage: 6 V)		3		4		4		4		4	
Timer	16-bit timer					8 cha	nnels					
	Watchdog timer					1 cha	annel					
	Real-time clock (RTC)					1 cha	annel					
	12-bit interval timer (IT)					1 cha	annel					
	Timer output	4 channels (PWM outputs: 3 Note 2), outputs: 3 Note 2), 8 channels (PWM outputs: 7 Note 2) 8 channels (PWM outputs: 7 Note 2) 8 channels (PWM outputs: 7 Note 2) 8 channels (PWM outputs: 7 Note 2) Note 3 0 outputs: 7 Note 2) 10 outputs: 7 Note 2)							S (PWM 7 ^{Note 2})			
Notos 1	The flack library us	1 channe • 1 Hz (s	el subsystem	clock: fsu	B = 32.768	3 kHz)	f the det	flach m	mory			
Notes 1.	The hash library us	Ses MAIVI	in seit-pr	ogrammi	ny anu re	swinnig 0		a nasn me	eniory.			

The target products and start address of the RAM areas used by the flash library are shown below.

R5F100xD, R5F101xD (x = E to G, J, L): Start address FF300H

- R5F100xE, R5F101xE (x = E to G, J, L): Start address FEF00H
- R5F100xJ, R5F101xJ (x = F, G, J, L): Start address FAF00H
 - Start address F7F00H

R5F100xL, R5F101xL (x = F, G, J, L): For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	$f_{IH} = 32 \ MHz^{Note 4}$	$V_{DD} = 5.0 \text{ V}$		0.54	1.63	mA
Current	Note 2	mode	mode ^{Note 7}		$V_{DD} = 3.0 V$		0.54	1.63	mA
				$f_{IH} = 24 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		0.44	1.28	mA
					$V_{DD} = 3.0 V$		0.44	1.28	mA
				fiн = 16 MHz ^{Note 4}	VDD = 5.0 V		0.40	1.00	mA
					$V_{DD} = 3.0 V$		0.40	1.00	mA
			LS (low-	fin = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA
			speed main) mode ^{Note 7}		$V_{DD} = 2.0 V$		260	530	μA
			LV (low-	fı⊢ = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA
			voltage main) mode Note 7		$V_{DD} = 2.0 V$		420	640	μA
			HS (high-	fмх = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				$V_{DD} = 5.0 V$	Resonator connection		0.26	0.67	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.26	0.67	mA
			LS (low-	$f_{MX} = 8 MHz^{Note 3}$,	Square wave input		95	330	μA
			speed main)	VDD = 3.0 V	Resonator connection		145	380	μA
			mode	$f_{MX} = 8 \text{ MHz}^{Note 3},$	Square wave input		95	330	μA
				V _{DD} = 2.0 V	Resonator connection		145	380	μA
			Subsystem	fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
			clock	$T_A = -40^{\circ}C$	Resonator connection		0.44	0.76	μA
			operation	fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
				T _A = +25°C	Resonator connection		0.49	0.76	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.37	1.17	μA
				T _A = +50°C	Resonator connection		0.56	1.36	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.53	1.97	μA
				T _A = +70°C	Resonator connection		0.72	2.16	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.82	3.37	μA
				T _A = +85°C	Resonator connection		1.01	3.56	μA
	DD3	STOP	$T_A = -40^{\circ}C$				0.18	0.50	μA
		mode	T _A = +25°C				0.23	0.50	μA
			T _A = +50°C				0.30	1.10	μA
			T _A = +70°C				0.46	1.90	μA
			$T_A = +85^{\circ}C$				0.75	3.30	μA

(Notes and Remarks are listed on the next page.)

(4) Peripheral Functions (Common to all products)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	IFIL ^{Note 1}				0.20		μA
RTC operating current	RTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	IT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter	ADC Notes 1, 6	When	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.3	1.7	mA
operating current		conversion at maximum speed	Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		0.5	0.7	mA
A/D converter reference voltage current	ADREF ^{Note 1}				75.0		μA
Temperature sensor operating current	ITMPS ^{Note 1}				75.0		μA
LVD operating current	LVI Notes 1, 7				0.08		μA
Self- programming operating current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	BGO Notes 1, 8				2.50	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		1.20	1.44	mA
		CSI/UART operat	tion		0.70	0.84	mA

Notes 1. Current flowing to V_{DD} .

