

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	22
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.173", 4.40mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0223hj005sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Diagram

Figure 1 on page 3 displays the block diagram of the architecture of Z8 Encore! XP F0823 Series devices.

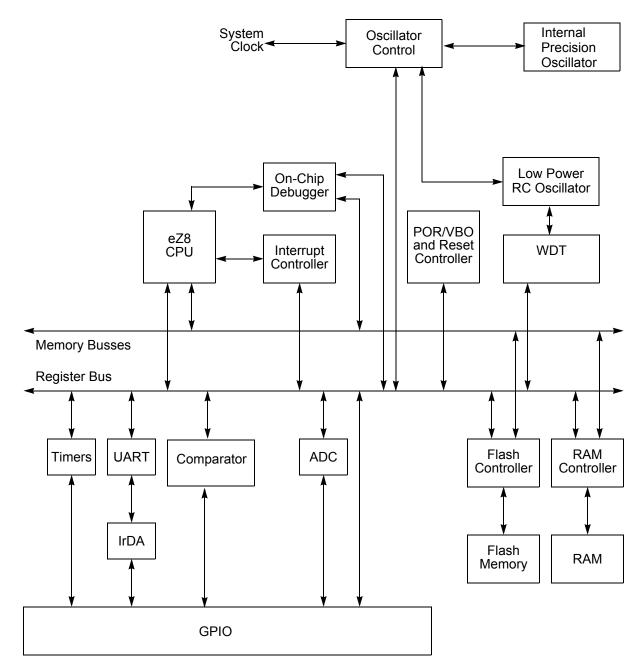


Figure 1. Z8 Encore! XP[®] F0823 Series Block Diagram

13

Address Space

The eZ8 CPU can access three distinct address spaces:

- The Register File contains addresses for the general-purpose registers and the eZ8 CPU, peripheral, and general-purpose I/O port control registers.
- The Program Memory contains addresses for all memory locations having executable code and/or data.
- The Data Memory contains addresses for all memory locations that contain data only.

These three address spaces are covered briefly in the following subsections. For more detailed information regarding the eZ8 CPU and its address space, refer to eZ8 CPU Core User Manual (UM0128) available for download at www.zilog.com.

Register File

The Register File address space in the Z8 Encore! XP[®] MCU is 4 KB (4096 bytes). The Register File is composed of two sections: control registers and general-purpose registers. When instructions are executed, registers defined as sources are read, and registers defined as destinations are written. The architecture of the eZ8 CPU allows all general-purpose registers to function as accumulators, address pointers, index registers, stack areas, or scratch pad memory.

The upper 256 bytes of the 4 KB Register File address space are reserved for control of the eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at addresses from F00H to FFFH. Some of the addresses within the 256 B control register section are reserved (unavailable). Reading from a reserved Register File address returns an undefined value. Writing to reserved Register File addresses is not recommended and can produce unpredictable results.

The on-chip RAM always begins at address 000H in the Register File address space. Z8 Encore! XP F0823 Series devices contain 256 B-1 KB of on-chip RAM. Reading from Register File addresses outside the available RAM addresses (and not within the control register address space) returns an undefined value. Writing to these Register File addresses produces no effect.

Program Memory

The eZ8 CPU supports 64 KB of Program Memory address space. Z8 Encore! XP F0823 Series devices contain 1 KB to 8 KB of on-chip Flash memory in the Program Memory address space. Reading from Program Memory addresses outside the available Flash

