

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status Obsolete Core Processor eZ8	
Core Processor e78	
Core Size 8-Bit	
Speed 5MHz	
Connectivity IrDA, UART/USART	
Peripherals Brown-out Detect/Reset, LED, POR, PWM, WDT	
Number of I/O 22	
Program Memory Size 4KB (4K x 8)	
Program Memory Type FLASH	
EEPROM Size -	
RAM Size 1K x 8	
Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6V	
Data Converters A/D 8x10b	
Oscillator Type Internal	
Operating Temperature -40°C ~ 105°C (TA)	
Mounting Type Through Hole	
Package / Case 28-DIP (0.600", 15.24mm)	
Supplier Device Package -	
Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f0423pj00	05ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Reset Characteristics and Latency					
Reset Type	Control Registers	eZ8 CPU	Reset Latency (Delay)			
System Reset	Reset (as applicable)	Reset	66 Internal Precision Oscillator Cycles			
Stop Mode Recovery	Unaffected, except WDT_CTL and OSC_CTL registers	Reset	66 Internal Precision Oscillator Cycles + IPO startup time			

Table 9. Reset and Stop Mode Recovery Characteristics and Latency

During a System Reset or Stop Mode Recovery, the IPO requires 4 µs to start up. Then the Z8 Encore! XP F0823 Series device is held in Reset for 66 cycles of the Internal Precision Oscillator. If the crystal oscillator is enabled in the Flash option bits, this reset period is increased to 5000 IPO cycles. When a reset occurs because of a low voltage condition or Power-On Reset, this delay is measured from the time that the supply voltage first exceeds the POR level. If the external pin reset remains asserted at the end of the reset period, the device remains in reset until the pin is deasserted.

At the beginning of Reset, all GPIO pins are configured as inputs with pull-up resistor disabled.

During Reset, the eZ8 CPU and on-chip peripherals are idle; however, the on-chip crystal oscillator and Watchdog Timer oscillator continue to run.

Upon Reset, control registers within the Register File that have a defined Reset value are loaded with their reset values. Other control registers (including the Stack Pointer, Register Pointer, and Flags) and general-purpose RAM are undefined following Reset. The eZ8 CPU fetches the Reset vector at Program Memory addresses 0002H and 0003H and loads that value into the Program Counter. Program execution begins at the Reset vector address.

When the control registers are re-initialized by a system reset, the system clock after reset is always the IPO. The software must reconfigure the oscillator control block, such that the correct system clock source is enabled and selected.

Reset Sources

Table 10 lists the possible sources of a System Reset.

ial Conditions
t delay begins after supply voltage exceeds

Table 10.	Reset Sources	and Resulting	Reset Type
		and Resulting	Redet Type

Operating Mode	Reset Source	Special Conditions		
NORMAL or HALT modes	Power-On Reset/Voltage Brownout	Reset delay begins after supply voltage exceeds POR level.		
	Watchdog Timer time-out when configured for Reset	None.		
	RESET pin assertion	All reset pulses less than three system clocks in width are ignored.		
	OCD initiated Reset (OCDCTL[0] set to 1)	System Reset, except the OCD is unaffected by the reset.		
STOP mode	Power-On Reset/Voltage Brownout	Reset delay begins after supply voltage exceeds POR level.		
	RESET pin assertion	All reset pulses less than the specified analog delay are ignored. See Electrical Characteristi on page 193.		
	DBG pin driven Low	None.		

Power-On Reset

Each device in the Z8 Encore! XP F0823 Series contains an internal POR circuit. The POR circuit monitors the supply voltage and holds the device in the Reset state until the supply voltage reaches a safe operating level. After the supply voltage exceeds the POR voltage threshold (V_{POR}), the device is held in the Reset state until the POR Counter has timed out. If the crystal oscillator is enabled by the option bits, this time-out is longer.

