E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0413hh005ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 Encore! XP[®] F0823 Series Product Specification

Ordering Information	217
Part Number Suffix Designations	226
Index	227
Customer Support	237

Pin Description

Z8 Encore! XP[®] F0823 Series products are available in a variety of package styles and pin configurations. This chapter describes the signals and pin configurations available for each of the package styles. For information on physical package specifications, see Packaging on page 209.

Available Packages

Table 2 lists the package styles that are available for each device in the Z8 Encore! XP F0823 Series product line.

Part Number	ADC	8-pin PDIP	8-pin SOIC	20-pin PDIP	20-pin SOIC	20-pin SSOP	28-pin PDIP	28-pin SOIC	28-pin SSOP	8-pin QFN/ MLF-S
Z8F0823	Yes	X	X	X	X	X	X	X	X	X
Z8F0813	No	Х	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0423	Yes	Х	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0413	No	Х	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0223	Yes	Х	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0213	No	Х	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0123	Yes	Х	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0113	No	Х	Х	Х	Х	Х	Х	Х	Х	Х

Table 2. Z8 Encore! XP F0823 Series Package Options

Pin Configurations

Figure 2 through Figure 4 displays the pin configurations for all packages available in the Z8 Encore! XP F0823 Series. For description of signals, see Table 3. The analog input alternate functions (ANA*x*) are not available on the Z8F0x13 devices. The analog supply pins (AV_{DD} and AV_{SS}) are also not available on these parts, and are replaced by PB6 and PB7.

At reset, all pins of Ports A, B, and C default to an input state. In addition, any alternate functionality is not enabled, so the pins function as general-purpose input ports until programmed otherwise.

Address Space

The eZ8 CPU can access three distinct address spaces:

- The Register File contains addresses for the general-purpose registers and the eZ8 CPU, peripheral, and general-purpose I/O port control registers.
- The Program Memory contains addresses for all memory locations having executable code and/or data.
- The Data Memory contains addresses for all memory locations that contain data only.

These three address spaces are covered briefly in the following subsections. For more detailed information regarding the eZ8 CPU and its address space, refer to eZ8 CPU Core User Manual (UM0128) available for download at www.zilog.com.

Register File

The Register File address space in the Z8 Encore! XP[®] MCU is 4 KB (4096 bytes). The Register File is composed of two sections: control registers and general-purpose registers. When instructions are executed, registers defined as sources are read, and registers defined as destinations are written. The architecture of the eZ8 CPU allows all general-purpose registers to function as accumulators, address pointers, index registers, stack areas, or scratch pad memory.

The upper 256 bytes of the 4 KB Register File address space are reserved for control of the eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at addresses from F00H to FFFH. Some of the addresses within the 256 B control register section are reserved (unavailable). Reading from a reserved Register File address returns an undefined value. Writing to reserved Register File addresses is not recommended and can produce unpredictable results.

The on-chip RAM always begins at address 000H in the Register File address space. Z8 Encore! XP F0823 Series devices contain 256 B-1 KB of on-chip RAM. Reading from Register File addresses outside the available RAM addresses (and not within the control register address space) returns an undefined value. Writing to these Register File addresses produces no effect.

Program Memory

The eZ8 CPU supports 64 KB of Program Memory address space. Z8 Encore! XP F0823 Series devices contain 1 KB to 8 KB of on-chip Flash memory in the Program Memory address space. Reading from Program Memory addresses outside the available Flash

Stop Mode Recovery Using the External RESET Pin

When the Z8 Encore! XP F0823 Series device is in STOP mode and the external $\overline{\text{RESET}}$ pin is driven Low, a system reset occurs. Because of a glitch filter operating on the $\overline{\text{RESET}}$ pin, the Low pulse must be greater than the minimum width specified, or it is ignored. For more details, see Electrical Characteristics on page 193.

Reset Register Definitions

Reset Status Register

The Reset Status (RSTSTAT) register is a read-only register that indicates the source of the most recent Reset event, indicates a Stop Mode Recovery event, and indicates a Watchdog Timer time-out. Reading this register resets the upper four bits to 0.

This register shares its address with the Watchdog Timer control register, which is writeonly (Table 12).

