

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	6
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-QFN (5x6)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0423qb005sc

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1

Overview

Zilog's Z8 Encore! XP[®] microcontroller unit (MCU) family of products are the first Zilog[®] microcontroller products based on the 8-bit eZ8 CPU core. Z8 Encore! XP F0823 Series products expand upon Zilog's extensive line of 8-bit microcontrollers. The Flash in-circuit programming capability allows for faster development time and program changes in the field. The new eZ8 CPU is upward compatible with existing Z8[®] instructions. The rich peripheral set of Z8 Encore! XP F0823 Series makes it suitable for a variety of applications including motor control, security systems, home appliances, personal electronic devices, and sensors.

Features

The key features of Z8 Encore! XP F0823 Series include:

- 5 MHz eZ8 CPU
- 1 KB, 2 KB, 4 KB, or 8 KB Flash memory with in-circuit programming capability
- 256 B, 512 B, or 1 KB register RAM
- 6 to 24 I/O pins depending upon package
- Internal precision oscillator (IPO)
- Full-duplex UART
- The universal asynchronous receiver/transmitter (UART) baud rate generator (BRG) can be configured and used as a basic 16-bit timer
- Infrared data association (IrDA)-compliant infrared encoder/decoders, integrated with UART
- Two enhanced 16-bit timers with capture, compare, and PWM capability
- Watchdog Timer (WDT) with dedicated internal RC oscillator
- On-Chip Debugger (OCD)
- Optional 8-channel, 10-bit Analog-to-Digital Converter (ADC)
- On-Chip analog comparator
- Up to 20 vectored interrupts
- Direct LED drive with programmable drive strengths
- Voltage Brownout (VBO) protection
- Power-On Reset (POR)

Note:

*Analog input alternate functions (ANA) are not available on the Z8F0x13 devices.

Signal Descriptions

Table 3 lists the Z8 Encore! $XP^{\mathbb{R}}$ F0823 Series signals. To determine the signals available for the specific package styles, see Pin Configurations on page 7.

Table 3. Signal Descriptions

Signal Mnemonic	I/O	Description
General-Purpose I/C) Ports	A–D
PA[7:0]	I/O	Port A. These pins are used for general-purpose I/O.
PB[7:0]	I/O	Port B. These pins are used for general-purpose I/O. PB6 and PB7 are available only in those devices without an ADC.
PC[7:0]	I/O	Port C. These pins are used for general-purpose I/O.
Note: PB6 and PB7 are replaced by AV _{DI}		/ailable in 28-pin packages without ADC. In 28-pin packages with ADC, they are $V_{\rm SS}.$
UART Controllers		
TXD0	0	Transmit Data. This signal is the transmit output from the UART and IrDA.
RXD0	I	Receive Data. This signal is the receive input for the UART and IrDA.
CTS0	I	Clear To Send. This signal is the flow control input for the UART.
DE	0	Driver Enable. This signal allows automatic control of external RS-485 drivers. This signal is approximately the inverse of the TXE (Transmit Empty) bit in the UART Status 0 register. The DE signal can be used to ensure the external RS-485 driver is enabled when data is transmitted by the UART.
Timers		
T0OUT/T1OUT	0	Timer Output 0–1. These signals are output from the timers.
T0OUT/T1OUT	0	Timer Complement Output 0–1. These signals are output from the timers in PWM Dual Output mode.
T0IN/T1IN	I	Timer Input 0–1. These signals are used as the <u>capture</u> , gating and counter inputs. The T0IN signal is multiplexed T0OUT signals.
Comparator		
CINP/CINN	Ι	Comparator Inputs. These signals are the positive and negative inputs to the comparator.
COUT	0	Comparator Output. This is the output of the comparator.

