

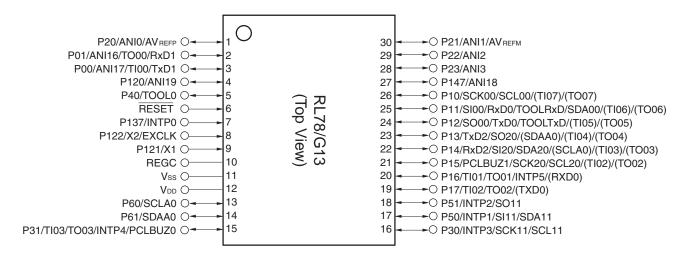
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 20x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f101pkafb-v0

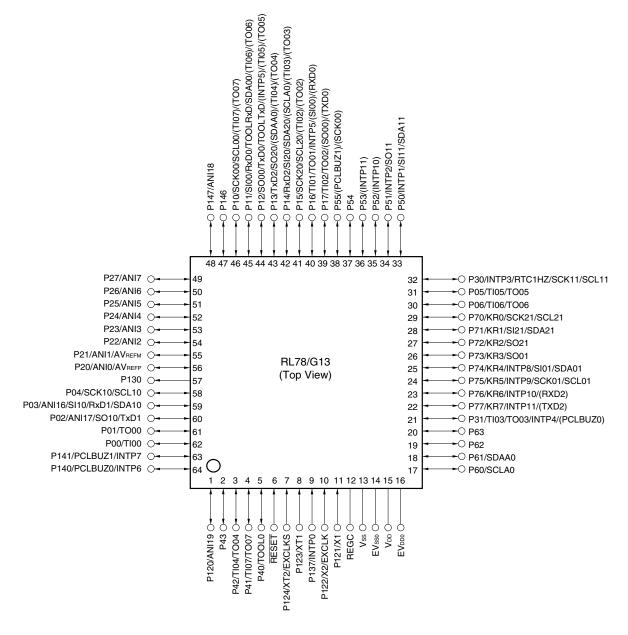
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.4 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

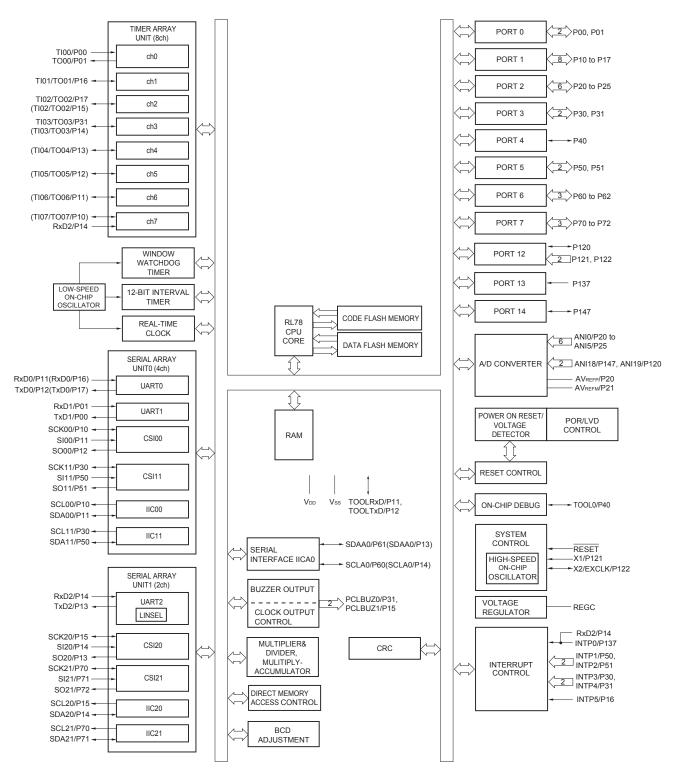
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).


Remarks 1. For pin identification, see 1.4 Pin Identification.

