

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	16
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0223ph005sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

On-Chip Debugger Initiated Reset	26
Stop Mode Recovery	26
Stop Mode Recovery Using Watchdog Timer Time-Out	27
Stop Mode Recovery Using a GPIO Port Pin Transition	27
Stop Mode Recovery Using the External RESET Pin	28
Reset Register Definitions	28
Low-Power Modes	31
STOP Mode	31
HALT Mode	32
Peripheral-Level Power Control	32
Power Control Register Definitions	32
General-Purpose Input/Output	35
GPIO Port Availability By Device	35
	36
GPIO Alternate Functions	36
	37
Shared Reset Pin	37
Shared Debug Pin	37
Crystal Oscillator Override	38
5 V Tolerance	38
External Clock Setup	38
	<u>4</u> 3
CPIO Control Pegister Definitions	
Port A_C Address Registers	43
Port A–C Control Registers	44
Port A–C Data Direction Sub-Registers	45
Port A–C Alternate Function Sub-Registers	45
Port A–C Input Data Registers	49
Port A–C Output Data Register	50
	50
	51
	51
Interrupt Controller	53
Interrupt Vector Listing	53
Architecture	55
Operation	55
Master Interrupt Enable	55

CPU and Peripheral Overview

eZ8 CPU Features

The eZ8 CPU, Zilog's latest 8-bit central processing unit (CPU), meets the continuing demand for faster and code-efficient microcontrollers. The eZ8 CPU executes a superset of the original $Z8^{\text{(R)}}$ instruction set. The eZ8 CPU features include:

- Direct register-to-register architecture allows each register to function as an accumulator, improving execution time and decreasing the required program memory.
- Software stack allows much greater depth in subroutine calls and interrupts than hardware stacks.
- Compatible with existing Z8 code.
- Expanded internal Register File allows access of up to 4 KB.
- New instructions improve execution efficiency for code developed using higher-level programming languages, including C.
- Pipelined instruction fetch and execution.
- New instructions for improved performance including BIT, BSWAP, BTJ, CPC, LDC, LDCI, LEA, MULT, and SRL.
- New instructions support 12-bit linear addressing of the Register file.
- Up to 10 MIPS operation.
- C-Compiler friendly.
- 2 to 9 clock cycles per instruction.

For more information on eZ8 CPU, refer to eZ8 CPU Core User Manual (UM0128) available for download at <u>www.zilog.com</u>.

General-Purpose I/O

Z8 Encore! XP F0823 Series features 6 to 24 port pins (Ports A–C) for general-purpose I/O (GPIO). The number of GPIO pins available is a function of package. Each pin is individually programmable. 5 V tolerant input pins are available on all I/Os on 8-pin devices, most I/Os on other package types.

Flash Controller

The Flash Controller programs and erases Flash memory. The Flash Controller supports protection against accidental program and erasure, as well as factory serialization and read protection.

Z8 Encore! XP[®] F0823 Series Product Specification

	Deviator Description	Masaais	Decet (Llev)	Dere Ne
Address (Hex)	Register Description	winemonic	Reset (Hex)	Page No
F91-FBF	Reserved		XX	
Interrupt Contr	oller			
FC0	Interrupt Request 0	IRQ0	00	58
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	60
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	61
FC3	Interrupt Request 1	IRQ1	00	59
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	62
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	62
FC6	Interrupt Request 2	IRQ2	00	60
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	63
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	63
FC9–FCC	Reserved		XX	
FCD	Interrupt Edge Select	IRQES	00	64
FCE	Shared Interrupt Select	IRQSS	00	64
FCF	Interrupt Control	IRQCTL	00	65
GPIO Port A				
FD0	Port A Address	PAADDR	00	43
FD1	Port A Control	PACTL	00	45
FD2	Port A Input Data	PAIN	XX	45
FD3	Port A Output Data	PAOUT	00	45
GPIO Port B				
FD4	Port B Address	PBADDR	00	43
FD5	Port B Control	PBCTL	00	45
FD6	Port B Input Data	PBIN	XX	45
FD7	Port B Output Data	PBOUT	00	45
GPIO Port C				
FD8	Port C Address	PCADDR	00	43
FD9	Port C Control	PCCTL	00	45
FDA	Port C Input Data	PCIN	XX	45
FDB	Port C Output Data	PCOUT	00	45
FDC-FEF	Reserved		XX	
Watchdog Time	er (WDT)			
FF0	Reset Status	RSTSTAT	XX	90
	Watchdog Timer Control	WDTCTL	XX	90
FF1		WDTU	FF	91