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
F91–FBF	Reserved	—	XX	
Interrupt Contr	oller			
FC0	Interrupt Request 0	IRQ0	00	58
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	60
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	61
FC3	Interrupt Request 1	IRQ1	00	59
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	62
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	62
FC6	Interrupt Request 2	IRQ2	00	60
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	63
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	63
FC9–FCC	Reserved		XX	
FCD	Interrupt Edge Select	IRQES	00	64
FCE	Shared Interrupt Select	IRQSS	00	64
FCF	Interrupt Control	IRQCTL	00	65
GPIO Port A				
FD0	Port A Address	PAADDR	00	43
FD1	Port A Control	PACTL	00	45
FD2	Port A Input Data	PAIN	XX	45
FD3	Port A Output Data	PAOUT	00	45
GPIO Port B				
FD4	Port B Address	PBADDR	00	43
FD5	Port B Control	PBCTL	00	45
FD6	Port B Input Data	PBIN	XX	45
FD7	Port B Output Data	PBOUT	00	45
GPIO Port C	·			
FD8	Port C Address	PCADDR	00	43
FD9	Port C Control	PCCTL	00	45
FDA	Port C Input Data	PCIN	XX	45
FDB	Port C Output Data	PCOUT	00	45
FDC-FEF	Reserved	_	XX	
Watchdog Time				
FF0	Reset Status	RSTSTAT	XX	90
-	Watchdog Timer Control	WDTCTL	XX	90
	0	WDTU		

Table 8. Register File Address Map (Continued)

Architecture

Figure 7 displays a simplified block diagram of a GPIO port pin. In this figure, the ability to accommodate alternate functions and variable port current drive strength is not displayed.

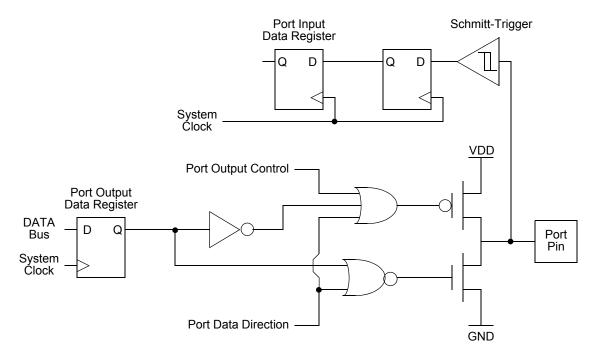


Figure 7. GPIO Port Pin Block Diagram

GPIO Alternate Functions

Many of the GPIO port pins are used for general-purpose I/O and access to on-chip peripheral functions such as the timers and serial communication devices. The port A–D Alternate Function sub-registers configure these pins for either GPIO or alternate function operation. When a pin is configured for alternate function, control of the port pin direction (input/output) is passed from the Port A–D Data Direction registers to the alternate function assigned to this pin. Table 15 on page 39 lists the alternate functions possible with each port pin. The alternate function associated at a pin is defined through Alternate Function Sets sub-registers AFS1 and AFS2.

The crystal oscillator functionality is not controlled by the GPIO block. When the crystal oscillator is enabled in the oscillator control block, the GPIO functionality of PA0 and PA1 is overridden. In that case, those pins function as input and output for the crystal oscillator.