Table 12. Reset Status Register (RSTSTAT)

BITS	7	6	5	4	3	2	1	0
FIELD	POR	STOP	WDT	EXT	Reserved			
RESET	See descriptions below			0	0	0	0	0
R/W	R	R	R	R	R	R	R	R
ADDR	FF0H							

Reset or Stop Mode Recovery Event	POR	STOP	WDT	EXT
Power-On Reset	1	0	0	0
Reset using RESET pin assertion	0	0	0	1
Reset using WDT time-out	0	0	1	0
Reset using the OCD (OCTCTL[1] set to 1)	1	0	0	0
Reset from STOP Mode using DBG Pin driven Low	1	0	0	0
Stop Mode Recovery using GPIO pin transition	0	1	0	0
Stop Mode Recovery using WDT time-out	0	1	1	0

POR—Power-On Reset Indicator

If this bit is set to 1, a Power-On Reset event is occurred. This bit is reset to 0 if a WDT time-out or Stop Mode Recovery occurs. This bit is also reset to 0 when the register is read.

Z8 Encore! XP[®] F0823 Series Product Specification

	•	•
Priority	Program Memory Vector Address	Interrupt or Trap Source
Highest	0002H	Reset (not an interrupt)
	0004H	Watchdog Timer (see Watchdog Timer on page 87)
	003AH	Primary Oscillator Fail Trap (not an interrupt)
	003CH	Watchdog Timer Oscillator Fail Trap (not an interrupt)
	0006H	Illegal Instruction Trap (not an interrupt)
	0008H	Reserved
	000AH	Timer 1
	000CH	Timer 0
	000EH	UART 0 receiver
	0010H	UART 0 transmitter
	0012H	Reserved
	0014H	Reserved
	0016H	ADC
	0018H	Port A Pin 7, selectable rising or falling input edge
	001AH	Port A Pin 6, selectable rising or falling input edge or Comparator Output
	001CH	Port A Pin 5, selectable rising or falling input edge
	001EH	Port A Pin 4, selectable rising or falling input edge
	0020H	Port A Pin 3 or Port D Pin 3, selectable rising or falling input edge
	0022H	Port A Pin 2 or Port D Pin 2, selectable rising or falling input edge
	0024H	Port A Pin 1, selectable rising or falling input edge
	0026H	Port A Pin 0, selectable rising or falling input edge
	0028H	Reserved
	002AH	Reserved
	002CH	Reserved
	002EH	Reserved
	0030H	Port C Pin 3, both input edges
	0032H	Port C Pin 2, both input edges
	0034H	Port C Pin 1, both input edges

Table 33. Trap and Interrupt Vectors in Order of Priority

BITS	7	6	5	4	3	2	1	0
FIELD		Rese	erved		PC3I	PC2I	PC1I	PC0I
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FC6H							

Table 36. Interrupt Request 2 Register (IRQ2)

Reserved—Must be 0

PCxI—Port C Pin x Interrupt Request

0 = No interrupt request is pending for GPIO Port C pin x

1 = An interrupt request from GPIO Port C pin x is awaiting service

where x indicates the specific GPIO Port C pin number (0-3)

IRQ0 Enable High and Low Bit Registers

Table 37 describes the priority control for IRQ0. The IRQ0 Enable High and Low Bit registers (Table 38 and Table 39) form a priority encoded enabling for interrupts in the Interrupt Request 0 register. Priority is generated by setting bits in each register.

-			
IRQ0ENH[x]	IRQ0ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Nominal
1	1	Level 3	High

where x indicates the register bits from 0–7.

Table 38. IRQ0 Enable High Bit Register (IRQ0ENH)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved	T1ENH	T0ENH	U0RENH	U0TENH	Reserved	Reserved	ADCENH
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FC1H							

Reserved—Must be 0

T1ENH—Timer 1 Interrupt Request Enable High Bit T0ENH—Timer 0 Interrupt Request Enable High Bit U0RENH—UART 0 Receive Interrupt Request Enable High Bit U0TENH—UART 0 Transmit Interrupt Request Enable High Bit ADCENH—ADC Interrupt Request Enable High Bit

Table 39. IRQ0 Enable Low Bit Register (IRQ0ENL)

BITS	7	6	5	4	3	2	1	0	
FIELD	Reserved	T1ENL	T0ENL	U0RENL	U0TENL	Reserved	Reserved	ADCENL	
RESET	0	0	0	0	0	0	0	0	
R/W	R	R/W	R/W	R/W	R/W	R	R	R/W	
ADDR		FC2H							