Table 8. Register File Address Map (Continued)

Note:

This register is only reset during a Power-On Reset sequence. Other System Reset events do not affect it.

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved	Reserved		VBO	Reserved	ADC	COMP	Reserved
RESET	1	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F80H							

Reserved—Must be 1

Reserved-Must be 0

VBO—Voltage Brownout Detector Disable

This bit and the VBO_AO Flash option bit must both enable the VBO for the VBO to be active.

0 = VBO enabled

1 = VBO disabled

ADC—Analog-to-Digital Converter Disable

0 = Analog-to-Digital Converter enabled

1 = Analog-to-Digital Converter disabled

COMP—Comparator Disable

0 =Comparator is enabled

1 =Comparator is disabled

Reserved-Must be 0

tions as a GPIO pin. If it is not present, the debug feature is disabled until/unless another reset event occurs. For more details, see On-Chip Debugger on page 151.

Crystal Oscillator Override

For systems using a crystal oscillator, PA0 and PA1 are used to connect the crystal. When the crystal oscillator is enabled (see Oscillator Control Register Definitions on page 167), the GPIO settings are overridden and PA0 and PA1 are disabled.

5 V Tolerance

All six I/O pins on the 8-pin devices are 5 V-tolerant, unless the programmable pull-ups are enabled. If the pull-ups are enabled and inputs higher than V_{DD} are applied to these parts, excessive current flows through those pull-up devices and can damage the chip.

Note: In the 20- and 28-pin versions of this device, any pin which shares functionality with an ADC, crystal or comparator port is not 5 V-tolerant, including PA[1:0], PB[5:0], and PC[2:0]. All other signal pins are 5 V-tolerant, and can safely handle inputs higher than V_{DD} even with the pull-ups enabled.

External Clock Setup

For systems using an external TTL drive, PB3 is the clock source for 20- and 28-pin devices. In this case, configure PB3 for alternate function CLKIN. Write the Oscillator Control Register (see Oscillator Control Register Definitions on page 167) such that the external oscillator is selected as the system clock. For 8-pin devices use PA1 instead of PB3.

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port A	PA0	T0IN/T0OUT* Timer 0 Input/Timer 0 Output Complem		N/A
		Reserved		-
	PA1	TOOUT	Timer 0 Output	-
		Reserved		-
	PA2	DE0	UART 0 Driver Enable	-
		Reserved		-
	PA3	CTS0	UART 0 Clear to Send	-
		Reserved		-
	PA4	RXD0/IRRX0	UART 0 / IrDA 0 Receive Data	-
		Reserved		-
	PA5	TXD0/IRTX0	UART 0 / IrDA 0 Transmit Data	-
		Reserved		-
	PA6	T1IN/T1OUT*	Timer 1 Input/Timer 1 Output Complement	-
		Reserved		
	PA7	T1OUT	Timer 1 Output	-
		Reserved		-

Table 15. Port Alternate Function Mapping (Non 8-Pin Parts)

Note: Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers are not implemented for Port A. Enabling alternate function selections as described in Port A–C Alternate Function Sub-Registers automatically enables the associated alternate function.

* Whether PA0/PA6 take on the timer input or timer output complement function depends on the timer configuration as described in Timer Pin Signal Operation on page 79.

0 = The drains are enabled for any output mode (unless overridden by the alternate function).

1 = The drain of the associated pin is disabled (open-drain mode).