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Select Register AFS1	Alternate Function Select Register AFS2
Port A	PA0	TOIN	Timer 0 Input	AFS1[0]: 0	AFS2[0]: 0
		Reserved		AFS1[0]: 0	AFS2[0]: 1
		Reserved		AFS1[0]: 1	AFS2[0]: 0
		TOOUT	Timer 0 Output Complement	AFS1[0]: 1	AFS2[0]: 1
	PA1	TOOUT	Timer 0 Output	AFS1[1]: 0	AFS2[1]: 0
		Reserved		AFS1[1]: 0	AFS2[1]: 1
		CLKIN	External Clock Input	AFS1[1]: 1	AFS2[1]: 0
		Analog Functions*	ADC Analog Input/VREF	AFS1[1]: 1	AFS2[1]: 1
	PA2	DE0	UART 0 Driver Enable	AFS1[2]: 0	AFS2[2]: 0
	RESET	External Reset	AFS1[2]: 0	AFS2[2]: 1	
		T1OUT	Timer 1 Output	AFS1[2]: 1	AFS2[2]: 0
		Reserved		AFS1[2]: 1	AFS2[2]: 1
	PA3	CTS0	UART 0 Clear to Send	AFS1[3]: 0	AFS2[3]: 0
		COUT	Comparator Output	AFS1[3]: 0	AFS2[3]: 1
		T1IN	Timer 1 Input	AFS1[3]: 1	AFS2[3]: 0
		Analog Functions*	ADC Analog Input	AFS1[3]: 1	AFS2[3]: 1
	PA4	RXD0	UART 0 Receive Data	AFS1[4]: 0	AFS2[4]: 0
		Reserved		AFS1[4]: 0	AFS2[4]: 1
		Reserved		AFS1[4]: 1	AFS2[4]: 0
		Analog Functions*	ADC/Comparator Input (N)	AFS1[4]: 1	AFS2[4]: 1
	PA5	TXD0	UART 0 Transmit Data	AFS1[5]: 0	AFS2[5]: 0
		T1OUT	Timer 1 Output Complement	AFS1[5]: 0	AFS2[5]: 1
		Reserved		AFS1[5]: 1	AFS2[5]: 0
		Analog Functions*	ADC/Comparator Input (P)	AFS1[5]: 1	AFS2[5]: 1

Table 16. Port Alternate Function Mapping (8-Pin Parts)

Note: * Analog Functions include ADC inputs, ADC reference and comparator inputs. Also, alternate function selection as described in Port A–C Alternate Function Sub-Registers must be enabled.

Writing a 1 to the IRQE bit in the Interrupt Control register

Interrupts are globally disabled by any of the following actions:

- Execution of a Disable Interrupt (DI) instruction
- eZ8 CPU acknowledgement of an interrupt service request from the interrupt controller
- Writing a 0 to the IRQE bit in the Interrupt Control register
- Reset
- Execution of a Trap instruction
- Illegal Instruction Trap
- Primary Oscillator Fail Trap
- Watchdog Timer Oscillator Fail Trap

Interrupt Vectors and Priority

The interrupt controller supports three levels of interrupt priority. Level 3 is the highest priority, Level 2 is the second highest priority, and Level 1 is the lowest priority. If all interrupts are enabled with identical interrupt priority (for example, all as Level 2 interrupts), the interrupt priority is assigned from highest to lowest as specified in Table 33 on page 54. Level 3 interrupts are always assigned higher priority than Level 2 interrupts which, in turn, always are assigned higher priority than Level 1 interrupts. Within each interrupt priority level (Level 1, Level 2, or Level 3), priority is assigned as specified in Table 33. Reset, Watchdog Timer interrupt (if enabled), Primary Oscillator Fail Trap, Watchdog Timer Oscillator Fail Trap, and Illegal Instruction Trap always have highest (Level 3) priority.

Interrupt Assertion

Interrupt sources assert their interrupt requests for only a single system clock period (single pulse). When the interrupt request is acknowledged by the eZ8 CPU, the corresponding bit in the Interrupt Request register is cleared until the next interrupt occurs. Writing a 0 to the corresponding bit in the Interrupt Request register likewise clears the interrupt request.

Caution: The following coding style that clears bits in the Interrupt Request registers is not recommended. All incoming interrupts received between execution of the first LDX command and the final LDX command are lost.

Poor coding style that can result in lost interrupt requests: LDX r0, IRQ0 AND r0, MASK LDX IRQ0, r0

Watchdog Timer

The Watchdog Timer (WDT) protects against corrupt or unreliable software, power faults, and other system-level problems which can place Z8 Encore! XP[®] F0823 Series devices into unsuitable operating states. The features of Watchdog Timer include:

- On-chip RC oscillator
- A selectable time-out response: reset or interrupt
- 24-bit programmable time-out value

Operation

The WDT is a retriggerable one-shot timer that resets or interrupts Z8 Encore! XP F0823 Series devices when the WDT reaches its terminal count. The Watchdog Timer uses a dedicated on-chip RC oscillator as its clock source. The Watchdog Timer operates in only two modes: ON and OFF. Once enabled, it always counts and must be refreshed to prevent a time-out. Perform an enable by executing the WDT instruction or by setting the WDT_AO Flash Option Bit. The WDT_AO bit forces the Watchdog Timer to operate immediately upon reset, even if a WDT instruction has not been executed.

