

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	6
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0413sb005ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	07
Receiving Data using the Interrupt Driven Method	. 97
Clear To Sond (CTS) Operation	. 98
	. 99
	101
	101
	103
	100
	104
	104
UART Status 0 Register	105
UART Status 1 Register	106
UART Control 0 and Control 1 Registers	107
UART Address Compare Register	109
UART Baud Rate High and Low Byte Registers	110
Infrared Encoder/Decoder	113
Architecture	113
Operation	113
Transmitting IrDA Data	114
Receiving IrDA Data	115
Infrared Encoder/Decoder Control Register Definitions	116
Analog-to-Digital Converter	447
	117
Architecture	117 117
Architecture	117 117 118
Architecture	117 117 118 118
Architecture Operation Operation Data Format Automatic Powerdown Operation	117117118118119
Architecture Operation Operation Data Format Automatic Powerdown Single-Shot Conversion	 117 117 118 118 119 119 119
Architecture Operation Data Format Automatic Powerdown Single-Shot Conversion Continuous Conversion	 117 117 118 118 119 119 120
Architecture Operation Data Format Automatic Powerdown Single-Shot Conversion Continuous Conversion Interrupts	117 117 118 118 119 119 120 121
Architecture Operation Data Format Automatic Powerdown Single-Shot Conversion Continuous Conversion Interrupts Calibration and Compensation	 117 117 118 118 119 119 120 121 121
Architecture Operation Data Format Automatic Powerdown Single-Shot Conversion Continuous Conversion Interrupts Calibration and Compensation ADC Control Register Definitions	 117 117 118 118 119 119 120 121 121 122
Architecture Operation Operation Data Format Data Format Automatic Powerdown Single-Shot Conversion Single-Shot Conversion Continuous Conversion Interrupts Calibration and Compensation ADC Control Register Definitions ADC Control Register 0 Operation	 117 117 118 118 119 119 120 121 121 122 122 122
Architecture Operation Operation Data Format Automatic Powerdown Single-Shot Conversion Single-Shot Conversion Continuous Conversion Interrupts Interrupts Calibration and Compensation ADC Control Register Definitions ADC Control Register 0 ADC Control/Status Register 1	 117 117 118 118 119 119 120 121 121 122 122 124
Architecture Operation Data Format Automatic Powerdown Single-Shot Conversion Continuous Conversion Interrupts Calibration and Compensation ADC Control Register Definitions ADC Control Register 0 ADC Control/Status Register 1 ADC Data High Byte Register	117 117 118 118 119 120 121 121 122 122 122 124 124
Architecture Operation Data Format Automatic Powerdown Single-Shot Conversion Single-Shot Conversion Continuous Conversion Interrupts Calibration and Compensation ADC Control Register Definitions ADC Control Register 0 ADC Control/Status Register 1 ADC Data High Byte Register ADC Data Low Bits Register	 117 117 118 118 119 119 120 121 121 122 122 122 124 125
Architecture Operation Data Format Automatic Powerdown Single-Shot Conversion Continuous Conversion Interrupts Calibration and Compensation ADC Control Register Definitions ADC Control Register 0 ADC Control/Status Register 1 ADC Data High Byte Register ADC Data Low Bits Register	117 117 118 118 119 120 121 121 122 122 122 124 124 125 127
Architecture Operation Data Format Data Format Automatic Powerdown Single-Shot Conversion Continuous Conversion Interrupts Calibration and Compensation Calibration and Compensation ADC Control Register Definitions ADC Control Register 0 ADC Control/Status Register 1 ADC Data High Byte Register ADC Data Low Bits Register Operation	117 117 118 118 119 120 121 121 122 122 122 122 124 125 127 127
Architecture Operation Data Format Automatic Powerdown Single-Shot Conversion Continuous Conversion Interrupts Calibration and Compensation ADC Control Register Definitions ADC Control Register 0 ADC Control/Status Register 1 ADC Data High Byte Register ADC Data Low Bits Register Comparator Operation Comparator Control Register Definitions	 117 117 118 118 119 120 121 121 122 122 124 125 127 127 127