Port A–C High Drive Enable Sub-Registers

The Port A–C High Drive Enable sub-register (Table 23) is accessed through the Port A–C Control register by writing 04H to the Port A–C Address register. Setting the bits in the Port A–C High Drive Enable sub-registers to 1 configures the specified port pins for high current output drive operation. The Port A–C High Drive Enable sub-register affects the pins directly and, as a result, alternate functions are also affected.

Table 23. Port A–C High Drive Enable Sub-Registers (PxHDE)

BITS	7	6	5	4	3	2	1	0
FIELD	PHDE7	PHDE6	PHDE5	PHDE4	PHDE3	PHDE2	PHDE1	PHDE0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	lf 04H i	n Port A–C /	Address Reg	gister, acces	sible throug	n the Port A-	-C Control F	Register

PHDE[7:0]—Port High Drive Enabled.

0 = The Port pin is configured for standard output current drive.

1 = The Port pin is configured for high output current drive.

Port A–C Stop Mode Recovery Source Enable Sub-Registers

The Port A–C Stop Mode Recovery Source Enable sub-register (Table 24) is accessed through the Port A–C Control register by writing 05H to the Port A–C Address register. Setting the bits in the Port A–C Stop Mode Recovery Source Enable sub-registers to 1 configures the specified Port pins as a Stop Mode Recovery source. During STOP mode, any logic transition on a Port pin enabled as a Stop Mode Recovery source initiates Stop Mode Recovery.

Table 24. Port A–C Stop	Mode Recovery	/ Source Enable Sub-I	Registers	(PxSMRE)
-------------------------	---------------	-----------------------	-----------	----------

BITS	7	6	5	4	3	2	1	0
FIELD	PSMRE7	PSMRE6	PSMRE5	PSMRE4	PSMRE3	PSMRE2	PSMRE1	PSMRE0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	lf 05H i	n Port A–C	Address Reg	gister, acces	sible throug	h the Port A	-C Control F	Register

BITS	7	6	5	4	3	2	1	0				
FIELD	PAFS17	PAFS16	PAFS15	PAFS14	PAFS13	PAFS12	PAFS11	PAFS10				
RESET		00H (all ports of 20/28 pin devices); 04H (Port A of 8-pin device)										
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W										
ADDR	lf 07H i	n Port A–C	Address Reg	gister, acces	sible throug	h the Port A	-C Control F	Register				

Table 26. Port A–C Alternate Function Set 1 Sub-Registers (PxAFS1)

PAFS1[7:0]—Port Alternate Function Set to 1

0 = Port Alternate Function selected as defined in Table 14 (see GPIO Alternate Functions on page 36).

1 = Port Alternate Function selected as defined in Table 14 (see GPIO Alternate Functions on page 36).

Port A–C Alternate Function Set 2 Sub-Registers

The Port A–C Alternate Function Set 2 sub-register (Table 27) is accessed through the Port A–C Control register by writing 08H to the Port A–C Address register. The Alternate Function Set 2 sub-registers selects the alternate function available at a port pin. Alternate Functions selected by setting or clearing bits of this register is defined in Table 14 in the section GPIO Alternate Functions on page 36.

Table 27. Port A–C Alternate Function Set 2 Sub-Registers (PxAFS2)

BITS	7	6	5	4	3	2	1	0				
FIELD	PAFS27	PAFS27 PAFS26 PAFS25 PAFS24 PAFS23 PAFS22 PAFS21 PAFS20										
RESET		00H (all ports of 20/28 pin devices); 04H (Port A of 8-pin device)										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
ADDR	lf 08H i	n Port A–C	Address Reg	gister, acces	sible throug	n the Port A	-C Control F	Register				

PAFS2[7:0]—Port Alternate Function Set 2

0 = Port Alternate Function selected as defined in Table 14 (see GPIO Alternate Functions on page 36).

1 = Port Alternate Function selected as defined in Table 14.

Port A–C Input Data Registers

Reading from the Port A–C Input Data registers (Table 28) returns the sampled values from the corresponding port pins. The Port A–C Input Data registers are read-only. The value returned for any unused ports is 0. Unused ports include those missing on the 8- and 28-pin packages, as well as those missing on the ADC-enabled 28-pin packages.

