

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	6
Program Memory Size	1KB (1K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0113sb005ec

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Revision History

Each instance in Revision History reflects a change to this document from its previous revision. For more details, refer to the corresponding pages and appropriate links in the table below.

	Revision		
Date	Level	Description	Page No
March 2008	14	Changed title to Z8 Encore! XP F0823 Series and the contents to match the title.	All
December 2007	13	Updated title from Z8 Encore! 8K and 4K Series to Z8 Encore! XP Z8F0823 Series. Updated Figure 3, Table 15, Table 35, Table 59 through Table 61, Table 119, and Part Number Suffix Designations section.	8, 39, 59, 91, 196, and 226
August 2007	12	Updated Table 1, Table 16, and Program Memory section.	2, 42, and 13
June 2007	11	Updated to combine Z8 Encore! 8K and Z8 Encore! 4K Series.	All
December 2006	10	Updated Ordering Information chapter.	217

1

Overview

Zilog's Z8 Encore! XP[®] microcontroller unit (MCU) family of products are the first Zilog[®] microcontroller products based on the 8-bit eZ8 CPU core. Z8 Encore! XP F0823 Series products expand upon Zilog's extensive line of 8-bit microcontrollers. The Flash in-circuit programming capability allows for faster development time and program changes in the field. The new eZ8 CPU is upward compatible with existing Z8[®] instructions. The rich peripheral set of Z8 Encore! XP F0823 Series makes it suitable for a variety of applications including motor control, security systems, home appliances, personal electronic devices, and sensors.

Features

The key features of Z8 Encore! XP F0823 Series include:

- 5 MHz eZ8 CPU
- 1 KB, 2 KB, 4 KB, or 8 KB Flash memory with in-circuit programming capability
- 256 B, 512 B, or 1 KB register RAM
- 6 to 24 I/O pins depending upon package
- Internal precision oscillator (IPO)
- Full-duplex UART
- The universal asynchronous receiver/transmitter (UART) baud rate generator (BRG) can be configured and used as a basic 16-bit timer
- Infrared data association (IrDA)-compliant infrared encoder/decoders, integrated with UART
- Two enhanced 16-bit timers with capture, compare, and PWM capability
- Watchdog Timer (WDT) with dedicated internal RC oscillator
- On-Chip Debugger (OCD)
- Optional 8-channel, 10-bit Analog-to-Digital Converter (ADC)
- On-Chip analog comparator
- Up to 20 vectored interrupts
- Direct LED drive with programmable drive strengths
- Voltage Brownout (VBO) protection
- Power-On Reset (POR)

- 2.7 V to 3.6 V operating voltage
- Up to thirteen 5 V-tolerant input pins
- 8-, 20-, and 28-pin packages
- 0 °C to +70 °C and -40 °C to +105 °C for operating temperature ranges

Part Selection Guide

Table 1 lists the basic features and package styles available for each device within the Z8 Encore! XP[®] F0823 Series product line.

Table 1.	Z8 Encore!	XP F0823	Series	Family	Part	Selection	Guide
----------	------------	----------	--------	--------	------	-----------	-------

Part Number	Flash (KB)	RAM (B)	I/O	ADC Inputs	Packages
Z8F0823	8	1024	6–22	4–8	8-, 20-, and 28-pins
Z8F0813	8	1024	6–24	0	8-, 20-, and 28-pins
Z8F0423	4	1024	6–22	4–8	8-, 20-, and 28-pins
Z8F0413	4	1024	6–24	0	8-, 20-, and 28-pins
Z8F0223	2	512	6–22	4–8	8-, 20-, and 28-pins
Z8F0213	2	512	6–24	0	8-, 20-, and 28-pins
Z8F0123	1	256	6–22	4–8	8-, 20-, and 28-pins
Z8F0113	1	256	6–24	0	8-, 20-, and 28-pins

13

Address Space

The eZ8 CPU can access three distinct address spaces:

- The Register File contains addresses for the general-purpose registers and the eZ8 CPU, peripheral, and general-purpose I/O port control registers.
- The Program Memory contains addresses for all memory locations having executable code and/or data.
- The Data Memory contains addresses for all memory locations that contain data only.