After the Z8 Encore! XP F0823 Series device exits the POR state, the eZ8 CPU fetches the Reset vector. Following the POR, the POR status bit in Watchdog Timer Control (WDTCTL) register is set to 1.

Figure 5 displays POR operation. For the POR threshold voltage (V_{POR}), see Electrical Characteristics on page 193.

GPIO Interrupts

Many of the GPIO port pins are used as interrupt sources. Some port pins are configured to generate an interrupt request on either the rising edge or falling edge of the pin input signal. Other port pin interrupt sources generate an interrupt when any edge occurs (both rising and falling). For more information about interrupts using the GPIO pins, see Interrupt Controller on page 53.

GPIO Control Register Definitions

Four registers for each Port provide access to GPIO control, input data, and output data. Table 17 lists these Port registers. Use the Port A–D Address and Control registers together to provide access to sub-registers for Port configuration and control.

Port Register Mnemonic	Port Register Name
PxADDR	Port A–C Address Register (Selects sub-registers)
PxCTL	Port A–C Control Register (Provides access to sub-registers)
PxIN	Port A–C Input Data Register
PxOUT	Port A–C Output Data Register
Port Sub-Register Mnemonic	Port Register Name
P <i>x</i> DD	Data Direction
PxAF	Alternate Function
PxOC	Output Control (Open-Drain)
PxHDE	High Drive Enable
PxSMRE	Stop Mode Recovery Source Enable
PxPUE	Pull-up Enable
PxAFS1	Alternate Function Set 1
PxAFS2	Alternate Function Set 2

Table 17. GPIO Port Registers and Sub-Registers

Table 19. Port A–C Control Registers (PxCTL)

BITS	7	6	5	4	3	2	1	0
FIELD	PCTL							
RESET	00H							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FD1H, FD5H, FD9H							

PCTL[7:0]—Port Control

The Port Control register provides access to all sub-registers that configure the GPIO Port operation.

Port A-C Data Direction Sub-Registers

The Port A–C Data Direction sub-register is accessed through the Port A–C Control register by writing 01H to the Port A–C Address register (Table 20).

BITS	7	6	5	4	3	2	1	0	
FIELD	DD7	DD6	DD5	DD4	DD3	DD2	DD1	DD0	
RESET	1	1	1	1	1	1	1	1	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR	lf 01H i	If 01H in Port A–C Address Register, accessible through the Port A–C Control Register							

Table 20. Port A–C Data Direction Sub-Registers (PxDD)

DD[7:0]—Data Direction

These bits control the direction of the associated port pin. Port Alternate Function operation overrides the Data Direction register setting.

0 = Output. Data in the Port A–C Output Data register is driven onto the port pin.

1 = Input. The port pin is sampled and the value written into the Port A–C Input Data Register. The output driver is tristated.

Port A–C Alternate Function Sub-Registers

The Port A–C Alternate Function sub-register (Table 21) is accessed through the Port A–C Control register by writing 02H to the Port A–C Address register. The Port A–C Alternate Function sub-registers enable the alternate function selection on pins. If disabled, pins functions as GPIO. If enabled, select one of four alternate functions using alternate function set subregisters 1 and 2 as described in the Port A–C Alternate Function Set 1 Sub-Registers on page 48 and Port A–C Alternate Function Set 2 Sub-Registers on

Table 43. IRQ2 Enable and Priority Encoding (Continued)

IRQ2ENH[x]	IRQ2ENL[x] Priority	Description
1	1	Level 3	High

where x indicates the register bits from 0–7.

