

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	24
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.173", 4.40mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0413hj005sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Overview	. 1
Features	. 1
Part Selection Guide	. 2
Block Diagram	. 3
CPU and Peripheral Overview	. 4
eZ8 CPU Features	
General-Purpose I/O	
Flash Controller	
Internal Precision Oscillator	
Analog Comparator	
Universal Asynchronous Receiver/Transmitter	
Timers	
Interrupt Controller	. 5
Reset Controller	. 6
On-Chip Debugger	
Pin Description	. 7
Available Packages	. 7
Pin Configurations	
Signal Descriptions	. 9
Pin Characteristics	10
Address Space	13
Register File	13
Program Memory	13
Data Memory	15
Flash Information Area	15
Register Map	17
Reset and Stop Mode Recovery	21
Reset Types	21
Reset Sources	22
Power-On Reset	
Voltage Brownout Reset	
Watchdog Timer Reset	
External Reset Input	
	20

- 2.7 V to 3.6 V operating voltage
- Up to thirteen 5 V-tolerant input pins
- 8-, 20-, and 28-pin packages
- 0 °C to +70 °C and -40 °C to +105 °C for operating temperature ranges

Part Selection Guide

Table 1 lists the basic features and package styles available for each device within the Z8 Encore! XP[®] F0823 Series product line.

Part Number	Flash (KB)	RAM (B)	I/O	ADC Inputs	Packages
Z8F0823	8	1024	6–22	4–8	8-, 20-, and 28-pins
Z8F0813	8	1024	6–24	0	8-, 20-, and 28-pins
Z8F0423	4	1024	6–22	4–8	8-, 20-, and 28-pins
Z8F0413	4	1024	6–24	0	8-, 20-, and 28-pins
Z8F0223	2	512	6–22	4–8	8-, 20-, and 28-pins
Z8F0213	2	512	6–24	0	8-, 20-, and 28-pins
Z8F0123	1	256	6–22	4–8	8-, 20-, and 28-pins
Z8F0113	1	256	6–24	0	8-, 20-, and 28-pins

10

Signal Mnemonic	I/O	Description
Analog		
ANA[7:0]	Ι	Analog port. These signals are used as inputs to the ADC. The ANA0, ANA1, and ANA2 pins can also access the inputs and output of the integrated transimpedance amplifier.
VREF	I/O	Analog-to-Digital Converter reference voltage input.
Clock Input		
CLKIN	Ι	Clock Input Signal. This pin can be used to input a TTL-level signal to be used as the system clock.
LED Drivers		
LED	0	Direct LED drive capability. All port C pins have the capability to drive an LED without any other external components. These pins have programmable drive strengths set by the GPIO block.
On-Chip Debugger		
DBG	I/O	Debug. This signal is the control and data input and output to and from the OCD.
		Caution: The DBG pin is open-drain and requires an external pull
		up resistor to ensure proper operation.
Reset		
RESET	I/O	RESET. Generates a reset when asserted (driven Low). Also serves as a reset indicator; the Z8 Encore! XP forces this pin Low when in reset. This pin is open-drain and features an enabled internal pull-up resistor.
Power Supply		
V _{DD}	I	Digital Power Supply.
AV _{DD}	Ι	Analog Power Supply.
V _{SS}	I	Digital Ground.
AV _{SS}	I	Analog Ground.
Note: The AV _{DD} and A PB7 on 28-pin pa		nals are available only in 28-pin packages with ADC. They are replaced by PB6 and without ADC.

Pin Characteristics

Table 4 provides detailed information about the characteristics for each pin available on Z8 Encore! XP F0823 Series 20- and 28-pin devices. Data in Table 4 is sorted alphabetically by the pin symbol mnemonic.