Reserved—0 when read

T1ENL—Timer 1 Interrupt Request Enable Low Bit T0ENL—Timer 0 Interrupt Request Enable Low Bit U0RENL—UART 0 Receive Interrupt Request Enable Low Bit U0TENL—UART 0 Transmit Interrupt Request Enable Low Bit ADCENL—ADC Interrupt Request Enable Low Bit

IRQ1 Enable High and Low Bit Registers

Table 40 describes the priority control for IRQ1. The IRQ1 Enable High and Low Bit registers (Table 41 and Table 42) form a priority encoded enabling for interrupts in the Interrupt Request 1 register. Priority is generated by setting bits in each register.

		-	
IRQ1ENH[x]	IRQ1ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Nominal
1	1	Level 3	High

Table 40. IRQ1 Enable and Priority Encoding

where x indicates the register bits from 0–7.

Timer Control Register Definitions

Timer 0–1 High and Low Byte Registers

The Timer 0–1 High and Low Byte (TxH and TxL) registers (Table 49 and Table 50) contain the current 16-bit timer count value. When the timer is enabled, a read from TxH causes the value in TxL to be stored in a temporary holding register. A read from TxL always returns this temporary register when the timers are enabled. When the timer is disabled, reads from the TxL reads the register directly.

Writing to the Timer High and Low Byte registers while the timer is enabled is not recommended. There are no temporary holding registers available for write operations, so simultaneous 16-bit writes are not possible. If either the Timer High or Low Byte registers are written during counting, the 8-bit written value is placed in the counter (High or Low Byte) at the next clock edge. The counter continues counting from the new value.

BITS	7	6	5	4	3	2	1	0	
FIELD	TH								
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR				F00H,	F08H				

Table 49. Timer 0–1 High Byte Register (TxH)

Table 50. Timer 0–1 Low Byte Register (TxL)

BITS	7	6	5	4	3	2	1	0	
FIELD	TL								
RESET	0	0	0	0	0	0	0	1	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR				F01H,	F09H				

TH and TL—Timer High and Low Bytes

These 2 bytes, {TH[7:0], TL[7:0]}, contain the current 16-bit timer count value

Timer Reload High and Low Byte Registers

The Timer 0–1 Reload High and Low Byte (TxRH and TxRL) registers (Table 51 and Table 52) store a 16-bit Reload value, {TRH[7:0], TRL[7:0]}. Values written to the Timer Reload High Byte register are stored in a temporary holding register. When a write to the Timer Reload Low Byte register occurs, the temporary holding register value is written to the Timer High Byte register. This operation allows simultaneous updates of the 16-bit Timer Reload value.

in hardware, software or some combination of the two, depending on the multiprocessor configuration bits. In general, the address compare feature reduces the load on the CPU, because it does not require access to the UART when it receives data directed to other devices on the multi-node network. The following three MULTIPROCESSOR modes are available in hardware:

- Interrupt on all address bytes
- Interrupt on matched address bytes and correctly framed data bytes
- Interrupt only on correctly framed data bytes

These modes are selected with MPMD[1:0] in the UART Control 1 Register. For all multiprocessor modes, bit MPEN of the UART Control 1 Register must be set to 1.

The first scheme is enabled by writing 01b to MPMD[1:0]. In this mode, all incoming address bytes cause an interrupt, while data bytes never cause an interrupt. The interrupt service routine must manually check the address byte that caused triggered the interrupt. If it matches the UART address, the software clears MPMD[0]. Each new incoming byte interrupts the CPU. The software is responsible for determining the end of the frame. It checks for the end-of-frame by reading the MPRX bit of the UART Status 1 Register for each incoming byte. If MPRX=1, a new frame has begun. If the address of this new frame is different from the UART's address, MPMD[0] must be set to 1 causing the UART interrupts to go inactive until the next address byte. If the new frame's address matches the UART's, the data in the new frame is processed as well.