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	(Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tксү1 \geq 2/fclk	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$	62.5		250		500		ns
			$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level width	tкнı, tк∟ı	4.0 V ≤ EV _D	$500 \leq 5.5 \text{ V}$	tксү1/2 – 7		tксү1/2 – 50		tксү1/2 – 50		ns
		2.7 V ≤ EV _D	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$			tксү1/2 – 50		tксү1/2 – 50		ns
SIp setup time (to SCKp↑)	tsik1	$4.0 V \le EV_{DI}$	$00 \leq 5.5 \text{ V}$	23		110		110		ns
Note 1		$2.7 \text{ V} \leq EV_{\text{DI}}$	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$			110		110		ns
SIp hold time (from SCKp↑) ^{№te 2}	tksii	$2.7 \text{ V} \leq \text{EV}_{\text{DI}}$	$500 \leq 5.5 \text{ V}$	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 рF №	te 4		10		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** This value is valid only when CSI00's peripheral I/O redirect function is not used.
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM numbers (g = 1)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00))

Parameter	Symbol	C	Conditions	HS (high main)	n-speed Mode	LS (low main)	-speed Mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 4/fclк	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	125		500		1000		ns
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	250		500		1000		ns
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	500		500		1000		ns
			$\begin{array}{l} 1.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	1000		1000		1000		ns
			$\begin{array}{l} 1.6 \ V \leq EV_{\text{DD0}} \leq 5.5 \\ V \end{array}$	—		1000		1000		ns
SCKp high-/low-level width	tкнı, tк∟ı	$4.0 \text{ V} \leq \text{EV}_{\text{DE}}$	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			tксү1/2 – 50		tксү1/2 – 50		ns
2.7 V ≤		2.7 V ≤ EV _D	$500 \leq 5.5 \text{ V}$	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns
	$2.4 \text{ V} \leq \text{EV}_{\text{DI}}$		$_{00} \leq 5.5 \text{ V}$	tксү1/2 – 38		tксү1/2 – 50		tксү1/2 – 50		ns
		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns
		1.7 V ≤ EV _{DE}	$500 \leq 5.5 \text{ V}$	tксү1/2 – 100		tксү1/2 – 100		tксү1/2 – 100		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DE}}$	$_{00} \leq 5.5 \text{ V}$			tксү1/2 – 100		tксү1/2 – 100		ns
SIp setup time	tsik1	$4.0 V \leq EV_{DE}$	$00 \leq 5.5 \text{ V}$	44		110		110		ns
(to SCKp↑) Note 1		$2.7 \text{ V} \leq EV_{DI}$	$500 \leq 5.5 \text{ V}$	44		110		110		ns
		$2.4 V \le EV_{DE}$	$50 \leq 5.5 \text{ V}$	75		110		110		ns
		$1.8 \text{ V} \leq EV_{DC}$	$500 \leq 5.5 \text{ V}$	110		110		110		ns
		$1.7 \text{ V} \leq EV_{DC}$	$50 \leq 5.5 \text{ V}$	220		220		220		ns
		$1.6 \text{ V} \leq EV_{DC}$	$500 \leq 5.5 \text{ V}$			220		220		ns
Slp hold time	tksi1	$1.7 \text{ V} \leq EV_{DI}$	$50 \leq 5.5 \text{ V}$	19		19		19		ns
(from SCKp↑) Note 2		$1.6 V \le EV_{DE}$	$500 \leq 5.5 \text{ V}$			19		19		ns
Delay time from SCKp↓ to SOp	tkso1	$\begin{array}{l} 1.7 \ V \leq EV_{\text{DE}} \\ C = 30 \ pF^{\text{Note}} \end{array}$	$_{4}$ \leq 5.5 V		25		25		25	ns
output Note 3		$1.6 \text{ V} \le \text{EV}_{\text{DE}}$ C = 30 pF ^{Note}	00 ≤ 5.5 V		_		25		25	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_4 = -40$ to $+85^{\circ}$ C, 1.6 V \leq EVppa = EVpp1 \leq Vpp \leq 5.5 V, Vss = EVssa = EVssa = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Parameter	Symbol	-	Conditions		HS (speed Mc	high- main) ode	LS (speed Mo	low- main) ode	LV (volt main)	low- age Mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmission	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$			Note 1		Note 1		Note 1	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, \text{ R}_b =$ 1.4 k Ω , V _b = 2.7 V		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
			$2.7 V \le EV_{DD0} < 4.0 V,$			Note		Note		Note	bps
			2.3 V ≤ Vb ≤ 2.7 V	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b =$ $2.7 \text{ k}\Omega, V_b = 2.3$ V		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
			$1.8 V \le EV_{DD0} < 3.3 V,$			Notes 5.6		Notes 5.6		Notes 5.6	bps
			1.0 V 2 VI 2 L.0 V	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b =$ $5.5 \text{ k}\Omega, V_b = 1.6$ V		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) (T_A = -40 to +85°C. 1.8 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V. Vss = EV_{SS0} = EV_{SS1} = 0 V)