COMPARATOR COUNTER Mode

In COMPARATOR COUNTER mode, the timer counts input transitions from the analog comparator output. The TPOL bit in the Timer Control Register selects whether the count occurs on the rising edge or the falling edge of the comparator output signal. In COMPARATOR COUNTER mode, the prescaler is disabled.

Caution: *The frequency of the comparator output signal must not exceed one-fourth the system clock frequency.*

After reaching the Reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

Follow the steps below for configuring a timer for COMPARATOR COUNTER mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for COMPARATOR COUNTER mode.
 - Select either the rising edge or falling edge of the comparator output signal for the count. This also sets the initial logic level (High or Low) for the Timer Output alternate function. However, the Timer Output function is not required to be enabled.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This action only affects the first pass in COMPARATOR COUNTER mode. After the first timer Reload in COMPARATOR COUNTER mode, counting always begins at the reset value of 0001H. Generally, in COMPARATOR COUNTER mode the Timer High and Low Byte registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 6. Write to the Timer Control register to enable the timer.

In COMPARATOR COUNTER mode, the number of comparator output transitions since the timer start is given by the following equation:

Comparator Output Transitions = Current Count Value – Start Value

86

010 = Divide by 4 011 = Divide by 8 100 = Divide by 16 101 = Divide by 32 110 = Divide by 64 111 = Divide by 128

TMODE—Timer mode

This field along with the TMODEHI bit in TxCTL0 register determines the operating mode of the timer. TMODEHI is the most significant bit of the Timer mode selection value.

0000 = ONE-SHOT mode

0001 = CONTINUOUS mode

0010 = COUNTER mode

- 0011 = PWM SINGLE OUTPUT mode
- 0100 = CAPTURE mode
- 0101 = COMPARE mode
- 0110 = GATED mode
- 0111 = CAPTURE/COMPARE mode
- 1000 = PWM DUAL OUTPUT mode
- 1001 = CAPTURE RESTART mode
- 1010 = COMPARATOR COUNTER Mode

Transmitter Interrupts

The transmitter generates a single interrupt when the Transmit Data Register Empty bit (TDRE) is set to 1. This indicates that the transmitter is ready to accept new data for transmission. The TDRE interrupt occurs after the Transmit shift register has shifted the first bit of data out. The Transmit Data register can now be written with the next character to send. This action provides 7 bit periods of latency to load the Transmit Data register before the Transmit shift register completes shifting the current character. Writing to the UART Transmit Data register clears the TDRE bit to 0.

Receiver Interrupts

The receiver generates an interrupt when any of the following occurs:

• A data byte is received and is available in the UART Receive Data register. This interrupt can be disabled independently of the other receiver interrupt sources. The received data interrupt occurs after the receive character has been received and placed in the Receive Data register. To avoid an overrun error, software must respond to this received data available condition before the next character is completely received.

Note: In MULTIPROCESSOR mode (MPEN = 1), the receive data interrupts are dependent on the multiprocessor configuration and the most recent address byte.

- A break is received
- An overrun is detected
- A data framing error is detected

UART Overrun Errors

When an overrun error condition occurs the UART prevents overwriting of the valid data currently in the Receive Data register. The Break Detect and Overrun status bits are not displayed until after the valid data has been read.

After the valid data has been read, the UART Status 0 register is updated to indicate the overrun condition (and Break Detect, if applicable). The RDA bit is set to 1 to indicate that the Receive Data register contains a data byte. However, because the overrun error occurred, this byte cannot contain valid data and must be ignored. The BRKD bit indicates if the overrun was caused by a break condition on the line. After reading the status byte indicating an overrun error, the Receive Data register must be read again to clear the error bits is the UART Status 0 register. Updates to the Receive Data register occur only when the next data word is received.

UART Data and Error Handling Procedure

Figure 15 displays the recommended procedure for use in UART receiver interrupt service routines.