The Watchdog Timer is a 24-bit reloadable down counter that uses three 8-bit registers in the eZ8 CPU register space to set the reload value. The nominal WDT time-out period is described by the following equation:

WDT Time-out Period (ms) = $\frac{\text{WDT Reload Value}}{10}$

where the WDT reload value is the decimal value of the 24-bit value given by {WDTU[7:0], WDTH[7:0], WDTL[7:0]} and the typical Watchdog Timer RC oscillator frequency is 10 kHz. The Watchdog Timer cannot be refreshed after it reaches 000002H. The WDT Reload Value must not be set to values below 000004H. Table 57 provides information about approximate time-out delays for the minimum and maximum WDT reload values.

Table 57. Watchdog Timer Approximate Time-Out Delays

WDT Reload Value	WDT Reload Value		e Time-Out Delay VDT oscillator frequency)
(Hex)	(Decimal)	Typical	Description
000004	4	400 μs	Minimum time-out delay
FFFFF	16,777,215	28 minutes	Maximum time-out delay

Z8 Encore! XP[®] F0823 Series Product Specification

Z8 Encore! XP[®] F0823 Series Product Specification

Flash Control Register Definitions

Flash Control Register

The Flash Controller must be unlocked using the Flash Control (FTCTL) register before programming or erasing the Flash memory. Writing the sequence 73H 8CH, sequentially, to the Flash Control register unlocks the Flash Controller. When the Flash Controller is unlocked, the Flash memory can be enabled for Mass Erase or Page Erase by writing the appropriate enable command to the FCTL. Page Erase applies only to the active page selected in Flash Page Select register. Mass Erase is enabled only through the On-Chip Debugger. Writing an invalid value or an invalid sequence returns the Flash Controller to its locked state. The Write-only Flash Control Register shares its Register File address with the read-only Flash Status Register.

BITS	7	6	5	4	3	2	1	0	
FIELD		FCMD							
RESET	0	0 0 0 0 0 0 0 0							
R/W	W	w w w w w w w							
ADDR				FF	8H				

Table 79. Flash Control Register (FCTL)

FCMD—Flash Command

73H = First unlock command

8CH = Second unlock command

95H = Page Erase command (must be third command in sequence to initiate Page Erase) 63H = Mass Erase command (must be third command in sequence to initiate Mass Erase)

5EH = Enable Flash Sector Protect Register Access

Flash Status Register

The Flash Status register indicates the current state of the Flash Controller. This register can be read at any time. The read-only Flash Status Register shares its Register File address with the write-only Flash Control Register.

Table 80. Flash Status	Register (FSTAT)
------------------------	------------------

BITS	7	6	5	4	3	2	1	0
FIELD	Rese	erved	FSTAT					
RESET	0	0	0	0	0	0	0	0
R/W	R	R	R	R R R R R R				
ADDR				FF	8H			<u>.</u>

Trim Bit Data Register

The Trim Bid Data (TRMDR) register contains the read or write data for access to the trim option bits.

Table 86. Trim Bit Data Register (TRMDR)

BITS	7	6	5	4	3	2	1	0
FIELD		TRMDR - Trim Bit Data						
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W						
ADDR				FF	7H			

Flash Option Bit Address Space

The first two bytes of Flash program memory at addresses 0000H and 0001H are reserved for the user-programmable Flash option bits.

Flash Program Memory Address 0000H

 Table 87. Flash Option Bits at Program Memory Address 0000H

BITS	7	6	5	4	3	2	1	0
FIELD	WDT_RES	WDT_AO	Rese	erved	VBO_AO	FRP	Reserved	FWP
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	Program Memory 0000H							
Note: U =	Unchanged by	y Reset. R/W	= Read/Write) .				

