

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	6
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0223sb005ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Warning: DO NOT USE IN LIFE SUPPORT

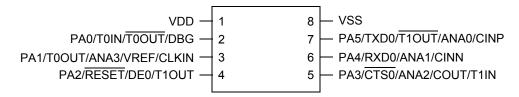
LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

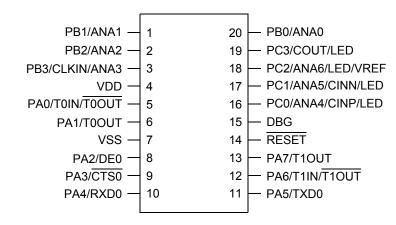
As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer


©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP, Z8 Encore! MC, Crimzon, eZ80, and ZNEO are trademarks or registered trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.


Flash Information Area	. 130
Operation	. 131
Flash Operation Timing Using the Flash Frequency Registers	
Flash Code Protection Against External Access	
Flash Code Protection Against Accidental Program and Erasure	
Byte Programming	
Page Erase	
Mass Erase	
Flash Controller Bypass	
Flash Controller Behavior in DEBUG Mode	
Flash Control Register Definitions	
Flash Control Register	
Flash Status Register	
Flash Page Select Register Flash Sector Protect Register	
Flash Frequency High and Low Byte Registers	
Flash Option Bits	
Operation	
Option Bit Configuration By Reset	
Option Bit Types	
Reading the Flash Information Page	
Flash Option Bit Control Register Definitions	
Trim Bit Address Register	-
Trim Bit Data Register	
Flash Option Bit Address Space	
Flash Program Memory Address 0000H	
Flash Program Memory Address 0001H	
Trim Bit Address Space	
Trim Bit Address 0000H—Reserved	
Trim Bit Address 0001H—Reserved	
Trim Bit Address 0002H	
Trim Bit Address 00031—Reserved	
Zilog Calibration Data	
Serialization Data	
Randomized Lot Identifier	
On-Chip Debugger	
Architecture	. 151

viii

The pin configurations listed are preliminary and subject to change based on manufacturing limitations.

Figure 2. Z8F08x3, Z8F04x3, F02x3 and Z8F01x3 in 8-Pin SOIC, QFN/MLF-S, or PDIP Package*

Figure 3. Z8F08x3, Z8F04x3, F02x3 and Z8F01x3 in 20-Pin SOIC, SSOP or PDIP Package*

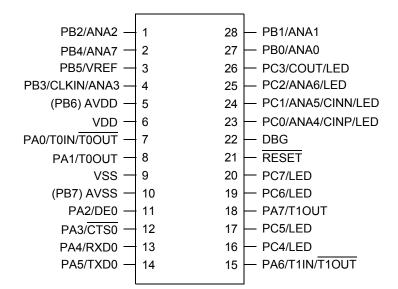


Figure 4. Z8F08x3, Z8F04x3, F02x3 and Z8F01x3 in 28-Pin SOIC, SSOP or PDIP Package*

Table 5 provides detailed information about the characteristics for each pin available on Z8 Encore! $XP^{\text{(R)}}$ F0823 Series 8-pin devices.

Note: All six I/O pins on the 8-pin packages are 5 V-tolerant (unless the pull-up devices are enabled). The column in Table 4 below describes 5 V-tolerance for the 20- and 28-pin packages only.

			Active Low or			Schmitt-		
Symbol Mnemonic	Direction	Reset Direction	Active High	Tristate Output	Internal Pull-up or Pull-down	Trigger Input	Open Drain Output	5 V Tolerance
AVDD	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
AVSS	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
DBG	I/O	I	N/A	Yes	No	Yes	Yes	Yes
PA[7:0]	I/O	I	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	PA[7:2] only
PB[7:0]	I/O	Ι	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	PB[7:6] only
PC[7:0]	I/O	I	N/A	Yes	Programmable Pull-up	Yes	Yes, Programmable	PC[7:3] only
RESET	I/O	I/O (defaults to RESET)	Low (in Reset mode)	Yes (PD0 only)	Alw <u>ays on</u> for RESET	Yes	Always on for RESET	Yes
VDD	N/A	N/A	N/A	N/A			N/A	N/A
VSS	N/A	N/A	N/A	N/A			N/A	N/A

Table 4. Pin Characteristics (20- and 28-pin Devices)

Note: *PB6 and PB7 are available only in the devices without ADC.*

tions as a GPIO pin. If it is not present, the debug feature is disabled until/unless another reset event occurs. For more details, see On-Chip Debugger on page 151.

