

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	24
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0413sj005ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

13

Address Space

The eZ8 CPU can access three distinct address spaces:

- The Register File contains addresses for the general-purpose registers and the eZ8 CPU, peripheral, and general-purpose I/O port control registers.
- The Program Memory contains addresses for all memory locations having executable code and/or data.
- The Data Memory contains addresses for all memory locations that contain data only.

These three address spaces are covered briefly in the following subsections. For more detailed information regarding the eZ8 CPU and its address space, refer to eZ8 CPU Core User Manual (UM0128) available for download at www.zilog.com.

Register File

The Register File address space in the Z8 Encore! XP[®] MCU is 4 KB (4096 bytes). The Register File is composed of two sections: control registers and general-purpose registers. When instructions are executed, registers defined as sources are read, and registers defined as destinations are written. The architecture of the eZ8 CPU allows all general-purpose registers to function as accumulators, address pointers, index registers, stack areas, or scratch pad memory.

The upper 256 bytes of the 4 KB Register File address space are reserved for control of the eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at addresses from F00H to FFFH. Some of the addresses within the 256 B control register section are reserved (unavailable). Reading from a reserved Register File address returns an undefined value. Writing to reserved Register File addresses is not recommended and can produce unpredictable results.

The on-chip RAM always begins at address 000H in the Register File address space. Z8 Encore! XP F0823 Series devices contain 256 B-1 KB of on-chip RAM. Reading from Register File addresses outside the available RAM addresses (and not within the control register address space) returns an undefined value. Writing to these Register File addresses produces no effect.

Program Memory

The eZ8 CPU supports 64 KB of Program Memory address space. Z8 Encore! XP F0823 Series devices contain 1 KB to 8 KB of on-chip Flash memory in the Program Memory address space. Reading from Program Memory addresses outside the available Flash

memory addresses returns FFH. Writing to these unimplemented Program Memory addresses produces no effect. Table 6 describes the Program Memory maps for the Z8 Encore! XP[®] F0823 Series products.

Function
Flash Option Bits
Reset Vector
WDT Interrupt Vector
Illegal Instruction Trap
Interrupt Vectors*
Oscillator Fail Traps*
Program Memory
Flash Option Bits
Reset Vector
WDT Interrupt Vector
Illegal Instruction Trap
Interrupt Vectors*
Oscillator Fail Traps*
Program Memory
Flash Option Bits
Reset Vector
WDT Interrupt Vector
Illegal Instruction Trap
Interrupt Vectors*
Oscillator Fail Traps*
Program Memory
Flash Option Bits

 Table 6. Z8 Encore! XP F0823 Series Program Memory Maps

17

Register Map

Table 8 lists the address map for the Register File of the Z8 Encore! XP[®] F0823 Series devices. Not all devices and package styles in the Z8 Encore! XP F0823 Series support the ADC, or all GPIO ports. Consider registers for unimplemented peripherals as reserved.