Table 44. IRQ2 Enable High Bit Register (IRQ2ENH)

BITS	7	6	5	4	3	2	1	0		
FIELD		Rese	erved		C3ENH	C2ENH	C1ENH	C0ENH		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		FC7H								

Reserved—Must be 0

C3ENH—Port C3 Interrupt Request Enable High Bit C2ENH—Port C2 Interrupt Request Enable High Bit C1ENH—Port C1 Interrupt Request Enable High Bit C0ENH—Port C0 Interrupt Request Enable High Bit

Table 45. IRQ2 Enable Low Bit Register (IRQ2ENL)

BITS	7	6	5	4	3	2	1	0
FIELD		Rese	erved		C3ENL	C2ENL	C1ENL	C0ENL
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FC8H							

Reserved-Must be 0

C3ENL—Port C3 Interrupt Request Enable Low Bit C2ENL—Port C2 Interrupt Request Enable Low Bit C1ENL—Port C1 Interrupt Request Enable Low Bit C0ENL—Port C0 Interrupt Request Enable Low Bit

Interrupt Edge Select Register

The Interrupt Edge Select (IRQES) register (Table 46) determines whether an interrupt is generated for the rising edge or falling edge on the selected GPIO Port A or Port D input pin.

Follow the steps below to configure a timer for GATED mode and to initiate the count:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for Gated mode
 - Set the prescale value
- 2. Write to the Timer High and Low Byte registers to set the starting count value. Writing these registers only affects the first pass in GATED mode. After the first timer reset in GATED mode, counting always begins at the reset value of 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input deassertion and Reload events. If appropriate, configure the timer interrupt to be generated only at the input deassertion event or the Reload event by setting TICONFIG field of the TxCTL1 register.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. Write to the Timer Control register to enable the timer.
- 7. Assert the Timer Input signal to initiate the counting.

CAPTURE/COMPARE Mode

In CAPTURE/COMPARE mode, the timer begins counting on the first external Timer Input transition. The acceptable transition (rising edge or falling edge) is set by the TPOL bit in the Timer Control Register. The timer input is the system clock.

Every subsequent acceptable transition (after the first) of the Timer Input signal captures the current count value. The Capture value is written to the Timer PWM High and Low Byte Registers. When the Capture event occurs, an interrupt is generated, the count value in the Timer High and Low Byte registers is reset to 0001H, and counting resumes. The INPCAP bit in TxCTL1 register is set to indicate the timer interrupt is caused by an input Capture event.

If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the Timer Reload High and Low Byte registers. Upon reaching the Compare value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL1 register is cleared to indicate the timer interrupt is not because of an input Capture event.

Follow the steps below for configuring a timer for CAPTURE/COMPARE mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer

WDT Reset in NORMAL Operation

If configured to generate a Reset when a time-out occurs, the Watchdog Timer forces the device into the System Reset state. The WDT status bit in the Watchdog Timer Control register is set to 1. For more information on System Reset, see Reset and Stop Mode Recovery on page 21.

WDT Reset in STOP Mode

If configured to generate a Reset when a time-out occurs and the device is in STOP mode, the Watchdog Timer initiates a Stop Mode Recovery. Both the WDT status bit and the STOP bit in the Watchdog Timer Control register are set to 1 following WDT time-out in STOP mode. For more information, see Reset and Stop Mode Recovery on page 21.

Watchdog Timer Reload Unlock Sequence

Writing the unlock sequence to the Watchdog Timer Control Register (WDTCTL) address unlocks the three Watchdog Timer Reload Byte Registers (WDTU, WDTH, and WDTL) to allow changes to the time-out period. These write operations to the WDTCTL register address produce no effect on the bits in the WDTCTL register. The locking mechanism prevents spurious writes to the Reload registers. The following sequence is required to unlock the Watchdog Timer Reload Byte Registers (WDTU, WDTH, and WDTL) for write access.

- 1. Write 55H to the Watchdog Timer Control register (WDTCTL).
- 2. Write AAH to the Watchdog Timer Control register (WDTCTL).
- 3. Write the Watchdog Timer Reload Upper Byte register (WDTU).
- 4. Write the Watchdog Timer Reload High Byte register (WDTH).
- 5. Write the Watchdog Timer Reload Low Byte register (WDTL).