Crystal Oscillator Override

For systems using a crystal oscillator, PA0 and PA1 are used to connect the crystal. When the crystal oscillator is enabled (see Oscillator Control Register Definitions on page 167), the GPIO settings are overridden and PA0 and PA1 are disabled.

5 V Tolerance

All six I/O pins on the 8-pin devices are 5 V-tolerant, unless the programmable pull-ups are enabled. If the pull-ups are enabled and inputs higher than V_{DD} are applied to these parts, excessive current flows through those pull-up devices and can damage the chip.

Note: In the 20- and 28-pin versions of this device, any pin which shares functionality with an ADC, crystal or comparator port is not 5 V-tolerant, including PA[1:0], PB[5:0], and PC[2:0]. All other signal pins are 5 V-tolerant, and can safely handle inputs higher than V_{DD} even with the pull-ups enabled.

External Clock Setup

For systems using an external TTL drive, PB3 is the clock source for 20- and 28-pin devices. In this case, configure PB3 for alternate function CLKIN. Write the Oscillator Control Register (see Oscillator Control Register Definitions on page 167) such that the external oscillator is selected as the system clock. For 8-pin devices use PA1 instead of PB3.

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Select Register AFS1	Alternate Function Select Register AFS2
Port A	PA0	TOIN	Timer 0 Input	AFS1[0]: 0	AFS2[0]: 0
		Reserved		AFS1[0]: 0	AFS2[0]: 1
		Reserved		AFS1[0]: 1	AFS2[0]: 0
		TOOUT	Timer 0 Output Complement	AFS1[0]: 1	AFS2[0]: 1
	PA1	TOOUT	Timer 0 Output	AFS1[1]: 0	AFS2[1]: 0
		Reserved		AFS1[1]: 0	AFS2[1]: 1
		CLKIN	External Clock Input	AFS1[1]: 1	AFS2[1]: 0
		Analog Functions*	ADC Analog Input/VREF	AFS1[1]: 1	AFS2[1]: 1
	PA2	DE0	UART 0 Driver Enable	AFS1[2]: 0	AFS2[2]: 0
		RESET	External Reset	AFS1[2]: 0	AFS2[2]: 1
		T1OUT	Timer 1 Output	AFS1[2]: 1	AFS2[2]: 0
		Reserved		AFS1[2]: 1	AFS2[2]: 1
	PA3	CTS0	UART 0 Clear to Send	AFS1[3]: 0	AFS2[3]: 0
		COUT	Comparator Output	AFS1[3]: 0	AFS2[3]: 1
		T1IN	Timer 1 Input	AFS1[3]: 1	AFS2[3]: 0
		Analog Functions*	ADC Analog Input	AFS1[3]: 1	AFS2[3]: 1
	PA4	RXD0	UART 0 Receive Data	AFS1[4]: 0	AFS2[4]: 0
		Reserved		AFS1[4]: 0	AFS2[4]: 1
		Reserved		AFS1[4]: 1	AFS2[4]: 0
		Analog Functions*	ADC/Comparator Input (N)	AFS1[4]: 1	AFS2[4]: 1
	PA5	TXD0	UART 0 Transmit Data	AFS1[5]: 0	AFS2[5]: 0
		T1OUT	Timer 1 Output Complement	AFS1[5]: 0	AFS2[5]: 1
		Reserved		AFS1[5]: 1	AFS2[5]: 0
		Analog Functions*	ADC/Comparator Input (P)	AFS1[5]: 1	AFS2[5]: 1

Table 16. Port Alternate Function Mapping (8-Pin Parts)

Note: * Analog Functions include ADC inputs, ADC reference and comparator inputs. Also, alternate function selection as described in Port A–C Alternate Function Sub-Registers must be enabled.

63

Table 43. IRQ2 Enable and Priority Encoding (Continued)

IRQ2ENH[x]	RQ2ENH[x] IRQ2ENL[x]		Description		
1	1	Level 3	High		

where x indicates the register bits from 0–7.