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

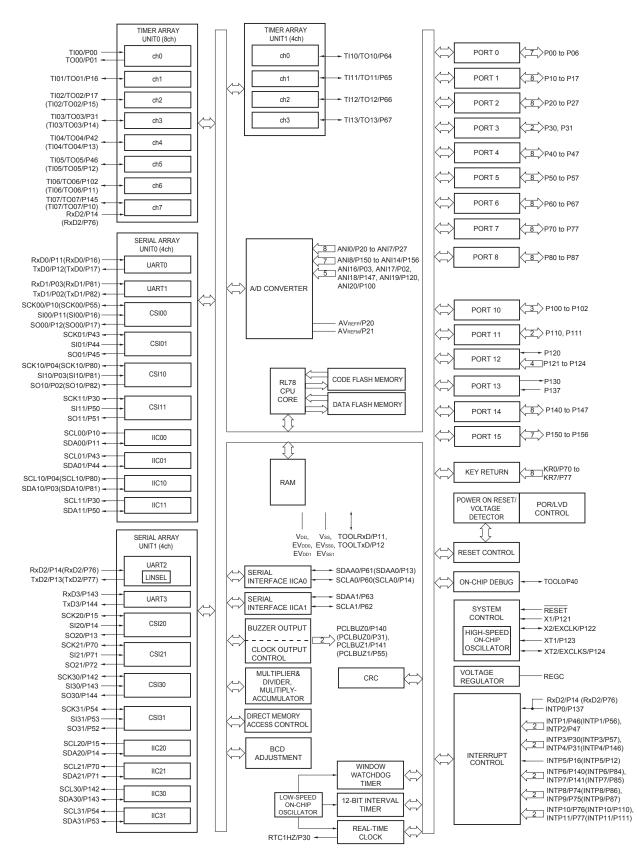
1.3.11 64-pin products

- 64-pin plastic LQFP (12 × 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)



Cautions 1. Make EVsso pin the same potential as Vss pin.

- 2. Make VDD pin the potential that is higher than EVDD0 pin.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD0} pins and connect the V_{SS} and EV_{SS0} pins to separate ground lines.
 - **3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.


1.5.6 36-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

1.5.13 100-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User's Manual.

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}) (1/2)$

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	DD1	Operating	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 3}$	Basic	V _{DD} = 5.0 V		2.6		mA
current Note 1		mode	speed main) mode ^{Note 5}		operation	$V_{DD} = 3.0 V$		2.6		mA
					Normal	$V_{DD} = 5.0 V$		6.1	9.5	mA
					operation	$V_{DD} = 3.0 V$		6.1	9.5	mA
				$f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 5.0 V$		4.8	7.4	mA
					operation	V _{DD} = 3.0 V		4.8	7.4	mA
				fi⊢ = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.5	5.3	mA
					operation	V _{DD} = 3.0 V		3.5	5.3	mA
			LS (low-	fін = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.5	2.3	mA
			speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.5	2.3	mA
			LV (low-	$f_{IH} = 4 \text{ MHz}^{Note 3}$	Normal	$V_{DD} = 3.0 V$		1.5	2.0	mA
			voltage main) mode		operation	V _{DD} = 2.0 V		1.5	2.0	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.9	6.1	mA
		HS (nign- speed main) mode ^{Note 5}	speed main)	V _{DD} = 5.0 V	operation	Resonator connection		4.1	6.3	mA
			f _{MX} = 20 MHz ^{Note 2} , Normal	Square wave input		3.9	6.1	mA		
				V _{DD} = 3.0 V OF	operation	Resonator connection		4.1	6.3	mA
				fмx = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.5	3.7	mA
				$V_{DD} = 5.0 V$	operation	Resonator connection		2.5	3.7	mA
				fмx = 10 MHz ^{Note 2} ,	, Normal	Square wave input		2.5	3.7	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		2.5	3.7	mA
			LS (low- speed main) mode ^{Note 5}	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.4	2.2	mA
				$V_{DD} = 3.0 V$	operation	Resonator connection		1.4	2.2	mA
				$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.4	2.2	mA
				$V_{DD} = 2.0 V$	operation	Resonator connection		1.4	2.2	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		5.4	6.5	μA
			clock operation	$T_A = -40^{\circ}C$	operation	Resonator connection		5.5	6.6	μA
				fsue = 32.768 kHz	Normal	Square wave input		5.5	6.5	μA
			Note 4 $T_A = +25^{\circ}C$	operation	Resonator connection		5.6	6.6	μA	
				fsuв = 32.768 kHz	Normal	Square wave input		5.6	9.4	μA
				Note 4 $T_A = +50^{\circ}C$	operation	Resonator connection		5.7	9.5	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.9	12.0	μA
				N	Note 4 $T_A = +70^{\circ}C$	operation	Resonator connection		6.0	12.1
				fsuв = 32.768 kHz	Normal	Square wave input		6.6	16.3	μA
				Note 4 $T_A = +85^{\circ}C$	operation	Resonator connection		6.7	16.4	μA