All three Watchdog Timer Reload registers must be written in the order just listed. There must be no other register writes between each of these operations. If a register write occurs, the lock state machine resets and no further writes can occur unless the sequence is restarted. The value in the Watchdog Timer Reload registers is loaded into the counter when the Watchdog Timer is first enabled and every time a WDT instruction is executed.

Watchdog Timer Control Register Definitions

Watchdog Timer Control Register

The Watchdog Timer Control (WDTCTL) register is a write-only control register. Writing the 55H, AAH unlock sequence to the WDTCTL register address unlocks the three

Table 59. Watchdog Timer Reload Upper Byte Register (WDTU)

BITS	7	6	5	4	3	2	1	0	
FIELD	WDTU								
RESET		00H							
R/W	R/W*								
ADDR	FF1H								
R/W*—Read returns the current WDT count value. Write sets the appropriate Reload Value.									

WDTU—WDT Reload Upper Byte Most significant byte (MSB), Bits[23:16], of the 24-bit WDT reload value.

Table 60. Watchdog Timer Reload High Byte Register (WDTH)

BITS	7	6	5	4	3	2	1	0					
FIELD		WDTH											
RESET		04H											
R/W	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*					
ADDR	FF2H												
R/W*—Rea	R/W*—Read returns the current WDT count value. Write sets the appropriate Reload Value.												

WDTH—WDT Reload High Byte

Middle byte, Bits[15:8], of the 24-bit WDT reload value.

Table 61. Watchdog Timer Reload Low Byte Register (WDTL)

BITS	7	6	5	4	3	2	1	0				
FIELD	WDTL											
RESET	00H											
R/W	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*				
ADDR	FF3H											
R/W*—Rea	R/W*—Read returns the current WDT count value. Write sets the appropriate Reload Value.											

WDTL—WDT Reload Low

Least significant byte (LSB), Bits[7:0], of the 24-bit WDT reload value.

- 6. Check the TDRE bit in the UART Status 0 register to determine if the Transmit Data register is empty (indicated by a 1). If empty, continue to step 7. If the Transmit Data register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit Data register becomes available to receive new data.
- 7. Write the UART Control 1 register to select the outgoing address bit.
- 8. Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if sending a data byte.
- 9. Write the data byte to the UART Transmit Data register. The transmitter automatically transfers the data to the Transmit Shift register and transmits the data.
- 10. Make any changes to the Multiprocessor Bit Transmitter (MPBT) value, if appropriate and MULTIPROCESSOR mode is enabled,.
- 11. To transmit additional bytes, return to step 5.

Transmitting Data using the Interrupt-Driven Method

The UART Transmitter interrupt indicates the availability of the Transmit Data register to accept new data for transmission. Follow the steps below to configure the UART for interrupt-driven data transmission:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the appropriate baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation.
- 3. Execute a DI instruction to disable interrupts.
- 4. Write to the Interrupt control registers to enable the UART Transmitter interrupt and set the acceptable priority.
- 5. Write to the UART Control 1 register to enable MULTIPROCESSOR (9-bit) mode functions, if MULTIPROCESSOR mode is appropriate.
- 6. Set the MULTIPROCESSOR Mode Select (MPEN) to Enable MULTIPROCESSOR mode.
- 7. Write to the UART Control 0 register to:
 - Set the transmit enable bit (TEN) to enable the UART for data transmission.
 - Enable parity, if appropriate and if MULTIPROCESSOR mode is not enabled, and select either even or odd parity.
 - Set or clear CTSE to enable or disable control from the remote receiver using the $\overline{\text{CTS}}$ pin.
- 8. Execute an EI instruction to enable interrupts.

REFSELL—Voltage Reference Level Select Low Bit; in conjunction with the High bit (REFSELH) in ADC Control/Status Register 1, this determines the level of the internal voltage reference; the following details the effects of {REFSELH, REFSELL};

Note:

This reference is independent of the Comparator reference.

00= Internal Reference Disabled, reference comes from external pin.