These three address spaces are covered briefly in the following subsections. For more detailed information regarding the eZ8 CPU and its address space, refer to eZ8 CPU Core User Manual (UM0128) available for download at www.zilog.com.

Register File

The Register File address space in the Z8 Encore! XP[®] MCU is 4 KB (4096 bytes). The Register File is composed of two sections: control registers and general-purpose registers. When instructions are executed, registers defined as sources are read, and registers defined as destinations are written. The architecture of the eZ8 CPU allows all general-purpose registers to function as accumulators, address pointers, index registers, stack areas, or scratch pad memory.

The upper 256 bytes of the 4 KB Register File address space are reserved for control of the eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at addresses from F00H to FFFH. Some of the addresses within the 256 B control register section are reserved (unavailable). Reading from a reserved Register File address returns an undefined value. Writing to reserved Register File addresses is not recommended and can produce unpredictable results.

The on-chip RAM always begins at address 000H in the Register File address space. Z8 Encore! XP F0823 Series devices contain 256 B-1 KB of on-chip RAM. Reading from Register File addresses outside the available RAM addresses (and not within the control register address space) returns an undefined value. Writing to these Register File addresses produces no effect.

Program Memory

The eZ8 CPU supports 64 KB of Program Memory address space. Z8 Encore! XP F0823 Series devices contain 1 KB to 8 KB of on-chip Flash memory in the Program Memory address space. Reading from Program Memory addresses outside the available Flash

	Devictor Description	Masaais	Decet (Llev)	Dere Ne
Address (Hex)	Register Description	winemonic	Reset (Hex)	Page No
F91-FBF	Reserved		XX	
Interrupt Contr	oller			
FC0	Interrupt Request 0	IRQ0	00	58
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	60
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	61
FC3	Interrupt Request 1	IRQ1	00	59
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	62
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	62
FC6	Interrupt Request 2	IRQ2	00	60
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	63
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	63
FC9–FCC	Reserved		XX	
FCD	Interrupt Edge Select	IRQES	00	64
FCE	Shared Interrupt Select	IRQSS	00	64
FCF	Interrupt Control	IRQCTL	00	65
GPIO Port A				
FD0	Port A Address	PAADDR	00	43
FD1	Port A Control	PACTL	00	45
FD2	Port A Input Data	PAIN	XX	45
FD3	Port A Output Data	PAOUT	00	45
GPIO Port B				
FD4	Port B Address	PBADDR	00	43
FD5	Port B Control	PBCTL	00	45
FD6	Port B Input Data	PBIN	XX	45
FD7	Port B Output Data	PBOUT	00	45
GPIO Port C				
FD8	Port C Address	PCADDR	00	43
FD9	Port C Control	PCCTL	00	45
FDA	Port C Input Data	PCIN	XX	45
FDB	Port C Output Data	PCOUT	00	45
FDC-FEF	Reserved		XX	
Watchdog Time	er (WDT)			
FF0	Reset Status	RSTSTAT	XX	90
	Watchdog Timer Control	WDTCTL	XX	90
FF1		WDTU	FF	91

Table 8. Register File Address Map (Continued)

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
FF2	Watchdog Timer Reload High Byte	WDTH	FF	91
FF3	Watchdog Timer Reload Low Byte	WDTL	FF	91
FF4–FF5	Reserved	_	XX	
Trim Bit Contro	I			
FF6	Trim Bit Address	TRMADR	00	143
FF7	Trim Data	TRMDR	XX	144
Flash Memory	Controller			
FF8	Flash Control	FCTL	00	137
FF8	Flash Status	FSTAT	00	137
FF9	Flash Page Select	FPS	00	138
	Flash Sector Protect	FPROT	00	139
FFA	Flash Programming Frequency High Byte	FFREQH	00	140
FFB	Flash Programming Frequency Low Byte	FFREQL	00	140
eZ8 CPU				
FFC	Flags		XX	Refer to eZ8
FFD	Register Pointer	RP	XX	CPU Core
FFE	Stack Pointer High Byte	SPH	XX	User Manual
FFF	Stack Pointer Low Byte	SPL	XX	_(010120)
XX=Undefined				

Table 8. Register File Address Map (Continued)

Note:

This register is only reset during a Power-On Reset sequence. Other System Reset events do not affect it.