Reset and Stop Mode Recovery

The Reset Controller within the Z8 Encore! XP[®] F0823 Series controls Reset and Stop Mode Recovery operation and provides indication of low supply voltage conditions. In typical operation, the following events cause a Reset:

- Power-On Reset (POR)
- Voltage Brownout (VBO)
- Watchdog Timer time-out (when configured by the WDT_RES Flash Option Bit to initiate a reset)
- External RESET pin assertion (when the alternate RESET function is enabled by the GPIO register)
- On-chip Debugger initiated Reset (OCDCTL[0] set to 1)

When the device is in STOP mode, a Stop Mode Recovery is initiated by either of the following:

- Watchdog Timer time-out
- GPIO port input pin transition on an enabled Stop Mode Recovery source

The VBO circuitry on the device performs the following function:

• Generates the VBO reset when the supply voltage drops below a minimum safe level

Reset Types

Z8 Encore! XP F0823 Series provides several different types of Reset operation. Stop Mode Recovery is considered a form of Reset. Table 9 lists the types of Reset and their operating characteristics. The System Reset is longer if the external crystal oscillator is enabled by the Flash option bits, allowing additional time for oscillator start-up. vector address. Following Stop Mode Recovery, the STOP bit in the Watchdog Timer Control Register is set to 1. Table 11 lists the Stop Mode Recovery sources and resulting actions. The section following the table provides more detailed information on each of the Stop Mode Recovery sources.

Table 11. Stop Mode Recovery Sources and Resulting Action

Operating Mode	Stop Mode Recovery Source	Action
STOP mode	Watchdog Timer time-out when configured for Reset	Stop Mode Recovery
	Watchdog Timer time-out when configured for interrupt	Stop Mode Recovery followed by interrupt (if interrupts are enabled)
	Data transition on any GPIO port pin enabled as a Stop Mode Recovery source	Stop Mode Recovery
	Assertion of external RESET Pin	System Reset
	Debug Pin driven Low	System Reset

Stop Mode Recovery Using Watchdog Timer Time-Out

If the Watchdog Timer times out during STOP mode, the device undergoes a Stop Mode Recovery sequence. In the Watchdog Timer Control register, the WDT and STOP bits are set to 1. If the Watchdog Timer is configured to generate an interrupt upon time-out and Z8 Encore! XP[®] F0823 Series device is configured to respond to interrupts, the eZ8 CPU services the Watchdog Timer interrupt request following the normal Stop Mode Recovery sequence.

Stop Mode Recovery Using a GPIO Port Pin Transition

Each of the GPIO port pins can be configured as a Stop Mode Recovery input source. On any GPIO pin enabled as a Stop Mode Recovery source, a change in the input pin value (from High to Low or from Low to High) initiates Stop Mode Recovery.

- **Note:** The SMR pulses shorter than specified does not trigger a recovery. When this happens, the STOP bit in the Reset Status (RSTSTAT) register is set to 1.
- **Caution:** In STOP mode, the GPIO Port Input Data registers (PxIN) are disabled. The Port Input Data registers record the port transition only if the signal stays on the port pin through the end of the Stop Mode Recovery delay. As a result, short pulses on the port pin can initiate Stop Mode Recovery without being written to the Port Input Data register or without initiating an interrupt (if enabled for that pin).

HALT Mode

Executing the eZ8 CPU's HALT instruction places the device into HALT mode, which powers down the CPU but leaves all other peripherals active. In HALT mode, the operating characteristics are:

- Primary oscillator is enabled and continues to operate.
- System clock is enabled and continues to operate.
- eZ8 CPU is stopped.
- Program counter stops incrementing.
- Watchdog Timer's internal RC oscillator continues to operate.
- If enabled, the Watchdog Timer continues to operate.
- All other on-chip peripherals continue to operate.

The eZ8 CPU can be brought out of HALT mode by any of the following operations:

- Interrupt
- Watchdog Timer time-out (interrupt or reset)
- Power-On Reset
- Voltage Brownout reset
- External **RESET** pin assertion

To minimize current in HALT mode, all GPIO pins that are configured as inputs must be driven to one of the supply rails (V_{CC} or GND).