01 = Internal Reference set to 1.0 V

10= Internal Reference set to 2.0 V (default)

REFEXT—External Reference Select

0 = External reference buffer is disabled; V_{ref} pin is available for GPIO functions

1 = The internal ADC reference is buffered and connected to the V_{ref} pin

CONT

0 = Single-shot conversion. ADC data is output once at completion of the 5129 system clock cycles.

1 = Continuous conversion. ADC data updated every 256 system clock cycles.

ANAIN[3:0]—Analog Input Select

These bits select the analog input for conversion. Not all port pins in this list are available in all packages for Z8 Encore! $XP^{\mathbb{R}}$ F0823 Series. For information on the port pins available with each package style, see Pin Description on page 7. Do not enable unavailable analog inputs. Usage of these bits changes depending on the buffer mode selected in ADC Control/Status Register 1.

For the reserved values, all input switches are disabled to avoid leakage or other undesirable operation. ADC samples taken with reserved bit settings are undefined.

Single-Ended:

0000 = ANA00001 = ANA10010 = ANA20011 = ANA3 0100 = ANA40101 = ANA50110 = ANA60111 = ANA71000 = Reserved1001 = Reserved1010 = Reserved1011 = Reserved1100 = Reserved1101 = Reserved1110 = Reserved1111 = Reserved

Watchdog Timer Failure

In the event of a Watchdog Timer oscillator failure, a similar non-maskable interrupt-like event is issued. This event does not trigger an attendant clock switch-over, but alerts the CPU of the failure. After a Watchdog Timer failure, it is no longer possible to detect a primary oscillator failure. The failure detection circuitry does not function if the Watchdog Timer is used as the primary oscillator or if the Watchdog Timer oscillator has been disabled. For either of these cases, it is necessary to disable the detection circuitry by deasserting the WDFEN bit of the OSCCTL register.

The Watchdog Timer oscillator failure detection circuit counts system clocks while searching for a Watchdog Timer clock. The logic counts 8004 system clock cycles before determining that a failure has occurred. The system clock rate determines the speed at which the Watchdog Timer failure can be detected. A very slow system clock results in very slow detection times.

Caution: It is possible to disable the clock failure detection circuitry as well as all functioning clock sources. In this case, the Z8 Encore! XP F0823 Series device ceases functioning and can only be recovered by Power-On Reset.

Oscillator Control Register Definitions

The following section provides the bit definitions for the Oscillator Control register.

Oscillator Control Register

The Oscillator Control register (OSCCTL) enables/disables the various oscillator circuits, enables/disables the failure detection/recovery circuitry and selects the primary oscillator, which becomes the system clock.

The Oscillator Control register must be unlocked before writing. Writing the two step sequence E7H followed by 18H to the Oscillator Control Register unlocks it. The register is locked at successful completion of a register write to the OSCCTL.

BITS	7	6	5	4	3	2	1	0					
FIELD	INTEN	Reserved	WDTEN	POFEN	WDFEN	SCKSEL							
RESET	1	0	1	0	0	0	0	0					
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W											
ADDR		F86H											

Table 102. Oscillator Control Register (OSCCTL)