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
FF2	Watchdog Timer Reload High Byte	WDTH	FF	91
FF3	Watchdog Timer Reload Low Byte	WDTL	FF	91
FF4–FF5	Reserved	_	XX	
Trim Bit Contro	I			
FF6	Trim Bit Address	TRMADR	00	143
FF7	Trim Data	TRMDR	XX	144
Flash Memory	Controller			
FF8	Flash Control	FCTL	00	137
FF8	Flash Status	FSTAT	00	137
FF9	Flash Page Select	FPS	00	138
	Flash Sector Protect	FPROT	00	139
FFA	Flash Programming Frequency High Byte	FFREQH	00	140
FFB	Flash Programming Frequency Low Byte	FFREQL	00	140
eZ8 CPU				
FFC	Flags		XX	Refer to eZ8
FFD	Register Pointer	RP	XX	CPU Core
FFE	Stack Pointer High Byte	SPH	XX	User Manual
FFF	Stack Pointer Low Byte	SPL	XX	_(010120)
XX=Undefined				

Table 8. Register File Address Map (Continued)

vector address. Following Stop Mode Recovery, the STOP bit in the Watchdog Timer Control Register is set to 1. Table 11 lists the Stop Mode Recovery sources and resulting actions. The section following the table provides more detailed information on each of the Stop Mode Recovery sources.

Table 11. Stop Mode Recovery Sources and Resulting Action

Operating Mode	Stop Mode Recovery Source	Action
STOP mode	Watchdog Timer time-out when configured for Reset	Stop Mode Recovery
	Watchdog Timer time-out when configured for interrupt	Stop Mode Recovery followed by interrupt (if interrupts are enabled)
	Data transition on any GPIO port pin enabled as a Stop Mode Recovery source	Stop Mode Recovery
	Assertion of external RESET Pin	System Reset
	Debug Pin driven Low	System Reset

Stop Mode Recovery Using Watchdog Timer Time-Out

If the Watchdog Timer times out during STOP mode, the device undergoes a Stop Mode Recovery sequence. In the Watchdog Timer Control register, the WDT and STOP bits are set to 1. If the Watchdog Timer is configured to generate an interrupt upon time-out and Z8 Encore! XP[®] F0823 Series device is configured to respond to interrupts, the eZ8 CPU services the Watchdog Timer interrupt request following the normal Stop Mode Recovery sequence.

Stop Mode Recovery Using a GPIO Port Pin Transition

Each of the GPIO port pins can be configured as a Stop Mode Recovery input source. On any GPIO pin enabled as a Stop Mode Recovery source, a change in the input pin value (from High to Low or from Low to High) initiates Stop Mode Recovery.

- **Note:** The SMR pulses shorter than specified does not trigger a recovery. When this happens, the STOP bit in the Reset Status (RSTSTAT) register is set to 1.
- **Caution:** In STOP mode, the GPIO Port Input Data registers (PxIN) are disabled. The Port Input Data registers record the port transition only if the signal stays on the port pin through the end of the Stop Mode Recovery delay. As a result, short pulses on the port pin can initiate Stop Mode Recovery without being written to the Port Input Data register or without initiating an interrupt (if enabled for that pin).

Interrupt Request 1 Register

The Interrupt Request 1 (IRQ1) register (Table 35) stores interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ1 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU reads the Interrupt Request 1 register to determine if any interrupt requests are pending.

Table 35. Interrupt Request 1 Register (IRQ1)

BITS	7	6	5	4	3	2	1	0
FIELD	PA7VI	PA6CI	PA5I	PA4I	PA3I	PA2I	PA1I	PA0I
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				FC	3H			

PA7VI—Port A7 Interrupt Request

0 = No interrupt request is pending for GPIO Port A

1 = An interrupt request from GPIO Port A

PA6CI—Port A6 or Comparator Interrupt Request

0 = No interrupt request is pending for GPIO Port A or Comparator

1 = An interrupt request from GPIO Port A or Comparator

PAxI—Port A Pin x Interrupt Request

0 = No interrupt request is pending for GPIO Port A pin x

1 = An interrupt request from GPIO Port A pin x is awaiting service

where x indicates the specific GPIO Port pin number (0-5)

Interrupt Request 2 Register

The Interrupt Request 2 (IRQ2) register (Table 36) stores interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ2 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 2 register to determine if any interrupt requests are pending.