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - **5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V~$ @1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	$f_{IH} = 32 \text{ MHz}^{Note 4}$	VDD = 5.0 V		0.62	1.89	mA
Current	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.62	1.89	mA
			mode	fiH = 24 MHz ^{Note 4}	VDD = 5.0 V		0.50	1.48	mA
					VDD = 3.0 V		0.50	1.48	mA
				fiH = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.12	mA
					V _{DD} = 3.0 V		0.44	1.12	mA
			LS (low-	fi⊢ = 8 MHz ^{Note 4}	$V_{DD} = 3.0 \text{ V}$		290	620	μA
			speed main) mode ^{Note 7}		$V_{DD} = 2.0 V$		290	620	μA
			LV (low-	fi⊢ = 4 MHz ^{Note 4}	VDD = 3.0 V		460	700	μA
			voltage main) mode Note 7		V _{DD} = 2.0 V		460	700	μA
			HS (high-	fмx = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.14	mA
			speed main) mode ^{Note 7}	Vdd = 5.0 V	Resonator connection		0.48	1.34	mA
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		0.31	1.14	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.48	1.34	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		0.21	0.68	mA
				$V_{DD} = 5.0 V$	Resonator connection		0.28	0.76	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		0.21	0.68	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.28	0.76	mA
			LS (low- speed main) mode ^{Note 7}	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	390	μA
				$V_{DD} = 3.0 V$	Resonator connection		160	450	μA
			f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	390	μA	
			Subsystem	$V_{DD} = 2.0 V$	Resonator connection		160	450	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.66	μA
			clock operation	$T_A = -40^{\circ}C$	Resonator connection		0.50	0.85	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.38	0.66	μA
				T _A = +25°C	Resonator connection		0.57	0.85	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.47	3.49	μA
				T _A = +50°C	Resonator connection		0.66	3.68	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.80	6.10	μA
				T _A = +70°C	Resonator connection		0.99	6.29	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		1.52	10.46	μA
				$T_A = +85^{\circ}C$	Resonator connection		1.71	10.65	μA
	DD3	STOP	T _A = -40°C	1	1		0.19	0.54	μA
		mode ^{Note 8}	T _A = +25°C				0.26	0.54	μA
			T _A = +50°C				0.35	3.37	μA
			$T_{A} = +50^{\circ}C$ $T_{A} = +70^{\circ}C$				0.68	5.98	μA
			T _A = +85°C				1.40	10.34	μΑ

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V~$ @ 1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(4) Peripheral Functions (Common to all products)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	IFIL ^{Note 1}				0.20		μA
RTC operating current	RTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	IT ^{Notes 1, 2, 4}				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter	ADC Notes 1, 6	When	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.3	1.7	mA
operating current		conversion at maximum speed	Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		0.5	0.7	mA
A/D converter reference voltage current	ADREF ^{Note 1}				75.0		μA
Temperature sensor operating current	ITMPS ^{Note 1}				75.0		μA
LVD operating current	LVI Notes 1, 7				0.08		μA
Self- programming operating current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	BGO Notes 1, 8				2.50	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 \text{ V}$		1.20	1.44	mA
		CSI/UART opera	ation		0.70	0.84	mA

Notes 1. Current flowing to V_{DD} .

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.