Assembly		Addre	ss Mode	- Opcode(s)	Fla	ıgs					- Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	v	D	Н	Cycles	
COM dst	dst ← ~dst	R		60	-	*	*	0	_	_	2	2
		IR		61	_						2	3
CP dst, src	dst - src	r	r	A2	*	*	*	*	-	_	2	3
		r	lr	A3	_						2	4
		R	R	A4	_						3	3
		R	IR	A5							3	4
		R	IM	A6	_						3	3
		IR	IM	A7	_						3	4
CPC dst, src	dst - src - C	r	r	1F A2	*	*	*	*	_	_	3	3
		r	lr	1F A3	_						3	4
		R	R	1F A4	_						4	3
		R	IR	1F A5	_						4	4
		R	IM	1F A6	_						4	3
		IR	IM	1F A7	_						4	4
CPCX dst, src	dst - src - C	ER	ER	1F A8	*	*	*	*	-	_	5	3
		ER	IM	1F A9							5	3
CPX dst, src	dst - src	ER	ER	A8	*	*	*	*	-	_	4	3
		ER	IM	A9							4	3
DA dst	$dst \gets DA(dst)$	R		40	*	*	*	Х	_	_	2	2
		IR		41	_						2	3
DEC dst	dst ← dst - 1	R		30	-	*	*	*	_	_	2	2
		IR		31	_						2	3
DECW dst	dst ← dst - 1	RR		80	-	*	*	*	-	_	2	5
		IRR		81							2	6
DI	$IRQCTL[7] \leftarrow 0$			8F	-	-	-	-	-	_	1	2
DJNZ dst, RA	$dst \leftarrow dst - 1$ if dst $\neq 0$ PC \leftarrow PC + X	r		0A-FA	-	-	-	-	-	-	2	3
EI	$IRQCTL[7] \leftarrow 1$			9F	-	_	_	_	_	_	1	2
Flags Notation:	* = Value is a function – = Unaffected X = Undefined	of the resu	It of the o	peration.		= Re = Se			0			

Table 115. eZ8 CPU Instruction Summary (Continued)

Assembly		Addre	ss Mode	- Opcode(s)	Fla	ıgs					- Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	z	S	v	D	Н		Cycles
LDC dst, src	$dst \gets src$	r	Irr	C2	-	_		_	_	-	2	5
		lr	Irr	C5	_						2	9
		Irr	r	D2	_						2	5
LDCI dst, src	$dst \leftarrow src$	lr	Irr	C3	-	_	_	_	_	_	2	9
	r ← r + 1 rr ← rr + 1	Irr	lr	D3	_						2	9
LDE dst, src	$dst \leftarrow src$	r	Irr	82	-	_		_	_	-	2	5
		Irr	r	92	_						2	5
LDEI dst, src	$dst \gets src$	lr	Irr	83	-	_		_	_	-	2	9
	r ← r + 1 rr ← rr + 1	Irr	lr	93	_						2	9
LDWX dst, src	$dst \leftarrow src$	ER	ER	1FE8	_	_	. <u> </u>	_	_	_	5	4
LDX dst, src	$dst \gets src$	r	ER	84	-	_		_	_	-	3	2
		lr	ER	85	_						3	3
		R	IRR	86	_						3	4
		IR	IRR	87	_						3	5
		r	X(rr)	88	_						3	4
		X(rr)	r	89	_						3	4
		ER	r	94	_						3	2
		ER	lr	95	_						3	3
		IRR	R	96							3	4
		IRR	IR	97	_						3	5
		ER	ER	E8	_						4	2
		ER	IM	E9	_						4	2
LEA dst, X(src)	$dst \gets src + X$	r	X(r)	98	-	_		_	_	-	3	3
		rr	X(rr)	99							3	5
MULT dst	dst[15:0] ← dst[15:8] * dst[7:0]	RR		F4	-	_		_	_	-	2	8
NOP	No operation			0F	-	_		_	_	-	1	2
Flags Notation:	* = Value is a function o – = Unaffected X = Undefined	f the resul	t of the c	operation.			ese et to		0			

Table 115. eZ8 CPU Instruction Summary (Continued)