Notes 1. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV $_{DD0} \leq$ 5.5 V and 2.7 V \leq V $_{b} \leq$ 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12, 13)

<R>

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

2.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fс∟к	$1.8~V \leq V\text{dd} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 years TA = 25°C		1,000,000		
		Retained for 5 years Ta = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \leq \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

TI/TO Timing

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock	fclĸ	$2.4~V \leq V_{DD} \leq 5.5~V$	1		32	MHz
frequency						
Number of code flash rewrites Notes 1,2,3	Cerwr	Retained for 20 years TA = 85° C ^{Note 4}	1,000			Times
Number of data flash rewrites		Retained for 1 years TA = 25°C		1,000,000		
		Retained for 5 years TA = $85^{\circ}C^{Note 4}$	100,000			
		Retained for 20 years TA = 85°C ^{Note 4}	10,000			

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library.
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- 4. This temperature is the average value at which data are retained.

3.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_{\text{A}} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

C₂

4.5 32-pin Products

R5F100BAANA, R5F100BCANA, R5F100BDANA, R5F100BEANA, R5F100BFANA, R5F100BGANA R5F101BAANA, R5F101BCANA, R5F101BDANA, R5F101BEANA, R5F101BFANA, R5F101BGANA R5F100BADNA, R5F100BCDNA, R5F100BDDNA, R5F100BEDNA, R5F100BFDNA, R5F100BGDNA R5F101BADNA, R5F101BCDNA, R5F101BDDNA, R5F101BEDNA, R5F101BFDNA, R5F101BGDNA R5F100BAGNA, R5F100BCGNA, R5F100BDGNA, R5F100BEGNA, R5F100BFGNA, R5F100BGGNA

JEITA Package code	RENESAS code	Previous code	MASS (TYP.)[g]	
P-HWQFN32-5x5-0.50	PWQN0032KB-A	P32K8-50-3B4-5	0.06	

A₁

Referance	Dimension in Millimeters				
Symbol	Min	Nom	Max		
D	4.95	5.00	5.05		
Е	4.95	5.00	5.05		
A			0.80		
A ₁	0.00				
b	0.18	0.25	0.30		
е		0.50			
Lp	0.30	0.40	0.50		
х			0.05		
У			0.05		
ZD		0.75			
Z _E		0.75			
C2	0.15	0.20	0.25		
D ₂		3.50			
E ₂	_	3.50	—		

©2013 Renesas Electronics Corporation. All rights reserved.

R01DS0131EJ0330 Rev.3.30 Mar 31, 2016

R5F100LCAFB, R5F100LDAFB, R5F100LEAFB, R5F100LFAFB, R5F100LGAFB, R5F100LHAFB, R5F100LJAFB, R5F100LLAFB

R5F101LCAFB, R5F101LDAFB, R5F101LEAFB, R5F101LFAFB, R5F101LGAFB, R5F101LHAFB,

R5F101LJAFB, R5F101LKAFB, R5F101LLAFB

R5F100LCDFB, R5F100LDDFB, R5F100LEDFB, R5F100LFDFB, R5F100LGDFB, R5F100LHDFB, R5F100LJDFB, R5F100LLDFB

R5F101LCDFB, R5F101LDDFB, R5F101LEDFB, R5F101LFDFB, R5F101LGDFB, R5F101LHDFB, R5F101LJDFB, R5F101LKDFB, R5F101LLDFB

R5F100LCGFB, R5F100LDGFB, R5F100LEGFB, R5F100LFGFB, R5F100LGGFB, R5F100LHGFB, R5F100LJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP64-10x10-0.50	PLQP0064KF-A	P64GB-50-UEU-2	0.35

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

4.14 128-pin Products

R5F100SHAFB, R5F100SJAFB, R5F100SKAFB, R5F100SLAFB R5F101SHAFB, R5F101SJAFB, R5F101SKAFB, R5F101SLAFB R5F100SHDFB, R5F100SJDFB, R5F100SKDFB, R5F100SLDFB R5F101SHDFB, R5F101SJDFB, R5F101SKDFB, R5F101SLDFB

©2012 Renesas Electronics Corporation. All rights reserved.

х

y ZD

ZE

0.08

0.75

0.75