BITS	7	6	5	4	3	2	1	0
FIELD		Rese	erved		PC3I	PC2I	PC1I	PC0I
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				FC	6H			

Table 36. Interrupt Request 2 Register (IRQ2)

Reserved—Must be 0

PCxI—Port C Pin x Interrupt Request

0 = No interrupt request is pending for GPIO Port C pin x

1 = An interrupt request from GPIO Port C pin x is awaiting service

where x indicates the specific GPIO Port C pin number (0-3)

IRQ0 Enable High and Low Bit Registers

Table 37 describes the priority control for IRQ0. The IRQ0 Enable High and Low Bit registers (Table 38 and Table 39) form a priority encoded enabling for interrupts in the Interrupt Request 0 register. Priority is generated by setting bits in each register.

Table 37.	IRQ0	Enable	and	Priority	/ Encoding
-----------	------	--------	-----	----------	------------

IRQ0ENL[x]	Priority	Description
0	Disabled	Disabled
1	Level 1	Low
0	Level 2	Nominal
1	Level 3	High
	IRQ0ENL[x] 0 1 0 1	IRQ0ENL[x] Priority 0 Disabled 1 Level 1 0 Level 2 1 Level 3

where x indicates the register bits from 0–7.

Table 38. IRQ0 Enable High Bit Register (IRQ0ENH)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved	T1ENH	T0ENH	U0RENH	U0TENH	Reserved	Reserved	ADCENH
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				FC	1H			

BITS	7	6	5	4	3	2	1	0
FIELD	IES7	IES6	IES5	IES4	IES3	IES2	IES1	IES0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				FC	DH			

Table 46. Interrupt Edge Select Register (IRQES)

IES*x*—Interrupt Edge Select *x*

0 = An interrupt request is generated on the falling edge of the PAx input or PDx

1 = An interrupt request is generated on the rising edge of the PAx input PDx where x indicates the specific GPIO port pin number (0 through 7)

Shared Interrupt Select Register

The Shared Interrupt Select (IRQSS) register (Table 47) determines the source of the PADxS interrupts. The Shared Interrupt Select register selects between Port A and alternate sources for the individual interrupts.

Because these shared interrupts are edge-triggered, it is possible to generate an interrupt just by switching from one shared source to another. For this reason, an interrupt must be disabled before switching between sources.

Table 47. Shared Interrupt Select Register (IRQSS)

BITS	7	6	5	4	3	2	1	0	
FIELD	Reserved	PA6CS	Reserved						
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W R/W R/W R/W R/W					
ADDR				FC	EH				

PA6CS—PA6/Comparator Selection

0 = PA6 is used for the interrupt for PA6CS interrupt request

1 = The Comparator is used for the interrupt for PA6CS interrupt request

Reserved-Must be 0

Interrupt Control Register

The Interrupt Control (IRQCTL) register (Table 48) contains the master enable bit for all interrupts.

PWM SINGLE OUTPUT Mode

In PWM SINGLE OUTPUT mode, the timer outputs a PWM output signal through a GPIO port pin. The timer input is the system clock. The timer first counts up to the 16-bit PWM match value stored in the Timer PWM High and Low Byte registers. When the timer count value matches the PWM value, the Timer Output toggles. The timer continues counting until it reaches the Reload value stored in the Timer Reload High and Low Byte registers. Upon reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes.

If the TPOL bit in the Timer Control register is set to 1, the Timer Output signal begins as a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The Timer Output signal returns to a High (1) after the timer reaches the Reload value and is reset to 0001H.

If the TPOL bit in the Timer Control register is set to 0, the Timer Output signal begins as a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The Timer Output signal returns to a Low (0) after the timer reaches the Reload value and is reset to 0001H.

Follow the steps below for configuring a timer for PWM Single Output mode and initiating the PWM operation:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for PWM mode
 - Set the prescale value
 - Set the initial logic level (High or Low) and PWM High/Low transition for the Timer Output alternate function
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H). This only affects the first pass in PWM mode. After the first timer reset in PWM mode, counting always begins at the reset value of 0001H.
- 3. Write to the PWM High and Low Byte registers to set the PWM value.
- 4. Write to the Timer Reload High and Low Byte registers to set the Reload value (PWM period). The Reload value must be greater than the PWM value.
- 5. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 6. Configure the associated GPIO port pin for the Timer Output alternate function.
- 7. Write to the Timer Control register to enable the timer and initiate counting.