			40 °C to + therwise	105 °C specified)				
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions		
V _{OH2}	High Level Output Voltage	2.4	_	_	V	I _{OH} = -20 mA; V _{DD} = 3.3 V High Output Drive enabled.		
IIH	Input Leakage Current	-	<u>+</u> 0.002	<u>+</u> 5	μA	$V_{IN} = V_{DD}$ $V_{DD} = 3.3 V;$		
IIL	Input Leakage Current	-	<u>+</u> 0.007	<u>+</u> 5	μA	$V_{IN} = V_{SS}$ $V_{DD} = 3.3 V;$		
I _{TL}	Tristate Leakage Current	-	-	<u>+</u> 5	μA			
I _{LED}	Controlled Current	1.8	3	4.5	mA	{AFS2,AFS1} = {0,0}		
	Drive	2.8	7	10.5	mA	{AFS2,AFS1} = {0,1}		
		7.8	13	19.5	mA	{AFS2,AFS1} = {1,0}		
		12	20	30	mA	{AFS2,AFS1} = {1,1}		
C _{PAD}	GPIO Port Pad Capacitance	-	8.0 ²	-	pF			
C _{XIN}	XIN Pad Capacitance	-	8.0 ²	_	pF			
C _{XOUT}	XOUT Pad Capacitance	-	9.5 ²	-	pF			
I _{PU}	Weak Pull-up Current	30	100	350	μA	V _{DD} = 3.0 V–3.6 V		
V _{RAM}	RAM Data Retention Voltage	TBD			V	Voltage at which RAM retains static values; no reading or writing is allowed.		

Table 118. DC Characteristics (Continued)

Notes

1. This condition excludes all pins that have on-chip pull-ups, when driven Low.

2. These values are provided for design guidance only and are not tested in production.

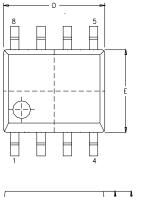
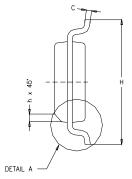
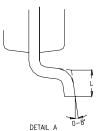

On-Chip Peripheral AC and DC Electrical Characteristics

Table 122. Power-On Reset and Voltage Brownout Electrical Characteristics and Timing


		T _A = -	40 °C to +	105 °C		
Symbol	Parameter	Minimum	Typical ¹	Maximum	Units	Conditions
V _{POR}	Power-On Reset Voltage Threshold	2.20	2.45	2.70	V	V _{DD} = V _{POR}
V _{VBO}	Voltage Brownout Reset Voltage Threshold	2.15	2.40	2.65	V	$V_{DD} = V_{VBO}$
	V_{POR} to V_{VBO} hysteresis		50	75	mV	
	Starting V _{DD} voltage to ensure valid Power-On Reset.	_	V _{SS}	-	V	
T _{ANA}	Power-On Reset Analog Delay	-	70	-	μs	V _{DD} > V _{POR} ; T _{POR} Digital Reset delay follows T _{ANA}
T _{POR}	Power-On Reset Digital Delay		16		μs	66 Internal Precision Oscillator cycles + IPO startup time (T _{IPOST})
T _{SMR}	Stop Mode Recovery		16		μs	66 Internal Precision Oscillator cycles
T _{VBO}	Voltage Brownout Pulse Rejection Period	_	10	_	μs	Period of time in which V _{DD} < V _{VBO} without generating a Reset.
T _{RAMP}	Time for V _{DD} to transition from V _{SS} to V _{POR} to ensure valid Reset	0.10	_	100	ms	
T _{SMP}	Stop Mode Recovery pin pulse rejection period		20		ns	For any SMR pin or for the Reset pin when it is asserted in STOP mode.
	he typical column is from char are not tested in production.	acterization	at 3.3 V and	30 °C. These	values a	re provided for design guidance

199

Figure 35 displays the 8-pin Small Outline Integrated Circuit package (SOIC) available for the Z8 Encore! XP F0823 Series devices.