138

Reserved—0 when read

FSTAT—Flash Controller Status 000000 = Flash Controller locked 000001 = First unlock command received (73H written) 000010 = Second unlock command received (8CH written) 000011 = Flash Controller unlocked 000100 = Sector protect register selected 001xxx = Program operation in progress 010xxx = Page erase operation in progress 100xxx = Mass erase operation in progress

Flash Page Select Register

The Flash Page Select (FPS) register shares address space with the Flash Sector Protect Register. Unless the Flash controller is unlocked and written with 5EH, writes to this address target the Flash Page Select Register.

The register is used to select one of the eight available Flash memory pages to be programmed or erased. Each Flash Page contains 512 bytes of Flash memory. During a Page Erase operation, all Flash memory having addresses with the most significant 7-bits given by FPS[6:0] are chosen for program/erase operation.

BITS	7	6	5	4	3	2	1	0	
FIELD	INFO_EN		PAGE						
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR				FF	9H				

Table 81. Flash Page Select Register (FPS)

INFO_EN—Information Area Enable

0 = Information Area us not selected

1 = Information Area is selected. The Information Area is mapped into the Program Memory address space at addresses FE00H through FFFFH.

PAGE—Page Select

This 7-bit field identifies the Flash memory page for Page Erase and page unlocking. Program Memory Address[15:9] = PAGE[6:0]. For the Z8F04x3 devices, the upper 4 bits must always be 0. For the Z8F02x3 devices, the upper 5 bits must always be 0. For the Z8F01x3 devices, the upper 6 bits must always be 0.

On-Chip Debugger

Z8 Encore! XP[®] F0823 Series devices contain an integrated On-Chip Debugger (OCD) that provides advanced debugging features that include:

- Single pin interface
- Reading and writing of the register file
- Reading and writing of program and data memory
- Setting of breakpoints and watchpoints
- Executing eZ8 CPU instructions
- Debug pin sharing with general-purpose input-output function to maximize the pins available

Architecture

The on-chip debugger consists of four primary functional blocks: transmitter, receiver, auto-baud detector/generator, and debug controller. Figure 22 displays the architecture of the OCD.

Figure 22. On-Chip Debugger Block Diagram

Oscillator Control

Z8 Encore! XP[®] F0823 Series devices uses three possible clocking schemes, each user-selectable:

- On-chip precision trimmed RC oscillator
- External clock drive
- On-chip low power Watchdog Timer oscillator

In addition, Z8 Encore! XP F0823 Series devices contain clock failure detection and recovery circuitry, allowing continued operation despite a failure of the primary oscillator.

Operation

This chapter discusses the logic used to select the system clock and handle primary oscillator failures. A description of the specific operation of each oscillator is outlined elsewhere in this document.

System Clock Selection

The oscillator control block selects from the available clocks. Table 101 details each clock source and its usage.

Clock Source	Characteristics	Required Setup
Internal Precision RC Oscillator	 32.8 kHz or 5.53 MHz ± 4% accuracy when trimmed No external components required 	 Unlock and write Oscillator Control Register (OSCCTL) to enable and select oscillator at either 5.53 MHz or 32.8 kHz
External Clock Drive	 0 to 20 MHz Accuracy dependent on external clock source 	 Write GPIO registers to configure PB3 pin for external clock function Unlock and write OSCCTL to select external system clock Apply external clock signal to GPIO
Internal Watchdog Timer Oscillator	 10 kHz nominal ± 40% accuracy; no external components required Very Low power consumption 	 Enable WDT if not enabled and wait until WDT Oscillator is operating. Unlock and write Oscillator Control Register (OSCCTL) to enable and select oscillator

Table 101. Oscillator Configuration and Selection

179

Table 114. Rotate and Shift Instructions	(Continued)
--	-------------

Mnemonic	Operands	Instruction
SRA	dst	Shift Right Arithmetic
SRL	dst	Shift Right Logical
SWAP	dst	Swap Nibbles

eZ8 CPU Instruction Summary

Table 115 summarizes the eZ8 CPU instructions. The table identifies the addressing modes employed by the instruction, the effect upon the Flags register, the number of CPU clock cycles required for the instruction fetch, and the number of CPU clock cycles required for the instruction.