The PWM period is represented by the following equation:

 $PWM Period (s) = \frac{Reload Value \times Prescale}{System Clock Frequency (Hz)}$

In COMPARE mode, the Timer Reload High and Low Byte registers store the 16-bit Compare value.

Table 51. Timer 0–1 Reload High Byte Register (TxRH)

BITS	7	6	5	4	3	2	1	0	
FIELD		TRH							
RESET	1	1	1	1	1	1	1	1	
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W							
ADDR				F02H,	F0AH				

Table 52. Timer 0–1 Reload Low Byte Register (TxRL)

BITS	7	6	5	4	3	2	1	0
FIELD	TRL							
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F03H, F0BH							

TRH and TRL—Timer Reload Register High and Low

These two bytes form the 16-bit Reload value, {TRH[7:0], TRL[7:0]}. This value sets the maximum count value which initiates a timer reload to 0001H. In Compare mode, these two bytes form the 16-bit Compare value.

Timer 0-1 PWM High and Low Byte Registers

The Timer 0-1 PWM High and Low Byte (TxPWMH and TxPWML) registers (Table 53 and Table 54) control pulse-width modulator (PWM) operations. These registers also store the Capture values for the CAPTURE and CAPTURE/COMPARE modes.

Table 53. Timer 0–1 PWM High Byte Register (TxPWMH)

BITS	7	6	5	4	3	2	1	0
FIELD	PWMH							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F04H, F0CH							

Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL register address produce no effect on the bits in the WDTCTL register. The locking mechanism prevents spurious writes to the Reload registers.

This register address is shared with the read-only Reset Status Register.

Table 58.	. Watchdog	Timer Control	Register	(WDTCTL)
-----------	------------	----------------------	----------	----------

BITS	7	6	5	4	3	2	1	0
FIELD	WDTUNLK							
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	W	W	W	W	W	W	W	W
ADDR		FFOH						

WDTUNLK—Watchdog Timer Unlock

The software must write the correct unlocking sequence to this register before it is allowed to modify the contents of the Watchdog Timer reload registers.

Watchdog Timer Reload Upper, High and Low Byte Registers

The Watchdog Timer Reload Upper, High and Low Byte (WDTU, WDTH, WDTL) registers (Tables 59 through Table 61) form the 24-bit reload value that is loaded into the Watchdog Timer when a WDT instruction executes. The 24-bit reload value is {WDTU[7:0], WDTH[7:0], WDTL[7:0]}. Writing to these registers sets the appropriate Reload Value. Reading from these registers returns the current Watchdog Timer count value.

Caution: *The 24-bit WDT Reload Value must not be set to a value less than* 000004H.

Z8 Encore! XP[®] F0823 Series Product Specification

Universal Asynchronous Receiver/Transmitter

The universal asynchronous receiver/transmitter (UART) is a full-duplex communication channel capable of handling asynchronous data transfers. The UART uses a single 8-bit data mode with selectable parity. The features of UART include:

- 8-bit asynchronous data transfer
- Selectable even- and odd-parity generation and checking
- Option of one or two STOP bits
- Separate transmit and receive interrupts
- Framing, parity, overrun, and break detection
- Separate transmit and receive enables
- 16-bit baud rate generator (BRG)
- Selectable MULTIPROCESSOR (9-bit) mode with three configurable interrupt schemes
- BRG can be configured and used as a basic 16-bit timer
- Driver Enable output for external bus transceivers

Architecture

The UART consists of three primary functional blocks: transmitter, receiver, and baud rate generator. The UART's transmitter and receiver function independently, but employ the same baud rate and data format. Figure 10 displays the UART architecture.

REFSELL—Voltage Reference Level Select Low Bit; in conjunction with the High bit (REFSELH) in ADC Control/Status Register 1, this determines the level of the internal voltage reference; the following details the effects of {REFSELH, REFSELL};

Note:

This reference is independent of the Comparator reference.

00= Internal Reference Disabled, reference comes from external pin.

01 = Internal Reference set to 1.0 V

10= Internal Reference set to 2.0 V (default)

REFEXT—External Reference Select

0 = External reference buffer is disabled; V_{ref} pin is available for GPIO functions

1 = The internal ADC reference is buffered and connected to the V_{ref} pin

CONT

0 = Single-shot conversion. ADC data is output once at completion of the 5129 system clock cycles.