Table 44. IRQ2 Enable High Bit Register (IRQ2ENH)

BITS	7	6	5	4	3	2	1	0		
FIELD		Rese	erved		C3ENH	C2ENH	C1ENH	C0ENH		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		FC7H								

Reserved—Must be 0

C3ENH—Port C3 Interrupt Request Enable High Bit C2ENH—Port C2 Interrupt Request Enable High Bit C1ENH—Port C1 Interrupt Request Enable High Bit C0ENH—Port C0 Interrupt Request Enable High Bit

Table 45. IRQ2 Enable Low Bit Register (IRQ2ENL)

BITS	7	6	5	4	3	2	1	0	
FIELD		Rese	erved		C3ENL	C2ENL	C1ENL	C0ENL	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR		FC8H							

Reserved-Must be 0

C3ENL—Port C3 Interrupt Request Enable Low Bit C2ENL—Port C2 Interrupt Request Enable Low Bit C1ENL—Port C1 Interrupt Request Enable Low Bit C0ENL—Port C0 Interrupt Request Enable Low Bit

Interrupt Edge Select Register

The Interrupt Edge Select (IRQES) register (Table 46) determines whether an interrupt is generated for the rising edge or falling edge on the selected GPIO Port A or Port D input pin.

generated and the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL1 register is set to indicate the timer interrupt is because of an input capture event.

If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the Timer Reload High and Low Byte registers. Upon reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL1 register is cleared to indicate the timer interrupt is not caused by an input capture event.

Follow the steps below for configuring a timer for CAPTURE RESTART mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for CAPTURE RESTART mode. Setting the mode also involves writing to TMODEHI bit in TxCTL1 register.
 - Set the prescale value.
 - Set the Capture edge (rising or falling) for the Timer Input.
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. Clear the Timer PWM High and Low Byte registers to 0000H. This allows the software to determine if interrupts were generated by either a Capture or a Reload event. If the PWM High and Low Byte registers still contain 0000H after the interrupt, the interrupt was generated by a Reload.
- 5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input Capture and Reload events. If appropriate, configure the timer interrupt to be generated only at the input Capture event or the Reload event by setting TICONFIG field of the TxCTL1 register.
- 6. Configure the associated GPIO port pin for the Timer Input alternate function.
- 7. Write to the Timer Control register to enable the timer and initiate counting.

In CAPTURE mode, the elapsed time from timer start to Capture event can be calculated using the following equation:

Capture Elapsed Time (s) =
$$\frac{(Capture Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$$

COMPARE Mode

In COMPARE mode, the timer counts up to the 16-bit maximum Compare value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the Compare value, the timer generates an interrupt and counting continues (the

Follow the steps below to configure a timer for GATED mode and to initiate the count:

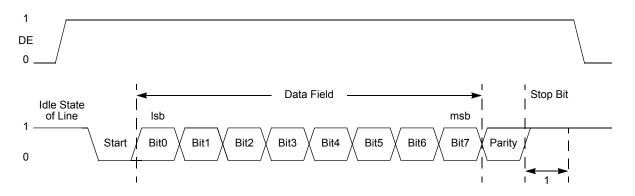
- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for Gated mode
 - Set the prescale value
- 2. Write to the Timer High and Low Byte registers to set the starting count value. Writing these registers only affects the first pass in GATED mode. After the first timer reset in GATED mode, counting always begins at the reset value of 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input deassertion and Reload events. If appropriate, configure the timer interrupt to be generated only at the input deassertion event or the Reload event by setting TICONFIG field of the TxCTL1 register.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. Write to the Timer Control register to enable the timer.
- 7. Assert the Timer Input signal to initiate the counting.

CAPTURE/COMPARE Mode

In CAPTURE/COMPARE mode, the timer begins counting on the first external Timer Input transition. The acceptable transition (rising edge or falling edge) is set by the TPOL bit in the Timer Control Register. The timer input is the system clock.

Every subsequent acceptable transition (after the first) of the Timer Input signal captures the current count value. The Capture value is written to the Timer PWM High and Low Byte Registers. When the Capture event occurs, an interrupt is generated, the count value in the Timer High and Low Byte registers is reset to 0001H, and counting resumes. The INPCAP bit in TxCTL1 register is set to indicate the timer interrupt is caused by an input Capture event.

If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the Timer Reload High and Low Byte registers. Upon reaching the Compare value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL1 register is cleared to indicate the timer interrupt is not because of an input Capture event.


Follow the steps below for configuring a timer for CAPTURE/COMPARE mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer

External Driver Enable

The UART provides a Driver Enable (DE) signal for off-chip bus transceivers. This feature reduces the software overhead associated with using a GPIO pin to control the transceiver when communicating on a multi-transceiver bus, such as RS-485.