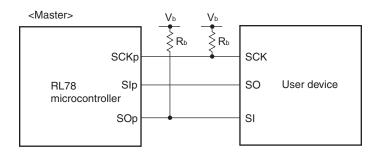
(7)	Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp internal clock output,
	corresponding CSI00 only) (2/2)

Parameter	Symbol	Conditions	、 U	h-speed Mode	``	/-speed Mode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 2}	tsikı	$\label{eq:states} \begin{split} 4.0 \ V &\leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \end{split}$	23		110		110		ns
		$C_{b}=20 \text{ pF}, \text{R}_{b}=1.4 \text{k}\Omega$							
		$\label{eq:V_def} \begin{split} 2.7 \ V &\leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V &\leq V_{\text{b}} \leq 2.7 \ V, \end{split}$	33		110		110		ns
		$C_{b}=20 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$							
SIp hold time (from SCKp↓) ^{№te 2}	tksii	$\begin{array}{l} 4.0 \; V \leq E V_{\text{DD0}} \leq 5.5 \; V, \\ 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; V, \end{array}$	10		10		10		ns
		$C_{b}=20 \text{ pF}, \text{R}_{b}=1.4 \text{k}\Omega$							
		$\label{eq:V_def} \begin{split} 2.7 \ V &\leq E V_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \end{split}$	10		10		10		ns
		$C_{b}=20 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$							
Delay time from SCKp↑ to	tkso1	$\label{eq:V_decomposition} \begin{split} 4.0 \ V &\leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_{\text{b}} \leq 4.0 \ V, \end{split}$		10		10		10	ns
SOp output Note 2		$C_{b}=20 \text{ pF}, \text{R}_{b}=1.4 \text{k}\Omega$							
		$\label{eq:V_def} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$		10		10		10	ns
		$C_{b}=20 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$							

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

- n: Channel number (mn = 00))
- 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

<R>

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C)

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to 3.1 to 3.10.

3.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		–0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	–0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	–0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V_{DD} +0.3 $^{\text{Note 1}}$	V
Input voltage	VI1	P00 to P07, P10 to P17, P30 to P37, P40 to P47,	-0.3 to EV _{DD0} +0.3	V
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	and –0.3 to V_{DD} +0.3 ^{Note 2}	
	V _{I2}	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	Voi	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147		V
	V ₀₂	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EV_DD0 +0.3 and -0.3 to AV_{REF}(+) +0.3 $^{\text{Notes 2, 3}}$	V
	Vai2	ANI0 to ANI14	-0.3 to V_DD +0.3 and -0.3 to AV_{REF}(+) +0.3^{Notes 2, 3}	V

Absolute Maximum Ratings (T_A = 25°C) (1/2)

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - **3.** Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - **3.** Vss : Reference voltage

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	IFIL Note 1				0.20		μA
RTC operating current	RTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	IT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 5	f⊩ = 15 kHz			0.22		μA
A/D converter	ADC Notes 1, 6	When conversion	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.3	1.7	mA
operating current	Notes 1, 6	at maximum speed	Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	ILVD Notes 1, 7				0.08		μA
Self programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO operating current	BGO Notes 1, 8				2.50	12.20	mA
SNOOZE	Isnoz	ADC operation	The mode is performed Note 10		0.50	1.10	mA
operating current	Note 1		The A/D conversion operations are performed, Loe voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		1.20	2.04	mA
		CSI/UART operation	on		0.70	1.54	mA

(3) Peripheral Functions (Common to all products) (TA = -40 to $+105^{\circ}$ C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

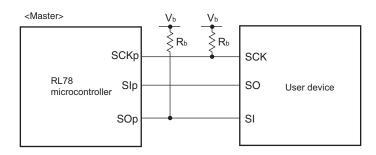
Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.

3.4 AC Characteristics

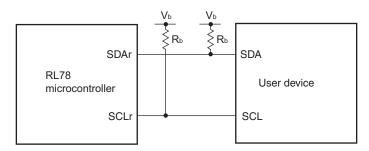
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