1 = Continuous conversion. ADC data updated every 256 system clock cycles.

ANAIN[3:0]—Analog Input Select

These bits select the analog input for conversion. Not all port pins in this list are available in all packages for Z8 Encore! XP[®] F0823 Series. For information on the port pins available with each package style, see Pin Description on page 7. Do not enable unavailable analog inputs. Usage of these bits changes depending on the buffer mode selected in ADC Control/Status Register 1.

For the reserved values, all input switches are disabled to avoid leakage or other undesirable operation. ADC samples taken with reserved bit settings are undefined.

Single-Ended:

0000 = ANA00001 = ANA10010 = ANA20011 = ANA30100 = ANA40101 = ANA50110 = ANA60111 = ANA71000 = Reserved1001 = Reserved1010 = Reserved1011 = Reserved1100 = Reserved1101 = Reserved1110 = Reserved1111 = Reserved The randomized lot identifier is a 32 byte binary value, stored in the flash information page (for more details, see Reading the Flash Information Page on page 143 and Randomized Lot Identifier on page 149) and is unaffected by mass erasure of the device's flash memory.

Reading the Flash Information Page

The following code example shows how to read data from the Flash Information Area.

; get value at info address 60 (FE60h)
ldx FPS, #%80 ; enable access to flash info page
ld R0, #%FE
ld R1, #%60
ldc R2, @RR0 ; R2 now contains the calibration value

Flash Option Bit Control Register Definitions

Trim Bit Address Register

The Trim Bit Address (TRMADR) register contains the target address for an access to the trim option bits.

Table 85. Trim Bit Address Register (TRMADR)

BITS	7	6	5	4	3	2	1	0
FIELD	TRMADR - Trim Bit Address (00H to 1FH)							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FF6H							

174

Table 106 lists additional symbols that are used throughout the Instruction Summary and Instruction Set Description sections.

Symbol	Definition
dst	Destination Operand
src	Source Operand
@	Indirect Address Prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flags Register
RP	Register Pointer
#	Immediate Operand Prefix
В	Binary Number Suffix
%	Hexadecimal Number Prefix
Н	Hexadecimal Number Suffix

Table 106. Additional Symbols

Assignment of a value is indicated by an arrow. For example,

 $dst \leftarrow dst + src$

indicates the source data is added to the destination data and the result is stored in the destination location.

eZ8 CPU Instruction Classes

eZ8 CPU instructions are divided functionally into the following groups:

- Arithmetic
- Bit Manipulation
- Block Transfer
- CPU Control
- Load
- Logical
- Program Control

177

Table 110. CPU Control Instructions (Continued)

Mnemonic	Operands	Instruction
SCF	_	Set Carry Flag
SRP	SIC	Set Register Pointer
STOP	—	STOP Mode
WDT	—	Watchdog Timer Refresh

Table 111. Load Instructions

Mnemonic	Operands	Instruction
CLR	dst	Clear
LD	dst, src	Load
LDC	dst, src	Load Constant to/from Program Memory
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDE	dst, src	Load External Data to/from Data Memory
LDEI	dst, src	Load External Data to/from Data Memory and Auto-Increment Addresses
LDWX	dst, src	Load Word using Extended Addressing
LDX	dst, src	Load using Extended Addressing
LEA	dst, X(src)	Load Effective Address
POP	dst	Рор
POPX	dst	Pop using Extended Addressing
PUSH	SrC	Push
PUSHX	src	Push using Extended Addressing

Table 112. Logical Instructions

Mnemonic	Operands	Instruction
AND	dst, src	Logical AND
ANDX	dst, src	Logical AND using Extended Addressing
COM	dst	Complement
OR	dst, src	Logical OR