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
General-Purpos	<u> </u>			1 490 110
Z8F0823/Z8F08				
			~~~	
000–3FF	General-Purpose Register File RAM		XX	
400–EFF	Reserved	_	XX	
Z8F0423/Z8F04				
000–3FF	General-Purpose Register File RAM		XX	
400–EFF	Reserved	—	XX	
Z8F0223/Z8F02	13 Devices			
000–1FF	General-Purpose Register File RAM	—	XX	
200–EFF	Reserved	—	XX	
Z8F0123/Z8F01	13 Devices			
000–0FF	General-Purpose Register File RAM	_	XX	
100–EFF	Reserved	_	XX	
Timer 0				
F00	Timer 0 High Byte	ТОН	00	80
F01	Timer 0 Low Byte	TOL	01	80
F02	Timer 0 Reload High Byte	TORH	FF	81
F03	Timer 0 Reload Low Byte	TORL	FF	81
F04	Timer 0 PWM High Byte	<b>T0PWMH</b>	00	81
F05	Timer 0 PWM Low Byte	TOPWML	00	82
F06	Timer 0 Control 0	TOCTLO	00	82
F07	Timer 0 Control 1	T0CTL1	00	83
Timer 1				
F08	Timer 1 High Byte	T1H	00	80
F09	Timer 1 Low Byte	T1L	01	80
F0A	Timer 1 Reload High Byte	T1RH	FF	81
F0B	Timer 1 Reload Low Byte	T1RL	FF	81

#### STOP—Stop Mode Recovery Indicator

If this bit is set to 1, a Stop Mode Recovery is occurred. If the STOP and WDT bits are both set to 1, the Stop Mode Recovery occurred because of a WDT time-out. If the STOP bit is 1 and the WDT bit is 0, the Stop Mode Recovery was not caused by a WDT time-out. This bit is reset by a POR or a WDT time-out that occurred while not in STOP mode. Reading this register also resets this bit.

WDT-Watchdog Timer time-out Indicator

If this bit is set to 1, a WDT time-out occurred. A POR resets this pin. A Stop Mode Recovery from a change in an input pin also resets this bit. Reading this register resets this bit. This read must occur before clearing the WDT interrupt.

#### EXT-External Reset Indicator

If this bit is set to 1, a Reset initiated by the external  $\overline{\text{RESET}}$  pin occurred. A Power-On Reset or a Stop Mode Recovery from a change in an input pin resets this bit. Reading this register resets this bit.

Reserved-0 when read

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port A	PA0	T0IN/T0OUT*	Timer 0 Input/Timer 0 Output Complement	N/A
		Reserved		-
	PA1	TOOUT	Timer 0 Output	-
		Reserved		-
	PA2	DE0	UART 0 Driver Enable	-
		Reserved		-
	PA3	CTS0	UART 0 Clear to Send	-
		Reserved		-
	PA4	RXD0/IRRX0	UART 0 / IrDA 0 Receive Data	-
		Reserved		
	PA5	TXD0/IRTX0	UART 0 / IrDA 0 Transmit Data	-
		Reserved		
	PA6	T1IN/T1OUT*	Timer 1 Input/Timer 1 Output Complement	
		Reserved		
	PA7	T1OUT	Timer 1 Output	_
		Reserved		

#### Table 15. Port Alternate Function Mapping (Non 8-Pin Parts)

**Note:** Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers are not implemented for Port A. Enabling alternate function selections as described in Port A–C Alternate Function Sub-Registers automatically enables the associated alternate function.

* Whether PA0/PA6 take on the timer input or timer output complement function depends on the timer configuration as described in Timer Pin Signal Operation on page 79.

PSMRE[7:0]—Port Stop Mode Recovery Source Enabled.

0 = The Port pin is not configured as a Stop Mode Recovery source. Transitions on this pin during STOP mode do not initiate Stop Mode Recovery.

1 = The Port pin is configured as a Stop Mode Recovery source. Any logic transition on this pin during STOP mode initiates Stop Mode Recovery.

### Port A–C Pull-up Enable Sub-Registers

The Port A–C Pull-up Enable sub-register (Table 25) is accessed through the Port A–C Control register by writing 06H to the Port A–C Address register. Setting the bits in the Port A–C Pull-up Enable sub-registers enables a weak internal resistive pull-up on the specified Port pins.

Table 25. Port A–C Pull-Up Enable Sub-Registers (PxPUE)

BITS	7	6	5	4	3	2	1	0
FIELD	PPUE7	PPUE6	PPUE5	PPUE4	PPUE3	PPUE2	PPUE1	PPUE0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	If 06H in Port A–C Address Register, accessible through the Port A–C Control Register							

PPUE[7:0]—Port Pull-up Enabled

0 = The weak pull-up on the Port pin is disabled.

1 = The weak pull-up on the Port pin is enabled.

### Port A–C Alternate Function Set 1 Sub-Registers

The Port A–C Alternate Function Set1 sub-register (Table 26) is accessed through the Port A–C Control register by writing 07H to the Port A–C Address register. The Alternate Function Set 1 sub-registers selects the alternate function available at a port pin. Alternate Functions selected by setting or clearing bits of this register are defined in GPIO Alternate Functions on page 36.