WDT RES—Watchdog Timer Reset

0 = Watchdog Timer time-out generates an interrupt request. Interrupts must be globally enabled for the eZ8 CPU to acknowledge the interrupt request.

1 = Watchdog Timer time-out causes a system reset. This setting is the default for unprogrammed (erased) Flash.

WDT_AO—Watchdog Timer Always ON

0 = Watchdog Timer is automatically enabled upon application of system power. Watchdog Timer can not be disabled.

1 = Watchdog Timer is enabled upon execution of the WDT instruction. Once enabled, the

Watchdog Timer can only be disabled by a Reset or Stop Mode Recovery. This setting is the default for unprogrammed (erased) Flash.

Reserved—R/W bits must be 1 during writes; 1 when read.

VBO AO-Voltage Brownout Protection Always ON

0 = Voltage Brownout Protection can be disabled in STOP mode to reduce total power consumption. For the block to be disabled, the power control register bit must also be written (see Power Control Register 0 on page 32).

1 = Voltage Brownout Protection is always enabled including during STOP mode. This setting is the default for unprogrammed (erased) Flash.

FRP—Flash Read Protect

0 = User program code is inaccessible. Limited control features are available through the On-Chip Debugger.

1 = User program code is accessible. All On-Chip Debugger commands are enabled. This setting is the default for unprogrammed (erased) Flash.

Reserved-Must be 1

FWP—Flash Write Protect

This Option Bit provides Flash Program Memory protection:

0 = Programming and erasure disabled for all of Flash Program Memory. Programming, Page Erase, and Mass Erase through User Code is disabled. Mass Erase is available using the On-Chip Debugger.

1 = Programming, Page Erase, and Mass Erase are enabled for all of Flash program memory.

Flash Program Memory Address 0001H

Table 88. Flash Options Bits at Program Memory Address 0001H

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved			XTLDIS	Reserved			
RESET	U	U U U U U U U U					U	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	Program Memory 0001H							
Note: =	Inchanged b	V Reset R/M	= Read/Write	`				

Note: U = Unchanged by Reset. R/W = Read/Write.

Reserved—R/W must be 1 during writes; 1 when read

XTLDIS—State of Crystal Oscillator at Reset

Note:

- *This bit only enables the crystal oscillator. Its selection as system clock must be done manually.*
 - $0 = Crystal \ oscillator \ is \ enabled \ during \ reset, \ resulting \ in \ longer \ reset \ timing$
 - *I* = *Crystal oscillator is disabled during reset, resulting in shorter reset timing*
- *¥* Warning: Programming the XTLDIS bit to zero on 8-pin versions of this device prevents any further communication via the debug pin. This is due to the fact that the XIN and DBG functions are shared on pin 2 of this package. Do not program this bit to zero on 8-pin devices unless no further debugging or Flash programming is required.

Trim Bit Address Space

All available Trim bit addresses and their functions are listed in Table 89 through Table 91.

Trim Bit Address 0000H—Reserved

Table 89.	Trim	Options	Bits a	at Address	0000H

BITS	7	6	5	4	3	2	1	0	
FIELD	Reserved								
RESET	U	U U U U U U U U							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR	Information Page Memory 0020H								
Note: U = U	lote: U = Unchanged by Reset. R/W = Read/Write.								

Reserved—Altering this register may result in incorrect device operation.

Trim Bit Address 0001H—Reserved

Table 90. Trim Option Bits at 0001H

BITS	7	6	5	4	3	2	1	0		
FIELD	Reserved									
RESET	U	U	U	U	U	U	U	U		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR	Information Page Memory 0021H									
Note: U = Unchanged by Reset. R/W = Read/Write.										

147

Reserved— Altering this register may result in incorrect device operation.