Assombly		Addre	Address Mode			igs			Fotch	Inetr		
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	z	S	v	D	Н	Cycles	Cycles
ADC dst, src	$dst \gets dst + src + C$	r	r	12	*	*	*	*	0	*	2	3
		r	lr	13	-						2	4
		R	R	14	-						3	3
		R	IR	15	-						3	4
		R	IM	16	_						3	3
		IR	IM	17	-						3	4
ADCX dst, src	$dst \gets dst + src + C$	ER	ER	18	*	*	*	*	0	*	4	3
		ER	IM	19	-						4	3
ADD dst, src	$dst \gets dst + src$	r	r	02	*	*	*	*	0	*	2	3
		r	lr	03	-						2	4
		R	R	04	-						3	3
		R	IR	05	-						3	4
		R	IM	06	-						3	3
		IR	IM	07	-						3	4
ADDX dst, src	$dst \gets dst + src$	ER	ER	08	*	*	*	*	0	*	4	3
		ER	IM	09	-						4	3
Flags Notation:	 * = Value is a function of the result of the operation. - = Unaffected X = Undefined 						0 = Reset to 0 1 = Set to 1					

Table 115. eZ8 CPU Instruction Summary

Z8 Encore! XP[®] F0823 Series Product Specification

							Le	ower Nil	bble (He	x)						
	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	1.1 BRK	2.2 SRP	2.3 ADD	2.4 ADD	3.3 ADD	3.4 ADD	3.3 ADD	3.4 ADD	4.3 ADDX	4.3 ADDX	2.3 DJNZ	2.2 JR	2.2 LD	3.2 JP	1.2 INC	1.2 NOP
		IM	r1,r2	r1,Ir2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1	r1,X	cc,X	r1,IM	cc,DA	r1	
1	2.2 RLC R1	2.3 RLC	2.3 ADC r1.r2	2.4 ADC r1.lr2	3.3 ADC B2 B1	3.4 ADC	3.3 ADC R1 IM	3.4 ADC	4.3 ADCX FR2 FR1	4.3 ADCX						See 2nd Opcode Man
2	2.2 INC	2.3 INC	2.3 SUB	2.4 SUB	3.3 SUB	3.4 SUB	3.3 SUB	3.4 SUB	4.3 SUBX	4.3 SUBX						1, 2 ATM
	R1	IR1	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
3	2.2 DEC R1	2.3 DEC	2.3 SBC	2.4 SBC r1.lr2	3.3 SBC R2 R1	3.4 SBC	3.3 SBC R1 IM	3.4 SBC	4.3 SBCX	4.3 SBCX						
4	2.2 DA	2.3 DA	2.3 OR	2.4 OR	3.3 OR	3.4 OR	3.3 OR	3.4 OR	4.3 ORX	4.3 ORX						
	R1	IR1	r1,r2	r1,Ir2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
5	2.2 POP	2.3 POP	2.3 AND	2.4 AND	3.3 AND	3.4 AND	3.3 AND	3.4 AND	4.3 ANDX	4.3 ANDX						1.2 WDT
	R1	IR1	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
6	2.2 COM	2.3 COM	2.3 TCM	2.4 TCM	3.3 TCM	3.4 TCM	3.3 TCM	3.4 TCM	4.3 TCMX	4.3 TCMX						1.2 STOP
0	R1	IR1	r1.r2	r1.lr2	R2.R1	IR2.R1	R1.IM	IR1.IM	ER2.ER1	IM.ER1						0101
7	2.2 PUSH	2.3 PUSH	2.3 TM	2.4 TM	3.3 TM	3.4 TM	3.3 TM	3.4 TM	4.3 TMX	4.3 TMX						1.2 HALT
	R2	IR2	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
8	2.5 DECW	2.6 DECW	2.5 LDE	2.9 LDEI	3.2 LDX	3.3 LDX	3.4 LDX	3.5 LDX	3.4 LDX	3.4 LDX						1.2 DI
	2.2		2.5	2.0	11,ERZ	11,ER2	2.4	2.5	2.2	2.5						1.2
9	2.2 RL R1	2.3 RL IR1	LDE r2,Irr1	LDEI Ir2,Irr1	LDX r2,ER1	LDX Ir2,ER1	LDX R2,IRR1	LDX IR2,IRR1	LEA r1,r2,X	LEA rr1,rr2,X						EI
А	2.5 INCW	2.6 INCW	2.3 CP	2.4 CP	3.3 CP	3.4 CP	3.3 CP	3.4 CP	4.3 CPX	4.3 CPX						1.4 RET
	RR1	IRR1	r1,r2	r1,lr2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
в	2.2 CLR	2.3 CLR	2.3 XOR	2.4 XOR	3.3 XOR	3.4 XOR	3.3 XOR	3.4 XOR	4.3 XORX	4.3 XORX						1.5 IRET
	22	23	2.5	29	23	2 9	151,110	3.4	3.2	wi,∟i×1						1 2
С	RRC R1	RRC IR1	LDC	LDCI	JP IRR1	LDC		LD r1.r2.X	PUSHX ER2							RCF
	2.2	2.3	2.5	2.9	2.6	2.2	3.3	3.4	3.2							1.2
D	SRA	SRA	LDC	LDCI	CALL	BSWAP	CALL	LD	POPX							SCF
	R1	IR1	r2,Irr1	ír2,Irr1	IRR1	R1	DA	r2,r1,X	ER1							
Е	2.2 RR	2.3 RR	2.2 BIT	2.3 LD	3.2 LD	3.3 LD	3.2 LD	3.3 LD	4.2 LDX	4.2 LDX						1.2 CCF
	R1	IR1	p,b,r1	r1,Ir2	R2,R1	IR2,R1	R1,IM	IR1,IM	ER2,ER1	IM,ER1						
F	2.2 SWAP	2.3 SWAP	2.6 TRAP	2.3 LD	2.8 MULT	3.3 LD	3.3 BTJ	3.4 BTJ			▼	V				