Driver Enable is an active High signal that envelopes the entire transmitted data frame including parity and Stop bits as displayed in Figure 14. The Driver Enable signal asserts when a byte is written to the UART Transmit Data register. The Driver Enable signal asserts at least one UART bit period and no greater than two UART bit periods before the Start bit is transmitted. This allows a setup time to enable the transceiver. The Driver Enable signal deasserts one system clock period after the final Stop bit is transmitted. This one system clock delay allows both time for data to clear the transceiver before disabling it, as well as the ability to determine if another character follows the current character. In the event of back to back characters (new data must be written to the Transmit Data Register before the previous character is completely transmitted) the DE signal is not deasserted between characters. The DEPOL bit in the UART Control Register 1 sets the polarity of the Driver Enable signal.

The Driver Enable to Start bit setup time is calculated as follows: (2)

$$\left(\frac{1}{\text{Baud Rate (Hz)}}\right) \le \text{DE to Start Bit Setup Time (s)} \le \left(\frac{2}{\text{Baud Rate (Hz)}}\right)$$

UART Interrupts

The UART features separate interrupts for the transmitter and the receiver. In addition, when the UART primary functionality is disabled, the Baud Rate Generator can also function as a basic timer with interrupt capability.

UART Receive Data Register

Data bytes received through the RXD*x* pin are stored in the UART Receive Data register (Table 63). The read-only UART Receive Data register shares a Register File address with the Write-only UART Transmit Data register.

Table 63. UART Receive Data Register (U0RXD)

BITS	7	6	5	4	3	2	1	0		
FIELD	RXD									
RESET	Х	Х	Х	Х	Х	Х	Х	Х		
R/W	R	R	R	R	R	R	R	R		
ADDR		F40H								

RXD—Receive Data

UART receiver data byte from the RXDx pin

UART Status 0 Register

The UART Status 0 and Status 1 registers (Table 64 and Table 65) identify the current UART operating configuration and status.

Table 64. UART Status 0 Register (U0STAT0)

BITS	7	6	5	4	3	2	1	0		
FIELD	RDA	PE	OE	FE	BRKD	TDRE	TXE	CTS		
RESET	0	0	0	0	0	1	1	Х		
R/W	R	R	R	R	R	R	R	R		
ADDR		F41H								

RDA—Receive Data Available

This bit indicates that the UART Receive Data register has received data. Reading the UART Receive Data register clears this bit.

0 = The UART Receive Data register is empty

1 = There is a byte in the UART Receive Data register

PE—Parity Error

This bit indicates that a parity error has occurred. Reading the UART Receive Data register clears this bit.

0 = No parity error has occurred

1 = A parity error has occurred

OE—Overrun Error

This bit indicates that an overrun error has occurred. An overrun occurs when new data is

BITS	7	6	5	4	3	2	1	0	
FIELD	COMP_ADDR								
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR	F45H								

Table 68. UART Address Compare Register (U0ADDR)

COMP ADDR—Compare Address

This 8-bit value is compared to incoming address bytes.

UART Baud Rate High and Low Byte Registers

The UART Baud Rate High and Low Byte registers (Table 69 and Table 70) combine to create a 16-bit baud rate divisor value (BRG[15:0]) that sets the data transmission rate (baud rate) of the UART.

Table 69. UART Baud Rate High Byte Register (U0BRH)

BITS	7	6	5	4	3	2	1	0		
FIELD		BRH								
RESET	1	1	1	1	1	1	1	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		F46H								

Table 70. UART Baud Rate Low Byte Register (U0BRL)

BITS	7	6	5	4	3	2	1	0		
FIELD		BRL								
RESET	1	1	1	1	1	1	1	1		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		F47H								

The UART data rate is calculated using the following equation:

UART Baud Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$

For a given UART data rate, calculate the integer baud rate divisor value using the following equation:

UART Baud Rate Divisor Value (BRG) = Round $\left(\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Data Rate (bits/s)}}\right)$

Z8 Encore! XP[®] F0823 Series Product Specification

Z8 Encore! XP[®] F0823 Series Product Specification

138

Reserved—0 when read

FSTAT—Flash Controller Status 000000 = Flash Controller locked 000001 = First unlock command received (73H written) 000010 = Second unlock command received (8CH written) 000011 = Flash Controller unlocked 000100 = Sector protect register selected 001xxx = Program operation in progress 010xxx = Page erase operation in progress 100xxx = Mass erase operation in progress

Flash Page Select Register

The Flash Page Select (FPS) register shares address space with the Flash Sector Protect Register. Unless the Flash controller is unlocked and written with 5EH, writes to this address target the Flash Page Select Register.