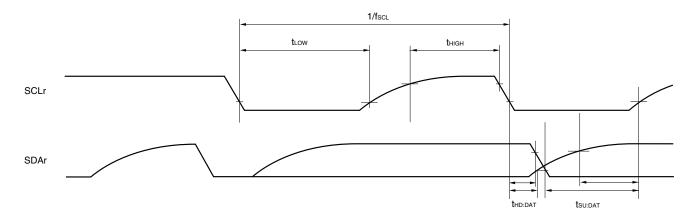
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main system clock (fmain)	HS (high-speed main) mode	$\frac{2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}}{2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}}$	0.03125 0.0625		1	μS μS
		operation Subsystem of operation	clock (fsub)	$2.4V\!\leq\!V_{DD}\!\leq\!5.5V$	28.5	30.5	31.3	μs
		In the self	HS (high-speed	$2.7 V \le V_{DD} \le 5.5 V$	0.03125		1	μS
		programming mode		$2.4~V \leq V_{DD} < 2.7~V$	0.0625		1	μS
External system clock frequency	fex	$2.7 V \le V_{DD} \le$	≤ 5.5 V	•	1.0		20.0	MHz
		$2.4~V \leq V_{\text{DD}} < 2.7~V$			1.0		16.0	MHz
	fexs				32		35	kHz
External system clock input high-	texh, texl	H, texl $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		24			ns	
level width, low-level width		$2.4~V \leq V_{\text{DD}} < 2.7~V$			30			ns
	texhs, texls				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tтıн, tтı∟				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	fто	HS (high-spe	ed 4.0 V	$\leq EV_{DD0} \leq 5.5 V$			16	MHz
output frequency		main) mode	2.7 V	\leq EV _{DD0} < 4.0 V			8	MHz
			2.4 V	$2.4~V \leq EV_{\text{DD0}} < 2.7~V$			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	ed 4.0 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			16	MHz
frequency		main) mode	2.7 V	\leq EV _{DD0} < 4.0 V			8	MHz
			2.4 V	$\leq EV_{DD0} < 2.7 V$			4	MHz
Interrupt input high-level width,	tintн,	INTP0	2.4 V	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$	1			μS
low-level width	t intl	INTP1 to INT	P11 2.4 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	1			μS
Key interrupt input low-level width	tкв	KR0 to KR7	2.4 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	250			ns
RESET low-level width	trsl				10			μs


Note The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ $2.4V \le EV_{DD0} < 2.7 \text{ V}$: MIN. 125 ns

 $\label{eq:rescaled} \textbf{Remark} \quad \text{f_{MCK}: Timer array unit operation clock frequency}$

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))


CSI mode connection diagram (during communication at different potential)

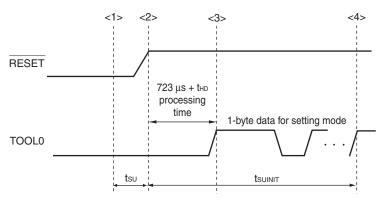

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number , n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (for the 20- to 52-pin products)/EV_{DD} tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,


n: Channel number (mn = 00, 01, 02, 10, 12, 13)

3.10 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1			ms

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level
 - thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

			Description
Rev.	Date	Page	Summary
3.00	Aug 02, 2013	118	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics
		118	Modification of table and note in 2.6.3 POR circuit characteristics
		119	Modification of table in 2.6.4 LVD circuit characteristics
		120	Modification of table of LVD Detection Voltage of Interrupt & Reset Mode
		120	Renamed to 2.6.5 Power supply voltage rising slope characteristics
		122	Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes
		123	Modification of caution 1 and description
		124	Modification of table and remark 3 in Absolute Maximum Ratings ($T_A = 25^{\circ}C$)
		126	Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics
		126	Modification of table in 3.2.2 On-chip oscillator characteristics
		127	Modification of note 3 in 3.3.1 Pin characteristics (1/5)
		128	Modification of note 3 in 3.3.1 Pin characteristics (2/5)
		133	Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2)
		135	Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64- pin products (2/2)
		137	Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products (1/2)
		139	Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (2/2)
		140	Modification of (3) Peripheral Functions (Common to all products)
		142	Modification of table in 3.4 AC Characteristics
		143	Addition of Minimum Instruction Execution Time during Main System Clock Operation
		143	Modification of figure of AC Timing Test Points
		143	Modification of figure of External System Clock Timing
		145	Modification of figure of AC Timing Test Points
		145	Modification of description, note 1, and caution in (1) During communication at same potential (UART mode)
		146	Modification of description in (2) During communication at same potential (CSI mode)
		147	Modification of description in (3) During communication at same potential (CSI mode)
		149	Modification of table, note 1, and caution in (4) During communication at same potential (simplified I ² C mode)
		151	Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)
		152 to 154	Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)
		155	Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3)
		156	Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3)
		157, 158	Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)
		160, 161	Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode)

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.