Figure 27. First Opcode Map

190

Upper Nibble (Hex)

		V _{DD} T _A = (unless	= 3.0 V to = 0 °C to + = otherwis	3.6 V 70 °C e stated)					
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions			
	Resolution	10		-	bits				
	Differential Nonlinearity (DNL)	-1.0	_	1.0	LSB ³	External V _{REF} = 2.0 V; R _S \leftarrow 3.0 k Ω			
	Integral Nonlinearity (INL)	-3.0	_	3.0	LSB ³	External V _{REF} = 2.0 V; R _S \leftarrow 3.0 k Ω			
	Offset Error with Calibration		<u>+</u> 1		LSB ³				
	Absolute Accuracy with Calibration		<u>+</u> 3		LSB ³				
V _{REF}	Internal Reference Voltage	1.0 2.0	1.1 2.2	1.2 2.4	V	REFSEL=01 REFSEL=10			
V _{REF}	Internal Reference Variation with Temperature		<u>+</u> 1.0		%	Temperature variation with V _{DD} = 3.0			
V _{REF}	Internal Reference Voltage Variation with V _{DD}		<u>+</u> 0.5		%	Supply voltage variation with T _A = 30 °C			
R _{REFOUT}	Reference Buffer Output Impedance		850		Ω	When the internal reference is buffered and driven out to the VREF pin (REFOUT = 1)			
	Single-Shot Conversion Time	_	5129	_	System clock cycles	All measurements but temperature sensor			
			10258			Temperature sensor measurement			
	Continuous Conversion Time	_	256	_	System clock cycles	All measurements but temperature sensor			
			512			Temperature sensor measurement			
	Signal Input Bandwidth	_	10		kHz	As defined by -3 dB point			
R _S	Analog Source Impedance ⁴	_	_	10	kΩ	In unbuffered mode			