Trim Bit Address 0002H

Table 91. Trim Option Bits at 0002H (TIPO)

BITS	7	6	5	4	3	2	1	0			
FIELD		IPO_TRIM									
RESET		U									
R/W	R/W										
ADDR	Information Page Memory 0022H										
Note: U =	ote: U = Unchanged by Reset. R/W = Read/Write.										

IPO_TRIM—Internal Precision Oscillator Trim Byte Contains trimming bits for Internal Precision Oscillator.

Trim Bit Address 0003H—Reserved

Trim Bit Address 0004H—Reserved

Zilog Calibration Data

ADC Calibration Data

Table 92. ADC Calibration Bits

BITS	7	6	5	4	3	2	1	0		
FIELD	ADC_CAL									
RESET	U	U	U	U	U	U	U	U		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR	Information Page Memory 0060H–007DH									
Note: U = Unchanged by Reset. R/W = Read/Write.										

ADC CAL—Analog-to-Digital Converter Calibration Values

Contains factory calibrated values for ADC gain and offset compensation. Each of the ten supported modes has one byte of offset calibration and two bytes of gain calibration. These values are read by the software to compensate ADC measurements as detailed in

```
DBG \leftarrow 05H
DBG \rightarrow OCDCTL[7:0]
```

• Write Program Counter (06H)—The Write Program Counter command writes the data that follows to the eZ8 CPU's Program Counter (PC). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, the Program Counter (PC) values are discarded.

```
DBG ← 06H
DBG ← ProgramCounter[15:8]
DBG ← ProgramCounter[7:0]
```

• **Read Program Counter (07H)**—The Read Program Counter command reads the value in the eZ8 CPU's Program Counter (PC). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this command returns FFFFH.

```
DBG \leftarrow 07H
DBG \rightarrow ProgramCounter[15:8]
DBG \rightarrow ProgramCounter[7:0]
```

• Write Register (08H)—The Write Register command writes data to the Register File. Data can be written 1–256 bytes at a time (256 bytes can be written by setting size to 0). If the device is not in DEBUG mode, the address and data values are discarded. If the Flash Read Protect Option bit is enabled, only writes to the Flash Control Registers are allowed and all other register write data values are discarded.

```
DBG \leftarrow 08H
DBG \leftarrow {4'h0,Register Address[11:8]}
DBG \leftarrow Register Address[7:0]
DBG \leftarrow Size[7:0]
DBG \leftarrow 1-256 data bytes
```

• **Read Register (09H)**—The Read Register command reads data from the Register File. Data can be read 1–256 bytes at a time (256 bytes can be read by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this command returns FFH for all the data values.

```
DBG \leftarrow 09H
DBG \leftarrow {4'h0,Register Address[11:8]
DBG \leftarrow Register Address[7:0]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-256 data bytes
```

• Write Program Memory (0AH)—The Write Program Memory command writes data to Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). The on-chip Flash Controller must be written to and unlocked for the programming operation to occur. If the Flash Controller is not unlocked, the data is discarded. If the device

		T _A =	= 3.0 V to 0 °C to + otherwis	70 °C		Conditions	
Symbol	Parameter	Minimum	Typical	Maximum	Units		
	Resolution	10		_	bits		
	Differential Nonlinearity (DNL)	-1.0	_	1.0	LSB ³	External V _{REF} = 2.0 V; R _S \leftarrow 3.0 k Ω	
	Integral Nonlinearity (INL)	-3.0	_	3.0	LSB ³	External V _{REF} = 2.0 V; R _S \leftarrow 3.0 k Ω	
	Offset Error with Calibration		<u>+</u> 1		LSB ³		
	Absolute Accuracy with Calibration		<u>+</u> 3		LSB ³		
V _{REF}	Internal Reference Voltage	1.0 2.0	1.1 2.2	1.2 2.4	V	REFSEL=01 REFSEL=10	
V _{REF}	Internal Reference Variation with Temperature		<u>+</u> 1.0		%	Temperature variation with V _{DD} = 3.0	
V _{REF}	Internal Reference Voltage Variation with V_{DD}		<u>+</u> 0.5		%	Supply voltage variation with T _A = 30 °C	
R _{REFOUT}	Reference Buffer Output Impedance		850		Ω	When the internal reference is buffered and driven out to the VREF pin (REFOUT = 1)	
	Single-Shot Conversion Time	_	5129	-	System clock cycles	All measurements but temperature sensor	
			10258			Temperature sensor measurement	
	Continuous Conversion Time	-	256	-		All measurements but temperature sensor	
			512			Temperature sensor measurement	
	Signal Input Bandwidth	-	10		kHz	As defined by -3 dB point	
R _S	Analog Source Impedance ⁴	_	_	10	kΩ	In unbuffered mode	