The second scheme requires the following: set MPMD[1:0] to 10B and write the UART's address into the UART Address Compare register. This mode introduces additional hardware control, interrupting only on frames that match the UART's address. When an incoming address byte does not match the UART's address, it is ignored. All successive data bytes in this frame are also ignored. When a matching address byte occurs, an interrupt is issued and further interrupts now occur on each successive data byte. When the first data byte in the frame is read, the NEWFRM bit of the UART Status 1 Register is asserted. All successive data bytes have NEWFRM=0. When the next address byte occurs, the hardware compares it to the UART's address. If there is a match, the interrupts continues and the NEWFRM bit is set for the first byte of the new frame. If there is no match, the UART ignores all incoming bytes until the next address match.

The third scheme is enabled by setting MPMD[1:0] to 11b and by writing the UART's address into the UART Address Compare Register. This mode is identical to the second scheme, except that there are no interrupts on address bytes. The first data byte of each frame remains accompanied by a NEWFRM assertion.

(BRG[15:0]) that sets the data transmission rate (baud rate) of the UART. The UART data rate is calculated using the following equation:

UART Data Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$

When the UART is disabled, the Baud Rate Generator functions as a basic 16-bit timer with interrupt on time-out. Follow the steps below to configure the Baud Rate Generator as a timer with interrupt on time-out:

- 1. Disable the UART by clearing the REN and TEN bits in the UART Control 0 register to 0.
- 2. Load the acceptable 16-bit count value into the UART Baud Rate High and Low Byte registers.
- 3. Enable the Baud Rate Generator timer function and associated interrupt by setting the BIRQ bit in the UART Control 1 register to 1.

When configured as a general purpose timer, the interrupt interval is calculated using the following equation:

Interrupt Interval (s) = System Clock Period (s) \times BRG[15:0]

UART Control Register Definitions

The UART control registers support the UART and the associated Infrared Encoder/ Decoders. For more information on the infrared operation, see Infrared Encoder/Decoder on page 113.

UART Transmit Data Register

Data bytes written to the UART Transmit Data register (Table 62) are shifted out on the TXDx pin. The Write-only UART Transmit Data register shares a Register File address with the read-only UART Receive Data register.

Table 62. UART Transmit Data Register (U0TXD)

BITS	7	6	5	4	3	2	1	0
FIELD	TXD							
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	W	W	W	W	W	W	W	W
ADDR				F4	0H			

TXD—Transmit Data

UART transmitter data byte to be shifted out through the TXDx pin.

Reserved— Altering this register may result in incorrect device operation.

Trim Bit Address 0002H

Table 91. Trim Option Bits at 0002H (TIPO)

BITS	7	6	5	5 4 3 2 1 0								
FIELD	IPO_TRIM											
RESET		U										
R/W	R/W											
ADDR	Information Page Memory 0022H											
Note: U =	Unchanged b	y Reset. R/W	= Read/Write	.								

IPO_TRIM—Internal Precision Oscillator Trim Byte Contains trimming bits for Internal Precision Oscillator.

Trim Bit Address 0003H—Reserved

Trim Bit Address 0004H—Reserved

Zilog Calibration Data

ADC Calibration Data

Table 92. ADC Calibration Bits

BITS	7	6	5	4	3	2	1	0	
FIELD	ADC_CAL								
RESET	U	U	U	U	U	U	U	U	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR	Information Page Memory 0060H–007DH								
Note: U =	Unchanged by	y Reset. R/W	= Read/Write).					

ADC CAL—Analog-to-Digital Converter Calibration Values

Contains factory calibrated values for ADC gain and offset compensation. Each of the ten supported modes has one byte of offset calibration and two bytes of gain calibration. These values are read by the software to compensate ADC measurements as detailed in

Z8 Encore! XP[®] F0823 Series Product Specification

Watchdog Timer Failure

In the event of a Watchdog Timer oscillator failure, a similar non-maskable interrupt-like event is issued. This event does not trigger an attendant clock switch-over, but alerts the CPU of the failure. After a Watchdog Timer failure, it is no longer possible to detect a primary oscillator failure. The failure detection circuitry does not function if the Watchdog Timer is used as the primary oscillator or if the Watchdog Timer oscillator has been disabled. For either of these cases, it is necessary to disable the detection circuitry by deasserting the WDFEN bit of the OSCCTL register.

The Watchdog Timer oscillator failure detection circuit counts system clocks while searching for a Watchdog Timer clock. The logic counts 8004 system clock cycles before determining that a failure has occurred. The system clock rate determines the speed at which the Watchdog Timer failure can be detected. A very slow system clock results in very slow detection times.