Note:

*Alternate function selection on port pins must also be enabled as described in* Port A–C Alternate Function Sub-Registers *on page 45*.

Caution:

To avoid missing interrupts, use the following coding style to clear bits in the Interrupt Request 0 register:

#### Good coding style that avoids lost interrupt requests: ANDX IRQ0, MASK

#### **Software Interrupt Assertion**

Program code generates interrupts directly. Writing a 1 to the correct bit in the Interrupt Request register triggers an interrupt (assuming that interrupt is enabled). When the interrupt request is acknowledged by the eZ8 CPU, the bit in the Interrupt Request register is automatically cleared to 0.

**Caution:** The following coding style used to generate software interrupts by setting bits in the Interrupt Request registers is not recommended. All incoming interrupts received between execution of the first LDX command and the final LDX command are lost.

Poor coding style that can result in lost interrupt requests: LDX r0, IRQ0 OR r0, MASK LDX IRQ0, r0

**Caution:** To avoid missing interrupts, use the following coding style to set bits in the Interrupt Request registers:

Good coding style that avoids lost interrupt requests: ORX IRQ0, MASK

### Watchdog Timer Interrupt Assertion

The Watchdog Timer interrupt behavior is different from interrupts generated by other sources. The Watchdog Timer continues to assert an interrupt as long as the timeout condition continues. As it operates on a different (and usually slower) clock domain than the rest of the device, the Watchdog Timer continues to assert this interrupt for many system clocks until the counter rolls over.

**Caution:** To avoid re-triggerings of the Watchdog Timer interrupt after exiting the associated interrupt service routine, it is recommended that the service routine continues to read from the RSTSTAT register until the WDT bit is cleared as given in the following coding sample:

> CLEARWDT: LDX r0, RSTSTAT ; read reset status register to clear wdt bit BTJNZ 5, r0, CLEARWDT ; loop until bit is cleared

# Operation

The timers are 16-bit up-counters. Minimum time-out delay is set by loading the value 0001H into the Timer Reload High and Low Byte registers and setting the prescale value to 1. Maximum time-out delay is set by loading the value 0000H into the Timer Reload High and Low Byte registers and setting the prescale value to 128. If the Timer reaches FFFFH, the timer rolls over to 0000H and continues counting.

## **Timer Operating Modes**

The timers can be configured to operate in the following modes:

#### **ONE-SHOT Mode**

In ONE-SHOT mode, the timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the Reload value, the timer generates an interrupt and the count value in the Timer High and Low Byte registers is reset to 0001H. The timer is automatically disabled and stops counting.

Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state for one system clock cycle (from Low to High or from High to Low) upon timer Reload. If it is appropriate to have the Timer Output make a state change at a One-Shot time-out (rather than a single cycle pulse), first set the TPOL bit in the Timer Control register to the start value before enabling ONE-SHOT mode. After starting the timer, set TPOL to the opposite bit value.

Follow the steps below for configuring a timer for ONE-SHOT mode and initiating the count:

- 1. Write to the Timer Control register to:
  - Disable the timer
  - Configure the timer for ONE-SHOT mode
  - Set the prescale value
  - Set the initial output level (High or Low) if using the Timer Output alternate function
- 2. Write to the Timer High and Low Byte registers to set the starting count value.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.

- Set the initial logic level (High or Low) and PWM High/Low transition for the Timer Output alternate function
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H). This only affects the first pass in PWM mode. After the first timer reset in PWM mode, counting always begins at the reset value of 0001H.
- 3. Write to the PWM High and Low Byte registers to set the PWM value.