The register is used to select one of the eight available Flash memory pages to be programmed or erased. Each Flash Page contains 512 bytes of Flash memory. During a Page Erase operation, all Flash memory having addresses with the most significant 7-bits given by FPS[6:0] are chosen for program/erase operation.

BITS	7	6	5	4	3	2	1	0
FIELD	INFO_EN	PAGE						
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR		FF9H						

Table 81. Flash Page Select Register (FPS)

INFO_EN—Information Area Enable

0 = Information Area us not selected

1 = Information Area is selected. The Information Area is mapped into the Program Memory address space at addresses FE00H through FFFFH.

PAGE—Page Select

This 7-bit field identifies the Flash memory page for Page Erase and page unlocking. Program Memory Address[15:9] = PAGE[6:0]. For the Z8F04x3 devices, the upper 4 bits must always be 0. For the Z8F02x3 devices, the upper 5 bits must always be 0. For the Z8F01x3 devices, the upper 6 bits must always be 0. A reset and stop function can be achieved by writing 81H to this register. A reset and go function can be achieved by writing 41H to this register. If the device is in DEBUG mode, a run function can be implemented by writing 40H to this register.

Table 99. OCD Control Register (OCDCTL)

BITS	7	6	5	4	3	2	1	0
FIELD	DBGMODE	BRKEN	DBGACK		Rese	erved		RST
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R	R	R	R	R/W

DBGMODE—DEBUG Mode

The device enters DEBUG mode when this bit is 1. When in DEBUG mode, the eZ8 CPU stops fetching new instructions. Clearing this bit causes the eZ8 CPU to restart. This bit is automatically set when a BRK instruction is decoded and breakpoints are enabled. If the Flash Read Protect Option Bit is enabled, this bit can only be cleared by resetting the device. It cannot be written to 0.

0 = Z8 Encore! XP F0823 Series device is operating in NORMAL mode

1 = Z8 Encore! XP F0823 Series device is in DEBUG mode

BRKEN—Breakpoint Enable

This bit controls the behavior of the BRK instruction (opcode 00H). By default, breakpoints are disabled and the BRK instruction behaves similar to an NOP instruction. If this bit is 1, when a BRK instruction is decoded, the DBGMODE bit of the OCDCTL register is automatically set to 1.

- 0 = Breakpoints are disabled
- 1 = Breakpoints are enabled

DBGACK—Debug Acknowledge

This bit enables the debug acknowledge feature. If this bit is set to 1, the OCD sends a Debug Acknowledge character (FFH) to the host when a Breakpoint occurs.

0 = Debug Acknowledge is disabled

1 = Debug Acknowledge is enabled

Reserved—0 when read

RST—Reset

Setting this bit to 1 resets the Z8F04xA family device. The device goes through a normal Power-On Reset sequence with the exception that the OCD is not reset. This bit is automatically cleared to 0 at the end of reset.

0 = No effect

1 = Reset the Flash Read Protect Option Bit device

177

Table 110. CPU Control Instructions (Continued)

Mnemonic	Operands	Instruction
SCF	—	Set Carry Flag
SRP	SrC	Set Register Pointer
STOP	_	STOP Mode
WDT	_	Watchdog Timer Refresh

Table 111. Load Instructions

Mnemonic	Operands	Instruction
CLR	dst	Clear
LD	dst, src	Load
LDC	dst, src	Load Constant to/from Program Memory
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDE	dst, src	Load External Data to/from Data Memory
LDEI	dst, src	Load External Data to/from Data Memory and Auto-Increment Addresses
LDWX	dst, src	Load Word using Extended Addressing
LDX	dst, src	Load using Extended Addressing
LEA	dst, X(src)	Load Effective Address
POP	dst	Рор
POPX	dst	Pop using Extended Addressing
PUSH	SrC	Push
PUSHX	SrC	Push using Extended Addressing

Table 112. Logical Instructions

Mnemonic	Operands	Instruction
AND	dst, src	Logical AND
ANDX	dst, src	Logical AND using Extended Addressing
СОМ	dst	Complement
OR	dst, src	Logical OR

Electrical Characteristics

The data in this chapter is pre-qualification and pre-characterization and is subject to change. Additional electrical characteristics may be found in the individual chapters.

Absolute Maximum Ratings

Stresses greater than those listed in Table 117 may cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For improved reliability, tie unused inputs to one of the supply voltages (V_{DD} or V_{SS}).