BITS	7	6	5	4	3	2	1	0			
FIELD	Reserved	Reserved		VBO	Reserved	ADC	COMP	Reserved			
RESET	1	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
ADDR		F80H									

Reserved—Must be 1

Reserved-Must be 0

VBO—Voltage Brownout Detector Disable

This bit and the VBO_AO Flash option bit must both enable the VBO for the VBO to be active.

0 = VBO enabled

1 = VBO disabled

ADC—Analog-to-Digital Converter Disable

0 = Analog-to-Digital Converter enabled

1 = Analog-to-Digital Converter disabled

COMP—Comparator Disable

0 =Comparator is enabled

1 =Comparator is disabled

Reserved-Must be 0

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Select Register AFS1	Alternate Function Select Register AFS2
Port A	PA0	TOIN	Timer 0 Input	AFS1[0]: 0	AFS2[0]: 0
		Reserved		AFS1[0]: 0	AFS2[0]: 1
		Reserved		AFS1[0]: 1	AFS2[0]: 0
		TOOUT	Timer 0 Output Complement	AFS1[0]: 1	AFS2[0]: 1
	PA1	TOOUT	Timer 0 Output	AFS1[1]: 0	AFS2[1]: 0
		Reserved		AFS1[1]: 0	AFS2[1]: 1
		CLKIN	External Clock Input	AFS1[1]: 1	AFS2[1]: 0
		Analog Functions*	ADC Analog Input/VREF	AFS1[1]: 1	AFS2[1]: 1
	PA2	DE0	UART 0 Driver Enable	AFS1[2]: 0	AFS2[2]: 0
		RESET	External Reset	AFS1[2]: 0	AFS2[2]: 1
		T1OUT	Timer 1 Output	AFS1[2]: 1	AFS2[2]: 0
	_	Reserved		AFS1[2]: 1	AFS2[2]: 1
	PA3	CTS0	UART 0 Clear to Send	AFS1[3]: 0	AFS2[3]: 0
		COUT	Comparator Output	AFS1[3]: 0	AFS2[3]: 1
		T1IN	Timer 1 Input	AFS1[3]: 1	AFS2[3]: 0
	_	Analog Functions*	ADC Analog Input	AFS1[3]: 1	AFS2[3]: 1
	PA4	RXD0	UART 0 Receive Data	AFS1[4]: 0	AFS2[4]: 0
		Reserved		AFS1[4]: 0	AFS2[4]: 1
		Reserved		AFS1[4]: 1	AFS2[4]: 0
		Analog Functions*	ADC/Comparator Input (N)	AFS1[4]: 1	AFS2[4]: 1
	PA5	TXD0	UART 0 Transmit Data	AFS1[5]: 0	AFS2[5]: 0
		T10UT	Timer 1 Output Complement	AFS1[5]: 0	AFS2[5]: 1
		Reserved		AFS1[5]: 1	AFS2[5]: 0
		Analog Functions*	ADC/Comparator Input (P)	AFS1[5]: 1	AFS2[5]: 1

Table 16. Port Alternate Function Mapping (8-Pin Parts)

Note: * Analog Functions include ADC inputs, ADC reference and comparator inputs. Also, alternate function selection as described in Port A–C Alternate Function Sub-Registers must be enabled.

_

UART Receive Data Register

Data bytes received through the RXD*x* pin are stored in the UART Receive Data register (Table 63). The read-only UART Receive Data register shares a Register File address with the Write-only UART Transmit Data register.

Table 63. UART Receive Data Register (U0RXD)

BITS	7	6	5	4	3	2	1	0			
FIELD	RXD										
RESET	Х	Х	Х	Х	Х	Х	Х	Х			
R/W	R	R	R	R	R	R	R	R			
ADDR				F4	0H						

RXD—Receive Data

UART receiver data byte from the RXDx pin

UART Status 0 Register

The UART Status 0 and Status 1 registers (Table 64 and Table 65) identify the current UART operating configuration and status.

Table 64. UART Status 0 Register (U0STAT0)

BITS	7	6	5	4	3	2	1	0			
FIELD	RDA	PE	OE	FE	BRKD	TDRE	TXE	CTS			
RESET	0	0	0	0	0	1	1	Х			
R/W	R	R	R	R	R	R	R	R			
ADDR		F41H									

RDA—Receive Data Available

This bit indicates that the UART Receive Data register has received data. Reading the UART Receive Data register clears this bit.