- 4. Write to the PWM Control register to set the PWM dead band delay value. The deadband delay must be less than the duration of the positive phase of the PWM signal (as defined by the PWM high and low byte registers). It must also be less than the duration of the negative phase of the PWM signal (as defined by the difference between the PWM registers and the Timer Reload registers).
- 5. Write to the Timer Reload High and Low Byte registers to set the Reload value (PWM period). The Reload value must be greater than the PWM value.
- 6. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 7. Configure the associated GPIO port pin for the Timer Output and Timer Output Complement alternate functions. The Timer Output Complement function is shared with the Timer Input function for both timers. Setting the timer mode to Dual PWM automatically switches the function from Timer In to Timer Out Complement.
- 8. Write to the Timer Control register to enable the timer and initiate counting.

The PWM period is represented by the following equation:  $PWM \text{ Period (s)} = \frac{\text{Reload Value} \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$ 

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, the ONE-SHOT mode equation determines the first PWM time-out period.

If TPOL is set to 0, the ratio of the PWM output High time to the total period is represented by:

PWM Output High Time Ratio (%) =  $\frac{\text{Reload Value} - \text{PWM Value}}{\text{Reload Value}} \times 100$ 

If TPOL is set to 1, the ratio of the PWM output High time to the total period is represented by:

PWM Output High Time Ratio (%) =  $\frac{PWM Value}{Reload Value} \times 100$ 

#### **CAPTURE Mode**

In CAPTURE mode, the current timer count value is recorded when the appropriate external Timer Input transition occurs. The Capture count value is written to the Timer PWM High and Low Byte Registers. The timer input is the system clock. The TPOL bit in the Timer Control register determines if the Capture occurs on a rising edge or a falling edge

The UART is now configured for interrupt-driven data transmission. Because the UART Transmit Data register is empty, an interrupt is generated immediately. When the UART Transmit interrupt is detected, the associated interrupt service routine (ISR) performs the following:

1. Write the UART Control 1 register to select the multiprocessor bit for the byte to be transmitted:

Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if sending a data byte.

- 2. Write the data byte to the UART Transmit Data register. The transmitter automatically transfers the data to the Transmit Shift register and transmits the data.
- 3. Clear the UART Transmit interrupt bit in the applicable Interrupt Request register.
- 4. Execute the IRET instruction to return from the interrupt-service routine and wait for the Transmit Data register to again become empty.

#### **Receiving Data using the Polled Method**

Follow the steps below to configure the UART for polled data reception:

- 1. Write to the UART Baud Rate High and Low Byte registers to set an acceptable baud rate for the incoming data stream.
- 2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation.
- 3. Write to the UART Control 1 register to enable MULTIPROCESSOR mode functions, if appropriate.
- 4. Write to the UART Control 0 register to:
  - Set the receive enable bit (REN) to enable the UART for data reception
  - Enable parity, if appropriate and if Multiprocessor mode is not enabled, and select either even or odd parity
- 5. Check the RDA bit in the UART Status 0 register to determine if the Receive Data register contains a valid data byte (indicated by a 1). If RDA is set to 1 to indicate available data, continue to step 6. If the Receive Data register is empty (indicated by a 0), continue to monitor the RDA bit awaiting reception of the valid data.
- Read data from the UART Receive Data register. If operating in MULTIPROCESSOR (9-bit) mode, further actions may be required depending on the MULTIPROCESSOR mode bits MPMD[1:0].
- 7. Return to step 4 to receive additional data.

Endec, and passed to the UART. Communication is half-duplex, which means simultaneous data transmission and reception is not allowed.

The baud rate is set by the UART's baud rate generator and supports IrDA standard baud rates from 9600 baud to 115.2 kbaud. Higher baud rates are possible, but do not meet IrDA specifications. The UART must be enabled to use the Infrared Endec. The Infrared Endec data rate is calculated using the following equation:

Infrared Data Rate (bits/s) =  $\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$ 

### **Transmitting IrDA Data**

The data to be transmitted using the infrared transceiver is first sent to the UART. The UART's transmit signal (TXD) and baud rate clock are used by the IrDA to generate the modulation signal (IR_TXD) that drives the infrared transceiver. Each UART/Infrared data bit is 16 clocks wide. If the data to be transmitted is 1, the IR_TXD signal remains low for the full 16 clock period. If the data to be transmitted is 0, the transmitter first outputs a 7 clock low period, followed by a 3 clock high pulse. Finally, a 6 clock low pulse is output to complete the full 16 clock data period. Figure 17 displays IrDA data transmission. When the Infrared Endec is enabled, the UART's TXD signal is internal to Z8 Encore! XP[®] F0823 Series products while the IR_TXD signal is output through the TXD pin.

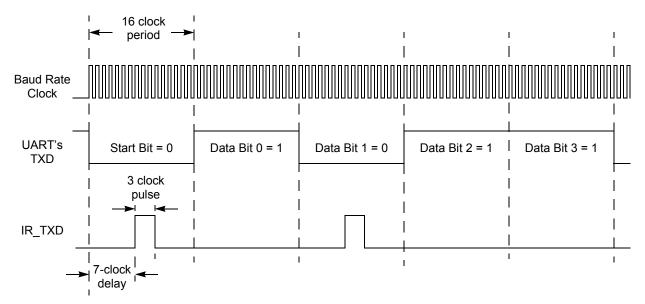



Figure 17. Infrared Data Transmission

## Z8 Encore! XP[®] F0823 Series Product Specification

130

Figure 20. Flash Memory Arrangement

# **Flash Information Area**

The Flash information area is separate from program memory and is mapped to the address range FE00H to FFFFH. Not all these addresses are accessible. Factory trim values for the analog peripherals are stored here. Factory calibration data for the ADC is also stored here.

# Operation

The Flash Controller programs and erases Flash memory. The Flash Controller provides the proper Flash controls and timing for Byte Programming, Page Erase, and Mass Erase of Flash memory.

The Flash Controller contains several protection mechanisms to prevent accidental programming or erasure. These mechanism operate on the page, sector and full-memory levels.

The Flowchart in Figure 21 displays basic Flash Controller operation. The following subsections provide details about the various operations (Lock, Unlock, Byte Programming, Page Protect, Page Unprotect, Page Select Page Erase, and Mass Erase) displayed in Figure 21.

## **Trim Bit Data Register**

The Trim Bid Data (TRMDR) register contains the read or write data for access to the trim option bits.

Table 86. Trim Bit Data Register (TRMDR)

BITS	7	6	5	4	3	2	1	0
FIELD	TRMDR - Trim Bit Data							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR		FF7H						

# **Flash Option Bit Address Space**

The first two bytes of Flash program memory at addresses 0000H and 0001H are reserved for the user-programmable Flash option bits.

## Flash Program Memory Address 0000H

 Table 87. Flash Option Bits at Program Memory Address 0000H

BITS	7	6	5	4	3	2	1	0
FIELD	WDT_RES	WDT_AO	Reserved		VBO_AO	FRP	Reserved	FWP
RESET	U	U	U	U	U	U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	Program Memory 0000H							
Note: U =	Note: U = Unchanged by Reset. R/W = Read/Write.							

WDT RES—Watchdog Timer Reset

0 = Watchdog Timer time-out generates an interrupt request. Interrupts must be globally enabled for the eZ8 CPU to acknowledge the interrupt request.

1 = Watchdog Timer time-out causes a system reset. This setting is the default for unprogrammed (erased) Flash.

WDT_AO—Watchdog Timer Always ON

0 = Watchdog Timer is automatically enabled upon application of system power. Watchdog Timer can not be disabled.

1 = Watchdog Timer is enabled upon execution of the WDT instruction. Once enabled, the

Watchdog Timer can only be disabled by a Reset or Stop Mode Recovery. This setting is the default for unprogrammed (erased) Flash.

Reserved—R/W bits must be 1 during writes; 1 when read.

VBO AO-Voltage Brownout Protection Always ON

0 = Voltage Brownout Protection can be disabled in STOP mode to reduce total power consumption. For the block to be disabled, the power control register bit must also be written (see Power Control Register 0 on page 32).

1 = Voltage Brownout Protection is always enabled including during STOP mode. This setting is the default for unprogrammed (erased) Flash.

FRP—Flash Read Protect

0 = User program code is inaccessible. Limited control features are available through the On-Chip Debugger.

1 = User program code is accessible. All On-Chip Debugger commands are enabled. This setting is the default for unprogrammed (erased) Flash.