e

MILLIN	IETER	INCH				
MIN	MAX	MIN	MAX			
1.55	1.73	0.061	0.068			
0.10	0.25	0.004	0.010			
1.40	1.55	0.055	0.061			
0.36	0.48	0.014	0.019			
0.18	0.25	0.007	0.010			
4.80	4.98	0.189	0.196			
3.81	3.99	0.150	0.157			
1.27	BSC	.050 BSC				
5.84	6.15	0.230	0.242			
0.25	0.40	0.010	0.016			
0.46	0.81	0.018	0.032			
	MIN 1.55 0.10 1.40 0.36 0.18 4.80 3.81 1.27 5.84 0.25	1.55 1.73 0.10 0.25 1.40 1.55 0.36 0.48 0.18 0.25 4.80 4.98 3.81 3.99 1.27 BSC 5.84 6.15 0.25 0.40	MIN MAX MIN 1.55 1.73 0.061 0.10 0.25 0.004 1.40 1.55 0.055 0.36 0.48 0.014 0.18 0.25 0.007 4.80 4.98 0.189 3.81 3.99 0.150 1.27 BSC .050 5.84 6.15 0.230 0.25 0.40 0.010			

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

A1 SEATING PLANE

Figure 35. 8-Pin Small Outline Integrated Circuit Package (SOIC)

Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description
Z8 Encore! XP with 2		l						
Standard Temperatur	e: 0 °C to	70 °C						
Z8F0213PB005SC	2 KB	512 B	6	12	2	0	1	PDIP 8-pin package
Z8F0213QB005SC	2 KB	512 B	6	12	2	0	1	QFN 8-pin package
Z8F0213SB005SC	2 KB	512 B	6	12	2	0	1	SOIC 8-pin package
Z8F0213SH005SC	2 KB	512 B	16	18	2	0	1	SOIC 20-pin package
Z8F0213HH005SC	2 KB	512 B	16	18	2	0	1	SSOP 20-pin package
Z8F0213PH005SC	2 KB	512 B	16	18	2	0	1	PDIP 20-pin package
Z8F0213SJ005SC	2 KB	512 B	24	18	2	0	1	SOIC 28-pin package
Z8F0213HJ005SC	2 KB	512 B	24	18	2	0	1	SSOP 28-pin package
Z8F0213PJ005SC	2 KB	512 B	24	18	2	0	1	PDIP 28-pin package
Extended Temperatur	re: -40 °C	to 105 °C	;					
Z8F0213PB005EC	2 KB	512 B	6	12	2	0	1	PDIP 8-pin package
Z8F0213QB005EC	2 KB	512 B	6	12	2	0	1	QFN 8-pin package
Z8F0213SB005EC	2 KB	512 B	6	12	2	0	1	SOIC 8-pin package
Z8F0213SH005EC	2 KB	512 B	16	18	2	0	1	SOIC 20-pin package
Z8F0213HH005EC	2 KB	512 B	16	18	2	0	1	SSOP 20-pin package
Z8F0213PH005EC	2 KB	512 B	16	18	2	0	1	PDIP 20-pin package
Z8F0213SJ005EC	2 KB	512 B	24	18	2	0	1	SOIC 28-pin package
Z8F0213HJ005EC	2 KB	512 B	24	18	2	0	1	SSOP 28-pin package
Z8F0213PJ005EC	2 KB	512 B	24	18	2	0	1	PDIP 28-pin package
Replace C with G for Lea	d-Free Pac	kaging						

Jaquing Trad Z8 Encore! XP [®] F0823 S	Flash	W W W W W W W W W W W W W W W W W W W	t I/O Lines	∓ Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description
Z8F08A28100KITG		-			A Serie	es De	velo	pment Kit (20- and 28-Pin)
Z8F04A28100KITG		Z8 Enco	re! XP	F042	A Serie	es De	velo	pment Kit (20- and 28-Pin)
Z8F04A08100KITG		Z8 Enco	re! XP	F042	A Serie	es De	velo	pment Kit (8-Pin)
ZUSBSC00100ZACG		USB Smart Cable Accessory Kit						
ZUSBOPTSC01ZACG		Opto-Isolated USB Smart Cable Accessory Kit						
ZENETSC0100ZACG		Ethernet Smart Cable Accessory Kit						

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at <u>http://www.zilog.com/kb</u>.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at <u>http://support.zilog.com</u>.