0 = The UART Receive Data register is empty

1 = There is a byte in the UART Receive Data register

PE—Parity Error

This bit indicates that a parity error has occurred. Reading the UART Receive Data register clears this bit.

0 = No parity error has occurred

1 = A parity error has occurred

OE—Overrun Error

This bit indicates that an overrun error has occurred. An overrun occurs when new data is

Receiving IrDA Data

Data received from the infrared transceiver using the IR_RXD signal through the RXD pin is decoded by the Infrared Endec and passed to the UART. The UART's baud rate clock is used by the Infrared Endec to generate the demodulated signal (RXD) that drives the UART. Each UART/Infrared data bit is 16-clocks wide. Figure 18 displays data reception. When the Infrared Endec is enabled, the UART's RXD signal is internal to the Z8 Encore! XP[®] F0823 Series products while the IR_RXD signal is received through the RXD pin.

Figure 18. IrDA Data Reception

Infrared Data Reception

Caution: The system clock frequency must be at least 1.0 MHz to ensure proper reception of the 1.4 μs minimum width pulses allowed by the IrDA standard.

Endec Receiver Synchronization

The IrDA receiver uses a local baud rate clock counter (0 to 15 clock periods) to generate an input stream for the UART and to create a sampling window for detection of incoming pulses. The generated UART input (UART RXD) is delayed by 8 baud rate clock periods with respect to the incoming IrDA data stream. When a falling edge in the input data stream is detected, the Endec counter is reset. When the count reaches a value of 8, the UART RXD value is updated to reflect the value of the decoded data. When the count reaches 12 baud clock periods, the sampling window for the next incoming pulse opens. The window remains open until the count again reaches 8 (that is, 24 baud clock periods since the previous pulse was detected), giving the Endec a sampling window of minus four

- 5. When the conversion is complete, the ADC control logic performs the following operations:
 - 11-bit two's-complement result written to {ADCD_H[7:0], ADCD_L[7:5]}.
 - CEN resets to 0 to indicate the conversion is complete.
- 6. If the ADC remains idle for 160 consecutive system clock cycles, it is automatically powered-down.

Continuous Conversion

When configured for continuous conversion, the ADC continuously performs an analogto-digital conversion on the selected analog input. Each new data value over-writes the previous value stored in the ADC Data registers. An interrupt is generated after each conversion.

Caution: In CONTINUOUS mode, ADC updates are limited by the input signal bandwidth of the ADC and the latency of the ADC and its digital filter. Step changes at the input are not detected at the next output from the ADC. The response of the ADC (in all modes) is limited by the input signal bandwidth and the latency.

Follow the steps below for setting up the ADC and initiating continuous conversion:

- 1. Enable the acceptable analog input by configuring the general-purpose I/O pins for alternate function. This action disables the digital input and output driver.
- 2. Write the ADC Control/Status Register 1 to configure the ADC:
 - Write the REFSELH bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELH bit is contained in the ADC Control/Status Register 1.
- 3. Write to the ADC Control Register 0 to configure the ADC for continuous conversion. The bit fields in the ADC Control register can be written simultaneously:
 - Write to the ANAIN[3:0] field to select from the available analog input sources (different input pins available depending on the device).
 - Set CONT to 1 to select continuous conversion.
 - If the internal VREF must be output to a pin, set the REFEXT bit to 1. The internal voltage reference must be enabled in this case.
 - Write the REFSELL bit of the pair {REFSELH, REFSELL} to select the internal voltage reference level or to disable the internal reference. The REFSELL bit is contained in ADC Control Register 0.
 - Set CEN to 1 to start the conversions.

- 4. When the first conversion in continuous operation is complete (after 5129 system clock cycles, plus the 40 cycles for power-up, if necessary), the ADC control logic performs the following operations:
 - CEN resets to 0 to indicate the first conversion is complete. CEN remains 0 for all subsequent conversions in continuous operation.
 - An interrupt request is sent to the Interrupt Controller to indicate the conversion is complete.
- 5. The ADC writes a new data result every 256 system clock cycles. For each completed conversion, the ADC control logic performs the following operations:
 - Writes the 11-bit two's complement result to {ADCD_H[7:0], ADCD_L[7:5]}.
 - An interrupt request to the Interrupt Controller denoting conversion complete.
- 6. To disable continuous conversion, clear the CONT bit in the ADC Control register to 0.