Reserved-Must be 1

FWP—Flash Write Protect

This Option Bit provides Flash Program Memory protection:

0 = Programming and erasure disabled for all of Flash Program Memory. Programming, Page Erase, and Mass Erase through User Code is disabled. Mass Erase is available using the On-Chip Debugger.

1 = Programming, Page Erase, and Mass Erase are enabled for all of Flash program memory.

### Flash Program Memory Address 0001H

#### Table 88. Flash Options Bits at Program Memory Address 0001H

BITS	7	6	5	4	3	2	1	0
FIELD		Reserved		XTLDIS	Reserved			
RESET						U	U	U
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	Program Memory 0001H							
Note:    =	Note: U = Unchanged by Reset R/W = Read/Write							

**Note:** U = Unchanged by Reset. R/W = Read/Write.

Reserved—R/W must be 1 during writes; 1 when read

XTLDIS—State of Crystal Oscillator at Reset

## Z8 Encore! XP[®] F0823 Series Product Specification

192

			40 °C to + therwise	105 °C specified)		
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
V _{OH2}	High Level Output Voltage	2.4	_	_	V	I _{OH} = -20 mA; V _{DD} = 3.3 V High Output Drive enabled.
IIH	Input Leakage Current	-	<u>+</u> 0.002	<u>+</u> 5	μA	$V_{IN} = V_{DD}$ $V_{DD} = 3.3 V;$
IIL	Input Leakage Current	-	<u>+</u> 0.007	<u>+</u> 5	μA	$V_{IN} = V_{SS}$ $V_{DD} = 3.3 V;$
I _{TL}	Tristate Leakage Current	-	-	<u>+</u> 5	μA	
I _{LED}	Controlled Current	1.8	3	4.5	mA	{AFS2,AFS1} = {0,0}
	Drive	2.8	7	10.5	mA	{AFS2,AFS1} = {0,1}
		7.8	13	19.5	mA	{AFS2,AFS1} = {1,0}
		12	20	30	mA	{AFS2,AFS1} = {1,1}
C _{PAD}	GPIO Port Pad Capacitance	-	8.0 ²	-	pF	
C _{XIN}	XIN Pad Capacitance	-	8.0 ²	_	pF	
C _{XOUT}	XOUT Pad Capacitance	-	9.5 ²	-	pF	
I _{PU}	Weak Pull-up Current	30	100	350	μA	V _{DD} = 3.0 V–3.6 V
V _{RAM}	RAM Data Retention Voltage	TBD			V	Voltage at which RAM retains static values; no reading or writing is allowed.

#### Table 118. DC Characteristics (Continued)

Notes

1. This condition excludes all pins that have on-chip pull-ups, when driven Low.

2. These values are provided for design guidance only and are not tested in production.

## UART Timing

Figure 32 and Table 130 provide timing information for UART pins for the case where CTS is used for flow control. The CTS to DE assertion delay (T1) assumes the transmit data register has been loaded with data prior to CTS assertion.

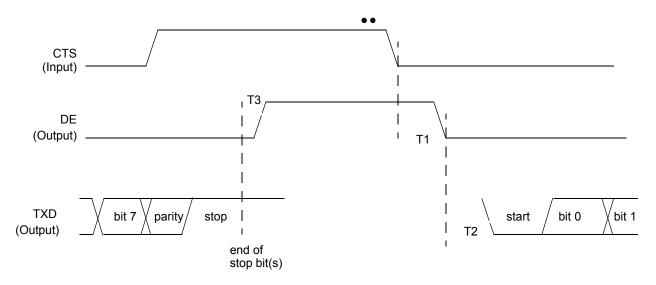



Figure 32. UART Timing With CTS

		Delay (ns)		
Parameter	Abbreviation	Minimum	Maximum	
UART				
T ₁	CTS Fall to DE output delay	2 * XIN period	2 * XIN period + 1 bit time	
T ₂	DE assertion to TXD falling edge (start bit) dela	y ± 5		
T ₃	End of Stop Bit(s) to DE deassertion delay	± 5		

#### Table 130. UART Timing With CTS

#### Z8 Encore! XP[®] F0823 Series Product Specification

page erase 135 page select register 138, 139 FPS register 138, 139 FSTAT register 137

# G

GATED mode 84 general-purpose I/O 35 GPIO 4.35 alternate functions 36 architecture 36 control register definitions 43 input data sample timing 202 interrupts 43 port A-C pull-up enable sub-registers 48, 49 port A-H address registers 44 port A-H alternate function sub-registers 45 port A-H control registers 44 port A-H data direction sub-registers 45 port A-H high drive enable sub-registers 47 port A-H input data registers 49 port A-H output control sub-registers 46 port A-H output data registers 50 port A-H stop mode recovery sub-registers 47 port availability by device 35 port input timing 203 port output timing 204

# Η

H 174 HALT 176 halt mode 32, 176 hexadecimal number prefix/suffix 174

# 

I2C 4 IM 173 immediate data 173 immediate operand prefix 174 **INC 175** increment 175 increment word 175 **INCW 175** indexed 173 indirect address prefix 174 indirect register 173 indirect register pair 173 indirect working register 173 indirect working register pair 173 infrared encoder/decoder (IrDA) 113 Instruction Set 171 instruction set. eZ8 CPU 171 instructions ADC 175 **ADCX 175** ADD 175 **ADDX 175** AND 177 **ANDX 177** arithmetic 175 **BCLR 176 BIT 176** bit manipulation 176 block transfer 176 **BRK 178 BSET 176** BSWAP 176, 178 **BTJ 178 BTJNZ 178 BTJZ 178 CALL 178** CCF 176 CLR 177 COM 177 CP 175 **CPC 175 CPCX 175** CPU control 176 **CPX 175** DA 175 **DEC 175 DECW 175** 

DI 176

## Z8 Encore! XP[®] F0823 Series Product Specification

236