Caution: It is possible to disable the clock failure detection circuitry as well as all functioning clock sources. In this case, the Z8 Encore! XP F0823 Series device ceases functioning and can only be recovered by Power-On Reset.

Oscillator Control Register Definitions

The following section provides the bit definitions for the Oscillator Control register.

Oscillator Control Register

The Oscillator Control register (OSCCTL) enables/disables the various oscillator circuits, enables/disables the failure detection/recovery circuitry and selects the primary oscillator, which becomes the system clock.

The Oscillator Control register must be unlocked before writing. Writing the two step sequence E7H followed by 18H to the Oscillator Control Register unlocks it. The register is locked at successful completion of a register write to the OSCCTL.

BITS	7	6	5	4	3	2	1	0
FIELD	INTEN	Reserved	WDTEN	POFEN	WDFEN		SCKSEL	
RESET	1	0	1	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				F8	6H			

Table 102. Oscillator Control Register (OSCCTL)

Assembly Language Syntax

For proper instruction execution, eZ8 CPU assembly language syntax requires that the operands be written as 'destination, source'. After assembly, the object code usually has the operands in the order 'source, destination', but ordering is opcode-dependent. The following instruction examples illustrate the format of some basic assembly instructions and the resulting object code produced by the assembler. You must follow this binary format if you prefer manual program coding or intend to implement your own assembler.

Example 1

If the contents of Registers 43H and 08H are added and the result is stored in 43H, the assembly syntax and resulting object code is:

Table 103. Assembly Language Syntax Example 1

Assembly Language Code	ADD	43H,	08H	(ADD dst, s	rc)
Object Code	04	08	43	(OPC src, da	st)

Example 2

In general, when an instruction format requires an 8-bit register address, that address can specify any register location in the range 0–255 or, using Escaped Mode Addressing, a Working Register R0–R15. If the contents of Register 43H and Working Register R8 are added and the result is stored in 43H, the assembly syntax and resulting object code is:

Table 104. Assembly Language Syntax Example 2

Assembly Language Code	ADD	43H,	R8	(ADD dst, src)
Object Code	04	E8	43	(OPC src, dst)

See the device-specific Product Specification to determine the exact register file range available. The register file size varies, depending on the device type.

eZ8 CPU Instruction Notation

In the eZ8 CPU Instruction Summary and Description sections, the operands, condition codes, status flags, and address modes are represented by a notational shorthand that is described in Table 105.

Electrical Characteristics

The data in this chapter is pre-qualification and pre-characterization and is subject to change. Additional electrical characteristics may be found in the individual chapters.

Absolute Maximum Ratings

Stresses greater than those listed in Table 117 may cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For improved reliability, tie unused inputs to one of the supply voltages (V_{DD} or V_{SS}).

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	-40	+105	°C	
Storage temperature	-65	+150	°C	
Voltage on any pin with respect to V _{SS}	-0.3	+5.5	V	1
	-0.3	+3.9	V	2
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
8-pin Packages Maximum Ratings at 0 °C to 70 °C				
Total power dissipation		220	mW	
Maximum current into V_{DD} or out of V_{SS}		60	mA	
20-pin Packages Maximum Ratings at 0 °C to 70 °C				
Total power dissipation		430	mW	
Maximum current into V_{DD} or out of V_{SS}		120	mA	
28-pin Packages Maximum Ratings at 0 °C to 70 °C				
Total power dissipation		450	mW	

Table 117. Absolute Maximum Ratings

190

		V _{DD} = 2.7 V to 3.6 V T _A = -40 °C to +105 °C (unless otherwise stated)				
Symbol	arameter Minimum Typical Maximum		Units	Conditions		
F _{IPO}	Internal Precision Oscillator Frequency (High Speed)		5.53		MHz	V _{DD} = 3.3 V T _A = 30 °C
F _{IPO}	Internal Precision Oscillator Frequency (Low Speed)		32.7		kHz	V _{DD} = 3.3 V T _A = 30 °C
F _{IPO}	Internal Precision Oscillator Error		<u>+</u> 1	<u>+</u> 4	%	
T _{IPOST}	Internal Precision Oscillator Startup Time		3		μs	