Interrupts

The ADC is able to interrupt the CPU whenever a conversion has been completed and the ADC is enabled.

When the ADC is disabled, an interrupt is not asserted; however, an interrupt pending when the ADC is disabled is not cleared.

Calibration and Compensation

Z8 Encore! XP[®] F0823 Series ADC can be factory calibrated for offset error and gain error, with the compensation data stored in Flash memory. Alternatively, user code can perform its own calibration, storing the values into Flash themselves.

Factory Calibration

Devices that have been factory calibrated contain nine bytes of calibration data in the Flash option bit space. This data consists of three bytes for each reference type. For a list of input modes for which calibration data exists, see Zilog Calibration Data on page 147. There is 1 byte for offset, 2 bytes for gain correction.

User Calibration

If you have precision references available, its own external calibration can be performed, storing the values into Flash themselves.

Table 83. Flash Frequency High Byte Register (FFREQH)

BITS	7	6	5	4	3	2	1	0		
FIELD	FFREQH									
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		FFAH								

FFREQH—Flash Frequency High Byte High byte of the 16-bit Flash Frequency value

Table 84. Flash Frequency Low Byte Register (FFREQL)

BITS	7	6	5	4	3	2	1	0			
FIELD	FFREQL										
RESET	0										
R/W		R/W									
ADDR	FFBH										

FFREQL—Flash Frequency Low Byte Low byte of the 16-bit Flash Frequency value Software Compensation Procedure on page 122. The location of each calibration byte is provided in Table 93 on page 148.

Info Page Address	Memory Address	Compensation Usage	ADC Mode	Reference Type
60	FE60	Offset	Single-Ended Unbuffered	Internal 2.0 V
08	FE08	Gain High Byte	Single-Ended Unbuffered	Internal 2.0 V
09	FE09	Gain Low Byte	Single-Ended Unbuffered	Internal 2.0 V
63	FE63	Offset	Single-Ended Unbuffered	Internal 1.0 V
0A	FE0A	Gain High Byte	Single-Ended Unbuffered	Internal 1.0 V
0B	FE0B	Gain Low Byte	Single-Ended Unbuffered	Internal 1.0 V
66	FE66	Offset	Single-Ended Unbuffered	External 2.0 V
0C	FE0C	Gain High Byte	Single-Ended Unbuffered	External 2.0 V
0D	FE0D	Gain Low Byte	Single-Ended Unbuffered	External 2.0 V

Table 93. ADC Calibration Data Location

Serialization Data

Table 94. Serial Number at 001C-001F (S_NUM)

BITS	7	6	5	4	3	2	1	0			
FIELD	S_NUM										
RESET	U	U	U	U	U	U	U	U			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
ADDR	Information Page Memory 001C-001F										
Note: U = Unchanged by Reset. R/W = Read/Write.											

S NUM— Serial Number Byte

The serial number is a unique four-byte binary value.

On-Chip Debugger Commands

The host communicates to the OCD by sending OCD commands using the DBG interface. During normal operation, only a subset of the OCD commands are available. In DEBUG mode, all OCD commands become available unless the user code and control registers are protected by programming the Flash Read Protect Option bit (FRP). The Flash Read Protect Option bit prevents the code in memory from being read out of Z8 Encore! XP[®] F0823 Series products. When this option is enabled, several of the OCD commands are disabled. Table 99 on page 162 is a summary of the OCD commands. Each OCD command is described in further detail in the bulleted list following this table. Table 99 on page 162 also indicates those commands that operate when the device is not in DEBUG mode (normal operation) and those commands that are disabled by programming the Flash Read Protect Option bit.