Table 125. Analog-to-Digital Converter Electrical Characteristics and Timing

UART Timing

Figure 32 and Table 130 provide timing information for UART pins for the case where CTS is used for flow control. The CTS to DE assertion delay (T1) assumes the transmit data register has been loaded with data prior to CTS assertion.

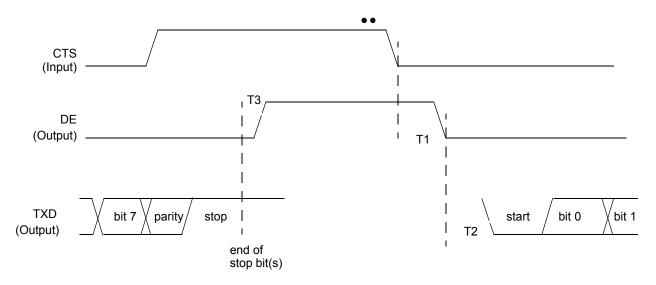
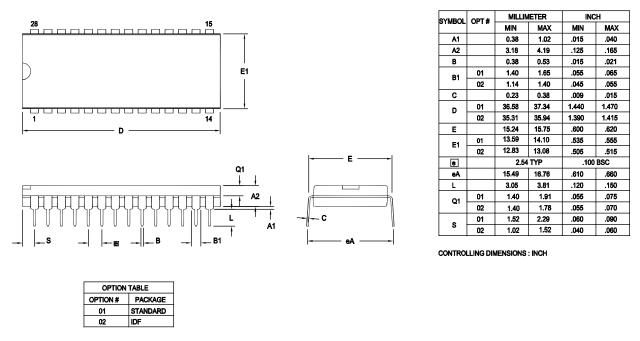



Figure 32. UART Timing With CTS

		Delay (ns)				
Parameter	Abbreviation	Minimum	Maximum			
UART						
T ₁	CTS Fall to DE output delay	2 * XIN period	2 * XIN period + 1 bit time			
T ₂	DE assertion to TXD falling edge (start bit) dela	y ± 5				
T ₃	End of Stop Bit(s) to DE deassertion delay	± 5				

Table 130. UART Timing With CTS

Figure 40 displays the 28-pin Plastic Dual Inline Package (PDIP) available for Z8 Encore! XP F0823 Series devices.

Note: ZiLOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 40. 28-Pin Plastic Dual Inline Package (PDIP)