Table 121. Internal Precision Oscillator Electrical Characteristics

Part Number	F		ines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description
Part	Flash	RAM	I/O Lines	Inter	16-Bit T w/PWM	10-B	UAR	Desc
Z8 Encore! XP with 8	KB Flash							
Standard Temperatur	re: 0 °C to	70 °C						
Z8F0813PB005SC	8 KB	1 KB	6	12	2	0	1	PDIP 8-pin package
Z8F0813QB005SC	8 KB	1 KB	6	12	2	0	1	QFN 8-pin package
Z8F0813SB005SC	8 KB	1 KB	6	12	2	0	1	SOIC 8-pin package
Z8F0813SH005SC	8 KB	1 KB	16	18	2	0	1	SOIC 20-pin package
Z8F0813HH005SC	8 KB	1 KB	16	18	2	0	1	SSOP 20-pin package
Z8F0813PH005SC	8 KB	1 KB	16	18	2	0	1	PDIP 20-pin package
Z8F0813SJ005SC	8 KB	1 KB	24	18	2	0	1	SOIC 28-pin package
Z8F0813HJ005SC	8 KB	1 KB	24	18	2	0	1	SSOP 28-pin package
Z8F0813PJ005SC	8 KB	1 KB	24	18	2	0	1	PDIP 28-pin package
Extended Temperatu	re: -40 °C	to 105 °(C					
Z8F0813PB005EC	8 KB	1 KB	6	12	2	0	1	PDIP 8-pin package
Z8F0813QB005EC	8 KB	1 KB	6	12	2	0	1	QFN 8-pin package
Z8F0813SB005EC	8 KB	1 KB	6	12	2	0	1	SOIC 8-pin package
Z8F0813SH005EC	8 KB	1 KB	16	18	2	0	1	SOIC 20-pin package
Z8F0813HH005EC	8 KB	1 KB	16	18	2	0	1	SSOP 20-pin package
Z8F0813PH005EC	8 KB	1 KB	16	18	2	0	1	PDIP 20-pin package
Z8F0813SJ005EC	8 KB	1 KB	24	18	2	0	1	SOIC 28-pin package
Z8F0813HJ005EC	8 KB	1 KB	24	18	2	0	1	SSOP 28-pin package
Z8F0813PJ005EC	8 KB	1 KB	24	18	2	0	1	PDIP 28-pin package
Replace C with G for Lea	ad-Free Pac	kaging						

TM 176

HALT 176 INC 175 INCW 175 IRET 178 JP 178 LD 177 LDC 177 LDCI 176, 177 LDE 177 LDEI 176 LDX 177 LEA 177 load 177 logical 177 **MULT 175** NOP 176 OR 177 ORX 178 POP 177 POPX 177 program control 178 **PUSH 177** PUSHX 177 **RCF 176 RET 178** RL 178 **RLC 178** rotate and shift 178 RR 178 **RRC 178** SBC 175 SCF 176, 177 SRA 179 SRL 179 **SRP 177 STOP 177** SUB 175 **SUBX 175 SWAP 179 TCM 176 TCMX 176**

DJNZ 178

EI 176

Z8 Encore! XP[®] F0823 Series Product Specification

TMX 176 **TRAP 178** Watchdog Timer refresh 177 XOR 178 **XORX 178** instructions, eZ8 classes of 174 interrupt control register 64 interrupt controller 53 architecture 53 interrupt assertion types 56 interrupt vectors and priority 56 operation 55 register definitions 58 software interrupt assertion 57 interrupt edge select register 63 interrupt request 0 register 58 interrupt request 1 register 59 interrupt request 2 register 59 interrupt return 178 interrupt vector listing 53 interrupts **UART 101** IR 173 lr 173 **IrDA** architecture 113 block diagram 113 control register definitions 116 operation 113 receiving data 115 transmitting data 114 **IRET 178** IRQ0 enable high and low bit registers 60 IRQ1 enable high and low bit registers 61 IRQ2 enable high and low bit registers 62 **IRR 173** Irr 173

J

JP 178 jump, conditional, relative, and relative conditional 178

Z8 Encore! XP[®] F0823 Series Product Specification

235

reset in STOP mode 89 time-out response 88 Watchdog Timer Control Register (WDTCTL) 90 WDTCTL register 90, 128, 167 WDTH register 91 WDTL register 91 WDTU register 91 working register 173 working register pair 173

Χ

X 173 XOR 178 XORX 178

Ζ

Z8 Encore! block diagram 3 features 1 part selection guide 2