Peripheral-Level Power Control

In addition to the STOP and HALT modes, it is possible to disable each peripheral on each of the Z8 Encore! XP F0823 Series devices. Disabling a given peripheral minimizes its power consumption.

Power Control Register Definitions

The following sections describe the power control registers.

Power Control Register 0

Each bit of the following registers disables a peripheral block, either by gating its system clock input or by removing power from the block.

46

page 49. See GPIO Alternate Functions on page 36 to determine the alternate function associated with each port pin.

Caution: Do not enable alternate functions for GPIO port pins for which there is no associated alternate function. Failure to follow this guideline can result in unpredictable operation.

Table 21. Port A–C Alternate Function Sub-Registers (PxAF)

BITS	7	6	5	4	3	2	1	0	
FIELD	AF7	AF6	AF5	AF4	AF3	AF2	AF1	AF0	
RESET	00H (Ports A–C); 04H (Port A of 8-pin device)								
R/W	R/W								
ADDR	lf 02H i	n Port A–C	Address Reg	gister, acces	sible through	n the Port A-	-C Control F	Register	

AF[7:0]—Port Alternate Function enabled

0 = The port pin is in normal mode and the DDx bit in the Port A–C Data Direction subregister determines the direction of the pin.

1 = The alternate function selected through Alternate Function Set sub-registers is enabled. Port pin operation is controlled by the alternate function.

Port A–C Output Control Sub-Registers

The Port A–C Output Control sub-register (Table 22) is accessed through the Port A–C Control register by writing 03H to the Port A–C Address register. Setting the bits in the Port A–C Output Control sub-registers to 1 configures the specified port pins for opendrain operation. These sub-registers affect the pins directly and, as a result, alternate functions are also affected.

Table 22. Port A–C Output Control Sub-Registers (PxOC)

BITS	7	6	5	4	3	2	1	0
FIELD	POC7	POC6	POC5	POC4	POC3	POC2	POC1	POC0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	If 03H in Port A–C Address Register, accessible through the Port A–C Control Register							

POC[7:0]—Port Output Control

These bits function independently of the alternate function bit and always disable the drains if set to 1.

BITS	7	6	5	4	3	2	1	0	
FIELD	PAFS17	PAFS16	PAFS15	PAFS14	PAFS13	PAFS12	PAFS11	PAFS10	
RESET	00H (all ports of 20/28 pin devices); 04H (Port A of 8-pin device)								
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W							
ADDR	lf 07H i	If 07H in Port A–C Address Register, accessible through the Port A–C Control Register							

Table 26. Port A–C Alternate Function Set 1 Sub-Registers (PxAFS1)

PAFS1[7:0]—Port Alternate Function Set to 1

0 = Port Alternate Function selected as defined in Table 14 (see GPIO Alternate Functions on page 36).

1 = Port Alternate Function selected as defined in Table 14 (see GPIO Alternate Functions on page 36).

Port A–C Alternate Function Set 2 Sub-Registers

The Port A–C Alternate Function Set 2 sub-register (Table 27) is accessed through the Port A–C Control register by writing 08H to the Port A–C Address register. The Alternate Function Set 2 sub-registers selects the alternate function available at a port pin. Alternate Functions selected by setting or clearing bits of this register is defined in Table 14 in the section GPIO Alternate Functions on page 36.

Table 27. Port A–C Alternate Function Set 2 Sub-Registers (PxAFS2)

BITS	7	6	5	4	3	2	1	0	
FIELD	PAFS27	PAFS26	PAFS25	PAFS24	PAFS23	PAFS22	PAFS21	PAFS20	
RESET	00H (all ports of 20/28 pin devices); 04H (Port A of 8-pin device)								
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W							
ADDR	lf 08H i	If 08H in Port A–C Address Register, accessible through the Port A–C Control Register							

PAFS2[7:0]—Port Alternate Function Set 2

0 = Port Alternate Function selected as defined in Table 14 (see GPIO Alternate Functions on page 36).