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	-40	+105	°C	
Storage temperature	-65	+150	°C	
Voltage on any pin with respect to V _{SS}	-0.3	+5.5	V	1
	-0.3	+3.9	V	2
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
8-pin Packages Maximum Ratings at 0 °C to 70 °C				
Total power dissipation		220	mW	
Maximum current into V_{DD} or out of V_{SS}		60	mA	
20-pin Packages Maximum Ratings at 0 °C to 70 °C				
Total power dissipation		430	mW	
Maximum current into V_{DD} or out of V_{SS}		120	mA	
28-pin Packages Maximum Ratings at 0 °C to 70 °C				
Total power dissipation		450	mW	

Table 117. Absolute Maximum Ratings

Table 119. Power Consumption

		V _{DI}	_o = 2.7 V to 3	3.6 V		
			Maximum ²	Maximum ³	-	
Symbol	Parameter	Typical ¹	Std Temp	Ext Temp	Units	Conditions
I _{DD} Stop	Supply Current in STOP Mode	0.1	2	7.5	μA	No peripherals enabled. All pins driven to V_{DD} or V_{SS} .
I _{DD} Halt	Supply Current in HALT	35	55	65	μA	32 kHz
	Mode (with all peripherals disabled)	520	630	700	μA	5.5 MHz
I _{DD}	Supply Current in	2.8	4.5	4.8	mA	32 kHz
	ACTIVE Mode (with all peripherals disabled)	4.5	5.2	5.2	mA	5.5 MHz
I _{DD} WDT	Watchdog Timer Supply Current	0.9	1.0	1.1	μA	
I _{DD} IPO	Internal Precision Oscillator Supply Current	350	500	550	μA	
I _{DD} VBO	Voltage Brownout Supply Current	50			μA	For 20-/28-pin devices (VBO only); see Note 4
						For 8-pin devices; See Note 4
I _{DD} ADC	Analog-to-Digital	2.8	3.1	3.2	mA	32 kHz
	Converter Supply Current (with External	3.1	3.6	3.7	mA	5.5 MHz
	Reference)	3.3	3.7	3.8	mA	10 MHz
		3.7	4.2	4.3	mA	20 MHz
I _{DD} ADCRef	ADC Internal Reference Supply Current	0			μA	See Note 4
I _{DD} CMP	Comparator supply Current	150	180	190	μA	See Note 4

Z8 Encore! XP[®] F0823 Series Product Specification

Ordering Information

Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description
Z8 Encore! XP with 8			Analog	j-to-D	igital C	onve	erter	
Standard Temperature				40	0	4	4	
Z8F0823PB005SC	8 KB	1 KB	6	12	2	4	1	PDIP 8-pin package
Z8F0823QB005SC	8 KB	1 KB	6	12	2	4	1	QFN 8-pin package
Z8F0823SB005SC	8 KB	1 KB	6	12	2	4	1	SOIC 8-pin package
Z8F0823SH005SC	8 KB	1 KB	16	18	2	7	1	SOIC 20-pin package
Z8F0823HH005SC	8 KB	1 KB	16	18	2	7	1	SSOP 20-pin package
Z8F0823PH005SC	8 KB	1 KB	16	18	2	7	1	PDIP 20-pin package
Z8F0823SJ005SC	8 KB	1 KB	22	18	2	8	1	SOIC 28-pin package
Z8F0823HJ005SC	8 KB	1 KB	22	18	2	8	1	SSOP 28-pin package
Z8F0823PJ005SC	8 KB	1 KB	22	18	2	8	1	PDIP 28-pin package
Extended Temperatur	e: -40 °C	to 105 °(C					
Z8F0823PB005EC	8 KB	1 KB	6	12	2	4	1	PDIP 8-pin package
Z8F0823QB005EC	8 KB	1 KB	6	12	2	4	1	QFN 8-pin package
Z8F0823SB005EC	8 KB	1 KB	6	12	2	4	1	SOIC 8-pin package
Z8F0823SH005EC	8 KB	1 KB	16	18	2	7	1	SOIC 20-pin package
Z8F0823HH005EC	8 KB	1 KB	16	18	2	7	1	SSOP 20-pin package
Z8F0823PH005EC	8 KB	1 KB	16	18	2	7	1	PDIP 20-pin package
Z8F0823SJ005EC	8 KB	1 KB	22	18	2	8	1	SOIC 28-pin package
Z8F0823HJ005EC	8 KB	1 KB	22	18	2	8	1	SSOP 28-pin package
Z8F0823PJ005EC	8 KB	1 KB	22	18	2	8	1	PDIP 28-pin package
Replace C with G for Lead-Free Packaging								