Debug Command	Command Byte	Enabled when NOT in DEBUG mode?	Disabled by Flash Read Protect Option Bit
Read OCD Revision	00H	Yes	-
Reserved	01H	_	_
Read OCD Status Register	02H	Yes	-
Read Runtime Counter	03H	_	-
Write OCD Control Register	04H	Yes	Cannot clear DBGMODE bit.
Read OCD Control Register	05H	Yes	-
Write Program Counter	06H	-	Disabled.
Read Program Counter	07H	-	Disabled.
Write Register	08H	_	Only writes of the Flash Memory Control registers are allowed. Additionally, only the Mass Erase command is allowed to be written to the Flash Control register.
Read Register	09H	-	Disabled.
Write Program Memory	0AH	_	Disabled.
Read Program Memory	0BH	_	Disabled.
Write Data Memory	0CH	_	Yes.
Read Data Memory	0DH	-	_
Read Program Memory CRC	OEH	-	-
Reserved	0FH	-	-
Step Instruction	10H	_	Disabled.

```
DBG \leftarrow 05H
DBG \rightarrow OCDCTL[7:0]
```

• Write Program Counter (06H)—The Write Program Counter command writes the data that follows to the eZ8 CPU's Program Counter (PC). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, the Program Counter (PC) values are discarded.

```
DBG ← 06H
DBG ← ProgramCounter[15:8]
DBG ← ProgramCounter[7:0]
```

• **Read Program Counter (07H)**—The Read Program Counter command reads the value in the eZ8 CPU's Program Counter (PC). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this command returns FFFFH.

```
DBG \leftarrow 07H
DBG \rightarrow ProgramCounter[15:8]
DBG \rightarrow ProgramCounter[7:0]
```

• Write Register (08H)—The Write Register command writes data to the Register File. Data can be written 1–256 bytes at a time (256 bytes can be written by setting size to 0). If the device is not in DEBUG mode, the address and data values are discarded. If the Flash Read Protect Option bit is enabled, only writes to the Flash Control Registers are allowed and all other register write data values are discarded.

```
DBG \leftarrow 08H
DBG \leftarrow {4'h0,Register Address[11:8]}
DBG \leftarrow Register Address[7:0]
DBG \leftarrow Size[7:0]
DBG \leftarrow 1-256 data bytes
```

• **Read Register (09H)**—The Read Register command reads data from the Register File. Data can be read 1–256 bytes at a time (256 bytes can be read by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this command returns FFH for all the data values.

```
DBG \leftarrow 09H
DBG \leftarrow {4'h0,Register Address[11:8]
DBG \leftarrow Register Address[7:0]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-256 data bytes
```

• Write Program Memory (0AH)—The Write Program Memory command writes data to Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). The on-chip Flash Controller must be written to and unlocked for the programming operation to occur. If the Flash Controller is not unlocked, the data is discarded. If the device

Abbreviation	Description	Abbreviation	Description
b	Bit position	IRR	Indirect Register Pair
сс	Condition code	р	Polarity (0 or 1)
X	8-bit signed index or displacement	r	4-bit Working Register
DA	Destination address	R	8-bit register
ER	Extended Addressing register	r1, R1, Ir1, Irr1, IR1, rr1, RR1, IRR1, ER1	Destination address
IM	Immediate data value	r2, R2, Ir2, Irr2, IR2, rr2, RR2, IRR2, ER2	Source address
Ir	Indirect Working Register	RA	Relative
IR	Indirect register	rr	Working Register Pair
Irr	Indirect Working Register Pair	RR	Register Pair