1 = Port Alternate Function selected as defined in Table 14.

Port A–C Input Data Registers

Reading from the Port A–C Input Data registers (Table 28) returns the sampled values from the corresponding port pins. The Port A–C Input Data registers are read-only. The value returned for any unused ports is 0. Unused ports include those missing on the 8- and 28-pin packages, as well as those missing on the ADC-enabled 28-pin packages.

BITS	7	6	5	4	3	2	1	0
FIELD		LEDEN[7:0]						
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F82H							

Table 30. LED Drive Enable (LEDEN)

LEDEN[7:0]—LED Drive Enable

These bits determine which Port C pins are connected to an internal current sink.

0 = Tristate the Port C pin.

1= Connect controlled current sink to the Port C pin.

LED Drive Level High Register

The LED Drive Level registers contain two control bits for each Port C pin (Table 31). These two bits select between four programmable drive levels. Each pin is individually programmable.

Table 31. LED Drive Level High Register (LEDLVLH)

BITS	7	6	5	4	3	2	1	0	
FIELD	LEDLVLH[7:0]								
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR		F83H							

LEDLVLH[7:0]—LED Level High Bit

{LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C pin.

00 = 3 mA01 = 7 mA

10= 13 mA 11= 20 mA

LED Drive Level Low Register

The LED Drive Level registers contain two control bits for each Port C pin (Table 32). These two bits select between four programmable drive levels. Each pin is individually programmable.

Reserved—Must be 0

T1ENH—Timer 1 Interrupt Request Enable High Bit T0ENH—Timer 0 Interrupt Request Enable High Bit U0RENH—UART 0 Receive Interrupt Request Enable High Bit U0TENH—UART 0 Transmit Interrupt Request Enable High Bit ADCENH—ADC Interrupt Request Enable High Bit

Table 39. IRQ0 Enable Low Bit Register (IRQ0ENL)

BITS	7	6	5	4	3	2	1	0		
FIELD	Reserved	T1ENL	T0ENL	U0RENL	U0TENL	Reserved	Reserved	ADCENL		
RESET	0	0	0	0	0	0	0	0		
R/W	R	R/W	R/W	R/W	R/W	R	R	R/W		
ADDR		FC2H								

Reserved—0 when read

T1ENL—Timer 1 Interrupt Request Enable Low Bit T0ENL—Timer 0 Interrupt Request Enable Low Bit U0RENL—UART 0 Receive Interrupt Request Enable Low Bit U0TENL—UART 0 Transmit Interrupt Request Enable Low Bit ADCENL—ADC Interrupt Request Enable Low Bit

IRQ1 Enable High and Low Bit Registers

Table 40 describes the priority control for IRQ1. The IRQ1 Enable High and Low Bit registers (Table 41 and Table 42) form a priority encoded enabling for interrupts in the Interrupt Request 1 register. Priority is generated by setting bits in each register.

		-	
IRQ1ENH[x]	IRQ1ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Nominal
1	1	Level 3	High

Table 40. IRQ1 Enable and Priority Encoding

where x indicates the register bits from 0–7.

(BRG[15:0]) that sets the data transmission rate (baud rate) of the UART. The UART data rate is calculated using the following equation:

UART Data Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$

When the UART is disabled, the Baud Rate Generator functions as a basic 16-bit timer with interrupt on time-out. Follow the steps below to configure the Baud Rate Generator as a timer with interrupt on time-out:

- 1. Disable the UART by clearing the REN and TEN bits in the UART Control 0 register to 0.
- 2. Load the acceptable 16-bit count value into the UART Baud Rate High and Low Byte registers.
- 3. Enable the Baud Rate Generator timer function and associated interrupt by setting the BIRQ bit in the UART Control 1 register to 1.