			S	ots	limers	10-Bit A/D Channels	UART with IrDA	otion
Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit /	UART v	Description
Z8 Encore! XP with 4	KB Flash							
Standard Temperatur	re: 0 °C to	70 °C						
Z8F0413PB005SC	4 KB	1 KB	6	12	2	0	1	PDIP 8-pin package
Z8F0413QB005SC	4 KB	1 KB	6	12	2	0	1	QFN 8-pin package
Z8F0413SB005SC	4 KB	1 KB	6	12	2	0	1	SOIC 8-pin package
Z8F0413SH005SC	4 KB	1 KB	16	18	2	0	1	SOIC 20-pin package
Z8F0413HH005SC	4 KB	1 KB	16	18	2	0	1	SSOP 20-pin package
Z8F0413PH005SC	4 KB	1 KB	16	18	2	0	1	PDIP 20-pin package
Z8F0413SJ005SC	4 KB	1 KB	24	18	2	0	1	SOIC 28-pin package
Z8F0413HJ005SC	4 KB	1 KB	24	18	2	0	1	SSOP 28-pin package
Z8F0413PJ005SC	4 KB	1 KB	24	18	2	0	1	PDIP 28-pin package
Extended Temperatu	re: -40 °C	to 105 °0	0					
Z8F0413PB005EC	4 KB	1 KB	6	12	2	0	1	PDIP 8-pin package
Z8F0413QB005EC	4 KB	1 KB	6	12	2	0	1	QFN 8-pin package
Z8F0413SB005EC	4 KB	1 KB	6	12	2	0	1	SOIC 8-pin package
Z8F0413SH005EC	4 KB	1 KB	16	18	2	0	1	SOIC 20-pin package
Z8F0413HH005EC	4 KB	1 KB	16	18	2	0	1	SSOP 20-pin package
Z8F0413PH005EC	4 KB	1 KB	16	18	2	0	1	PDIP 20-pin package
Z8F0413SJ005EC	4 KB	1 KB	24	18	2	0	1	SOIC 28-pin package
Z8F0413HJ005EC	4 KB	1 KB	24	18	2	0	1	SSOP 28-pin package
Z8F0413PJ005EC	4 KB	1 KB	24	18	2	0	1	PDIP 28-pin package
Replace C with G for Lead-Free Packaging								

220

mber			S	ts	imers	10-Bit A/D Channels	UART with IrDA	tion
Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A	UART w	Description
Z8 Encore! XP with 2	KB Flash	, 10-Bit A	Analog	g-to-D	igital C	onve	erter	
Standard Temperature	e: 0 °C to	70 °C						
Z8F0223PB005SC	2 KB	512 B	6	12	2	4	1	PDIP 8-pin package
Z8F0223QB005SC	2 KB	512 B	6	12	2	4	1	QFN 8-pin package
Z8F0223SB005SC	2 KB	512 B	6	12	2	4	1	SOIC 8-pin package
Z8F0223SH005SC	2 KB	512 B	16	18	2	7	1	SOIC 20-pin package
Z8F0223HH005SC	2 KB	512 B	16	18	2	7	1	SSOP 20-pin package
Z8F0223PH005SC	2 KB	512 B	16	18	2	7	1	PDIP 20-pin package
Z8F0223SJ005SC	2 KB	512 B	22	18	2	8	1	SOIC 28-pin package
Z8F0223HJ005SC	2 KB	512 B	22	18	2	8	1	SSOP 28-pin package
Z8F0223PJ005SC	2 KB	512 B	22	18	2	8	1	PDIP 28-pin package
Extended Temperatur	'e: -40 °C	to 105 °C)					
Z8F0223PB005EC	2 KB	512 B	6	12	2	4	1	PDIP 8-pin package
Z8F0223QB005EC	2 KB	512 B	6	12	2	4	1	QFN 8-pin package
Z8F0223SB005EC	2 KB	512 B	6	12	2	4	1	SOIC 8-pin package
Z8F0223SH005EC	2 KB	512 B	16	18	2	7	1	SOIC 20-pin package
Z8F0223HH005EC	2 KB	512 B	16	18	2	7	1	SSOP 20-pin package
Z8F0223PH005EC	2 KB	512 B	16	18	2	7	1	PDIP 20-pin package
Z8F0223SJ005EC	2 KB	512 B	22	18	2	8	1	SOIC 28-pin package
Z8F0223HJ005EC	2 KB	512 B	22	18	2	8	1	SSOP 28-pin package
Z8F0223PJ005EC	2 KB	512 B	22	18	2	8	1	PDIP 28-pin package
Replace C with G for Lead-Free Packaging								

221