Table 125. Analog-to-Digital Converter Electrical Characteristics and Timing

Index

COMPARE 84 compare - extended addressing 175 COMPARE mode 84 compare with carry 175 compare with carry - extended addressing 175 complement 177 complement carry flag 176 condition code 173 continuous conversion (ADC) 120 CONTINUOUS mode 84 control register definition, UART 104 Control Registers 13, 17 **COUNTER modes 84** CP 175 CPC 175 **CPCX 175** CPU and peripheral overview 4 CPU control instructions 176 **CPX 175** Customer Support 237

D

DA 173, 175 data memory 15 DC characteristics 194 debugger, on-chip 151 **DEC 175** decimal adjust 175 decrement 175 decrement and jump non-zero 178 decrement word 175 **DECW 175** destination operand 174 device, port availability 35 DI 176 direct address 173 disable interrupts 176 **DJNZ 178** dst 174

Ε

EI 176

electrical characteristics 193 ADC 201 flash memory and timing 200 GPIO input data sample timing 202 Watchdog Timer 200, 202 enable interrupt 176 ER 173 extended addressing register 173 extended addressing register 173 external pin reset 25 eZ8 CPU features 4 eZ8 CPU instruction classes 174 eZ8 CPU instruction notation 172 eZ8 CPU instruction set 171 eZ8 CPU instruction set 171

F

FCTL register 137, 143, 144 features, Z8 Encore! 1 first opcode map 190 FLAGS 174 flags register 174 flash controller 4 option bit address space 144 option bit configuration - reset 141 program memory address 0000H 144 program memory address 0001H 145 flash memory 129 arrangement 130 byte programming 135 code protection 133 configurations 129 control register definitions 137, 143 controller bypass 136 electrical characteristics and timing 200 flash control register 137, 143, 144 flash option bits 134 flash status register 137 flow chart 132 frequency high and low byte registers 139 mass erase 135 operation 131 operation timing 133

228

Z8 Encore! XP[®] F0823 Series Product Specification

timing 205 OCD commands execute instruction (12H) 161 read data memory (0DH) 160 read OCD control register (05H) 158 read OCD revision (00H) 158 read OCD status register (02H) 158 read program counter (07H) 159 read program memory (0BH) 160 read program memory CRC (0EH) 161 read register (09H) 159 read runtime counter (03H) 158 step instruction (10H) 161 stuff instruction (11H) 161 write data memory (0CH) 160 write OCD control register (04H) 158 write program counter (06H) 159 write program memory (0AH) 159 write register (08H) 159 on-chip debugger (OCD) 151 on-chip debugger signals 10 ONE-SHOT mode 84 opcode map abbreviations 189 cell description 188 first 190 second after 1FH 191 Operational Description 21, 31, 35, 53, 67, 87, 93, 113, 117, 127, 129, 141, 151, 165, 169 OR 177 ordering information 217 **ORX 178**

status register 163

Ρ

p 173 packaging 20-pin PDIP 211, 212 20-pin SSOP 212, 215 28-pin PDIP 213 28-pin SOIC 214 8-pin PDIP 209 8-pin SOIC 210

PDIP 214, 215 part selection guide 2 PC 174 PDIP 214, 215 peripheral AC and DC electrical characteristics 199 pin characteristics 10 Pin Descriptions 7 polarity 173 POP 177 pop using extended addressing 177 **POPX 177** port availability, device 35 port input timing (GPIO) 203 port output timing, GPIO 204 power supply signals 10 power-down, automatic (ADC) 118 Power-on and Voltage Brownout electrical characteristics and timing 199 Power-On Reset (POR) 23 program control instructions 178 program counter 174 program memory 13 **PUSH 177** push using extended addressing 177 PUSHX 177 PWM mode 84, 85 PxADDR register 44

R

PxCTL register 45

R 173 r 173 RA register address 173 RCF 176 receive IrDA data 115 receiving UART data-interrupt-driven method 98 receiving UART data-polled method 97 register 173 ADC control (ADCCTL) 122, 124 232