When configured as a general purpose timer, the interrupt interval is calculated using the following equation:

Interrupt Interval (s) = System Clock Period (s) \times BRG[15:0]

UART Control Register Definitions

The UART control registers support the UART and the associated Infrared Encoder/ Decoders. For more information on the infrared operation, see Infrared Encoder/Decoder on page 113.

UART Transmit Data Register

Data bytes written to the UART Transmit Data register (Table 62) are shifted out on the TXDx pin. The Write-only UART Transmit Data register shares a Register File address with the read-only UART Receive Data register.

Table 62. UART Transmit Data Register (U0TXD)

BITS	7	6	5	4	3	2	1	0
FIELD	TXD							
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	W	W	W	W	W	W	W	W
ADDR	F40H							

TXD—Transmit Data

UART transmitter data byte to be shifted out through the TXDx pin.

Z8 Encore! XP[®] F0823 Series Product Specification

118

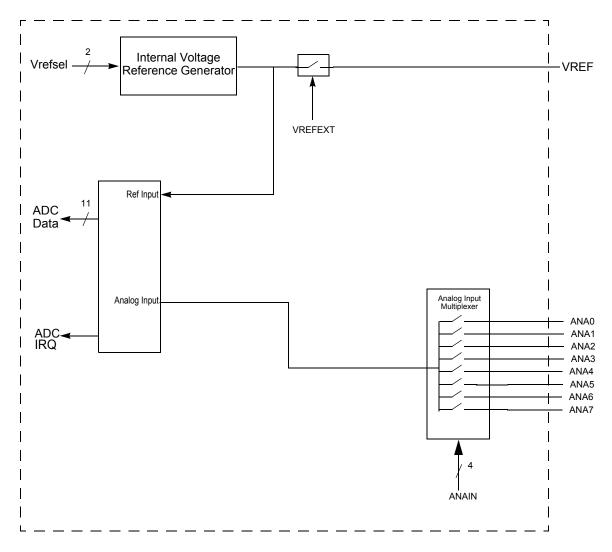


Figure 19. Analog-to-Digital Converter Block Diagram

Operation

Data Format

The output of the ADC is an 11-bit, signed, two's complement digital value. The output generally ranges from 0 to +1023, but offset errors can cause small negative values.

The ADC registers return 13 bits of data, but the two LSBs are intended for compensation use only. When the compensation routine is performed on the 13 bit raw ADC value, two

124

ADC Control/Status Register 1

The second ADC Control register contains the voltage reference level selection bit.

Table 73. ADC Control/Status Register 1 (ADCCTL1)

BITS	7	6	5	4	3	2	1	0
FIELD	REFSELH				Reserved			
RESET	1	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F71H							

REFSELH—Voltage Reference Level Select High Bit; in conjunction with the Low bit (REFSELL) in ADC Control Register 0, this determines the level of the internal voltage reference; the following details the effects of {REFSELH, REFSELL}; this reference is independent of the Comparator reference

00= Internal Reference Disabled, reference comes from external pin

01= Internal Reference set to 1.0 V

10= Internal Reference set to 2.0 V (default)

ADC Data High Byte Register

The ADC Data High Byte register contains the upper eight bits of the ADC output. The output is an 11-bit two's complement value. During a single-shot conversion, this value is invalid. Access to the ADC Data High Byte register is read-only. Reading the ADC Data High Byte register latches data in the ADC Low Bits register.

Table 74. ADC Data High Byte Register (ADCD_H)

BITS	7	6	5	4	3	2	1	0
FIELD	ADCDH							
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	R	R	R	R	R	R	R	R
ADDR				F7	2H			

ADCDH—ADC Data High Byte

This byte contains the upper eight bits of the ADC output. These bits are not valid during a single-shot conversion. During a continuous conversion, the most recent conversion output is held in this register. These bits are undefined after a Reset.