		V _{DD} = 3.0 V to 3.6 V T _A = 0 °C to +70 °C (unless otherwise stated)				
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
	Resolution	10		-	bits	
	Differential Nonlinearity (DNL)	-1.0	_	1.0	LSB ³	External V _{REF} = 2.0 V; R _S \leftarrow 3.0 k Ω
	Integral Nonlinearity (INL)	-3.0	_	3.0	LSB ³	External V _{REF} = 2.0 V; R _S \leftarrow 3.0 k Ω
	Offset Error with Calibration		<u>+</u> 1		LSB ³	
	Absolute Accuracy with Calibration		<u>+</u> 3		LSB ³	
V _{REF}	Internal Reference Voltage	1.0 2.0	1.1 2.2	1.2 2.4	V	REFSEL=01 REFSEL=10
V _{REF}	Internal Reference Variation with Temperature		<u>+</u> 1.0		%	Temperature variation with V _{DD} = 3.0
V _{REF}	Internal Reference Voltage Variation with V _{DD}		<u>+</u> 0.5		%	Supply voltage variation with T _A = 30 °C
R _{REFOUT}	Reference Buffer Output Impedance		850		Ω	When the internal reference is buffered and driven out to the VREF pin (REFOUT = 1)
	Single-Shot Conversion Time	-	5129	-	System clock cycles	All measurements but temperature sensor
			10258			Temperature sensor measurement
	Continuous Conversion Time	_	256	_	System clock cycles	All measurements but temperature sensor
			512			Temperature sensor measurement
	Signal Input Bandwidth	_	10		kHz	As defined by -3 dB point
R _S	Analog Source Impedance ⁴	_	_	10	kΩ	In unbuffered mode

Table 125. Analog-to-Digital Converter Electrical Characteristics and Timing

UART Timing

Figure 32 and Table 130 provide timing information for UART pins for the case where CTS is used for flow control. The CTS to DE assertion delay (T1) assumes the transmit data register has been loaded with data prior to CTS assertion.

Figure 32. UART Timing With CTS

		Delay (ns)			
Parameter	Abbreviation	Minimum	Maximum		
UART					
T ₁	CTS Fall to DE output delay	2 * XIN period	2 * XIN period + 1 bit time		
T ₂	DE assertion to TXD falling edge (start bit) dela	ay ± 5			
T ₃	End of Stop Bit(s) to DE deassertion delay	± 5			

Table 130. UART Timing With CTS

Part Number Suffix Designations

Index

COMPARE 84 compare - extended addressing 175 COMPARE mode 84 compare with carry 175 compare with carry - extended addressing 175 complement 177 complement carry flag 176 condition code 173 continuous conversion (ADC) 120 CONTINUOUS mode 84 control register definition, UART 104 Control Registers 13, 17 **COUNTER modes 84** CP 175 **CPC 175 CPCX 175** CPU and peripheral overview 4 CPU control instructions 176 **CPX 175** Customer Support 237

D

DA 173, 175 data memory 15 DC characteristics 194 debugger, on-chip 151 **DEC 175** decimal adjust 175 decrement 175 decrement and jump non-zero 178 decrement word 175 **DECW 175** destination operand 174 device, port availability 35 DI 176 direct address 173 disable interrupts 176 **DJNZ 178** dst 174

Ε

EI 176

electrical characteristics 193 ADC 201 flash memory and timing 200 GPIO input data sample timing 202 Watchdog Timer 200, 202 enable interrupt 176 ER 173 extended addressing register 173 extended addressing register 173 external pin reset 25 eZ8 CPU features 4 eZ8 CPU instruction classes 174 eZ8 CPU instruction notation 172 eZ8 CPU instruction set 171 eZ8 CPU instruction set 171

F

FCTL register 137, 143, 144 features, Z8 Encore! 1 first opcode map 190 FLAGS 174 flags register 174 flash controller 4 option bit address space 144 option bit configuration - reset 141 program memory address 0000H 144 program memory address 0001H 145 flash memory 129 arrangement 130 byte programming 135 code protection 133 configurations 129 control register definitions 137, 143 controller bypass 136 electrical characteristics and timing 200 flash control register 137, 143, 144 flash option bits 134 flash status register 137 flow chart 132 frequency high and low byte registers 139 mass erase 135 operation 131 operation timing 133

228

Z8 Encore! XP[®] F0823 Series Product Specification

235

reset in STOP mode 89 time-out response 88 Watchdog Timer Control Register (WDTCTL) 90 WDTCTL register 90, 128, 167 WDTH register 91 WDTL register 91 WDTU register 91 working register 173 working register pair 173

Χ

X 173 XOR 178 XORX 178

Ζ

Z8 Encore! block diagram 3 features 1 part selection guide 2