Table 116. Opcode Map Abbreviations

Z8 Encore! XP[®] F0823 Series Product Specification

	Lower Nibble (Hex)															
	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	1.1 BRK	2.2 SRP	2.3 ADD	2.4 ADD	3.3 ADD	3.4 ADD	3.3 ADD	3.4 ADD	4.3 ADDX	4.3 ADDX	2.3 DJNZ	2.2 JR	2.2 LD	3.2 JP	1.2 INC	1.2 NOP
		IM	r1,r2	r1,Ir2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1	r1,X	cc,X	r1,IM	cc,DA	r1	
1	2.2 RLC R1	2.3 RLC	2.3 ADC r1.r2	2.4 ADC r1.lr2	3.3 ADC B2 B1	3.4 ADC	3.3 ADC R1 IM	3.4 ADC	4.3 ADCX FR2 FR1	4.3 ADCX						See 2nd Opcode Man
2	2.2 INC	2.3 INC	2.3 SUB	2.4 SUB	3.3 SUB	3.4 SUB	3.3 SUB	3.4 SUB	4.3 SUBX	4.3 SUBX						1, 2 ATM
	R1	IR1	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
3	2.2 DEC R1	2.3 DEC	2.3 SBC	2.4 SBC r1.lr2	3.3 SBC R2 R1	3.4 SBC	3.3 SBC R1 IM	3.4 SBC	4.3 SBCX	4.3 SBCX						
4	2.2 DA	2.3 DA	2.3 OR	2.4 OR	3.3 OR	3.4 OR	3.3 OR	3.4 OR	4.3 ORX	4.3 ORX						
	R1	IR1	r1,r2	r1,Ir2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
5	2.2 POP	2.3 POP	2.3 AND	2.4 AND	3.3 AND	3.4 AND	3.3 AND	3.4 AND	4.3 ANDX	4.3 ANDX						1.2 WDT
	R1	IR1	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
6	2.2 COM	2.3 COM	2.3 TCM	2.4 TCM	3.3 TCM	3.4 TCM	3.3 TCM	3.4 TCM	4.3 TCMX	4.3 TCMX						1.2 STOP
0	R1	IR1	r1.r2	r1.lr2	R2.R1	IR2.R1	R1.IM	IR1.IM	ER2.ER1	IM.ER1						0101
7	2.2 PUSH	2.3 PUSH	2.3 TM	2.4 TM	3.3 TM	3.4 TM	3.3 TM	3.4 TM	4.3 TMX	4.3 TMX						1.2 HALT
	R2	IR2	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
8	2.5 DECW	2.6 DECW	2.5 LDE	2.9 LDEI	3.2 LDX	3.3 LDX	3.4 LDX	3.5 LDX	3.4 LDX	3.4 LDX						1.2 DI
	2.2		2.5	2.0	11,ERZ	11,ER2	2.4	2.5	2.2	2.5						1.2
9	2.2 RL R1	2.3 RL IR1	LDE r2,Irr1	LDEI Ir2,Irr1	LDX r2,ER1	LDX Ir2,ER1	LDX R2,IRR1	LDX IR2,IRR1	LEA r1,r2,X	LEA rr1,rr2,X						EI
А	2.5 INCW	2.6 INCW	2.3 CP	2.4 CP	3.3 CP	3.4 CP	3.3 CP	3.4 CP	4.3 CPX	4.3 CPX						1.4 RET
	RR1	IRR1	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
в	2.2 CLR	2.3 CLR	2.3 XOR	2.4 XOR	3.3 XOR	3.4 XOR	3.3 XOR	3.4 XOR	4.3 XORX	4.3 XORX						1.5 IRET
	22	23	2.5	29	23	2 9	151,110	3.4	3.2	wi,∟i×1						12
С	RRC R1	RRC IR1	LDC	LDCI	JP IRR1	LDC		LD r1.r2.X	PUSHX ER2							RCF
	2.2	2.3	2.5	2.9	2.6	2.2	3.3	3.4	3.2							1.2
D	SRA	SRA	LDC	LDCI	CALL	BSWAP	CALL	LD	POPX							SCF
	R1	IR1	r2,Irr1	ír2,Irr1	IRR1	R1	DA	r2,r1,X	ER1							
Е	2.2 RR	2.3 RR	2.2 BIT	2.3 LD	3.2 LD	3.3 LD	3.2 LD	3.3 LD	4.2 LDX	4.2 LDX						1.2 CCF
	R1	IR1	p,b,r1	r1,Ir2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
F	2.2 SWAP	2.3 SWAP	2.6 TRAP	2.3 LD	2.8 MULT	3.3 LD	3.3 BTJ	3.4 BTJ			┥	V				

Figure 27. First Opcode Map

190

Upper Nibble (Hex)

Figure 40 displays the 28-pin Plastic Dual Inline Package (PDIP) available for Z8 Encore! XP F0823 Series devices.

Note: ZiLOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 40. 28-Pin Plastic Dual Inline Package (PDIP)

Figure 41 displays the 28-pin Small Outline Integrated Circuit package (SOIC) available in Z8 Encore! XP F0823 Series devices.

Figure 41. 28-Pin Small Outline Integrated Circuit Package (SOIC)