Z8 Encore! XP[®] F0823 Series Product Specification

130

Figure 20. Flash Memory Arrangement

Flash Information Area

The Flash information area is separate from program memory and is mapped to the address range FE00H to FFFFH. Not all these addresses are accessible. Factory trim values for the analog peripherals are stored here. Factory calibration data for the ADC is also stored here.

Operation

The Flash Controller programs and erases Flash memory. The Flash Controller provides the proper Flash controls and timing for Byte Programming, Page Erase, and Mass Erase of Flash memory.

The Flash Controller contains several protection mechanisms to prevent accidental programming or erasure. These mechanism operate on the page, sector and full-memory levels.

The Flowchart in Figure 21 displays basic Flash Controller operation. The following subsections provide details about the various operations (Lock, Unlock, Byte Programming, Page Protect, Page Unprotect, Page Select Page Erase, and Mass Erase) displayed in Figure 21.

```
DBG \leftarrow 05H
DBG \rightarrow OCDCTL[7:0]
```

• Write Program Counter (06H)—The Write Program Counter command writes the data that follows to the eZ8 CPU's Program Counter (PC). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, the Program Counter (PC) values are discarded.

```
DBG ← 06H
DBG ← ProgramCounter[15:8]
DBG ← ProgramCounter[7:0]
```

• **Read Program Counter (07H)**—The Read Program Counter command reads the value in the eZ8 CPU's Program Counter (PC). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this command returns FFFFH.

```
DBG \leftarrow 07H
DBG \rightarrow ProgramCounter[15:8]
DBG \rightarrow ProgramCounter[7:0]
```

• Write Register (08H)—The Write Register command writes data to the Register File. Data can be written 1–256 bytes at a time (256 bytes can be written by setting size to 0). If the device is not in DEBUG mode, the address and data values are discarded. If the Flash Read Protect Option bit is enabled, only writes to the Flash Control Registers are allowed and all other register write data values are discarded.

```
DBG \leftarrow 08H
DBG \leftarrow {4'h0,Register Address[11:8]}
DBG \leftarrow Register Address[7:0]
DBG \leftarrow Size[7:0]
DBG \leftarrow 1-256 data bytes
```

• **Read Register (09H)**—The Read Register command reads data from the Register File. Data can be read 1–256 bytes at a time (256 bytes can be read by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this command returns FFH for all the data values.

```
DBG \leftarrow 09H
DBG \leftarrow {4'h0,Register Address[11:8]
DBG \leftarrow Register Address[7:0]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-256 data bytes
```

• Write Program Memory (0AH)—The Write Program Memory command writes data to Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). The on-chip Flash Controller must be written to and unlocked for the programming operation to occur. If the Flash Controller is not unlocked, the data is discarded. If the device

Opcode Maps

A description of the opcode map data and the abbreviations are provided in Figure 26. Figure 27 and Figure 28 provide information about each of the eZ8 CPU instructions. Table 116 lists Opcode Map abbreviations.

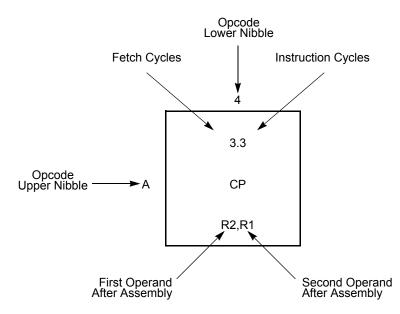


Figure 26. Opcode Map Cell Description

Z8 Encore! XP[®] F0823 Series Product Specification

235

reset in STOP mode 89 time-out response 88 Watchdog Timer Control Register (WDTCTL) 90 WDTCTL register 90, 128, 167 WDTH register 91 WDTL register 91 WDTU register 91 working register 173 working register pair 173

Χ

X 173 XOR 178 XORX 178

Ζ

Z8 Encore! block diagram 3 features 1 part selection guide 2