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
F0C	Timer 1 PWM High Byte	T1PWMH	00	81
F0D	Timer 1 PWM Low Byte	T1PWML	00	82
F0E	Timer 1 Control 0	T1CTL0	00	82
F0F	Timer 1 Control 1	T1CTL1	00	80
F10–F3F	Reserved	—	XX	
UART				
F40	UART0 Transmit Data	U0TXD	XX	104
	UART0 Receive Data	U0RXD	XX	105
F41	UART0 Status 0	U0STAT0	0000011Xb	105
F42	UART0 Control 0	U0CTL0	00	107
F43	UART0 Control 1	U0CTL1	00	107
F44	UART0 Status 1	U0STAT1	00	106
F45	UART0 Address Compare	U0ADDR	00	109
F46	UART0 Baud Rate High Byte	U0BRH	FF	110
F47	UART0 Baud Rate Low Byte	U0BRL	FF	110
F48–F6F	Reserved	_	XX	
Analog-to-Digit	al Converter (ADC)			
F70	ADC Control 0	ADCCTL0	00	122
F71	ADC Control 1	ADCCTL1	80	122
F72	ADC Data High Byte	ADCD_H	XX	124
F73	ADC Data Low Bits	ADCD_L	XX	124
F74–F7F	Reserved	_	XX	
Low Power Cor	ntrol			
F80	Power Control 0	PWRCTL0	80	33
F81	Reserved		XX	
LED Controller				
F82	LED Drive Enable	LEDEN	00	51
F83	LED Drive Level High Byte	LEDLVLH	00	51
F84	LED Drive Level Low Byte	LEDLVLL	00	52
F85	Reserved	_	XX	
Oscillator Cont	rol			
F86	Oscillator Control	OSCCTL	A0	167
F87–F8F	Reserved	_	XX	
Comparator 0				
F90	Comparator 0 Control	CMP0	14	128

Interrupt Controller

The interrupt controller on the Z8 Encore! XP[®] F0823 Series products prioritizes the interrupt requests from the on-chip peripherals and the GPIO port pins. The features of interrupt controller include:

- 20 unique interrupt vectors
 - 12 GPIO port pin interrupt sources (two are shared)
 - 8 on-chip peripheral interrupt sources (two are shared)
- Flexible GPIO interrupts
 - Eight selectable rising and falling edge GPIO interrupts
 - Four dual-edge interrupts
- Three levels of individually programmable interrupt priority
- Watchdog Timer can be configured to generate an interrupt

Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly manner and force the CPU to start an interrupt service routine (ISR). Usually this interrupt service routine is involved with the exchange of data, status information, or control information between the CPU and the interrupting peripheral. When the service routine is completed, the CPU returns to the operation from which it was interrupted.

The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts, the interrupt controller has no effect on operation. For more information on interrupt servicing by the eZ8 CPU, refer to *eZ8 CPU Core User Manual (UM0128)* available for download at <u>www.zilog.com</u>.

Interrupt Vector Listing

Table 33 lists all of the interrupts available in order of priority. The interrupt vector is stored with the most-significant byte (MSB) at the even Program Memory address and the least-significant byte (LSB) at the following odd Program Memory address.

Note: Some port interrupts are not available on the 8- and 20-pin packages. The ADC interrupt is unavailable on devices not containing an ADC.

Priority	Program Memory Vector Address	Interrupt or Trap Source
Lowest	0036H	Port C Pin 0, both input edges
	0038H	Reserved

Table 33. Trap and Interrupt Vectors in Order of Priority (Continued)

Architecture

Figure 8 displays the interrupt controller block diagram.

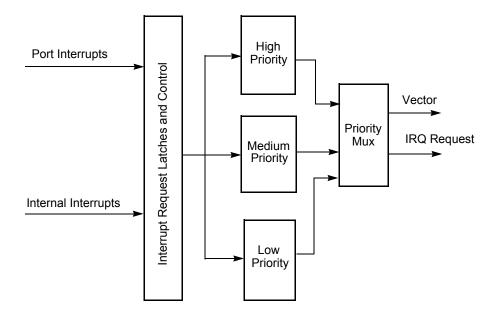


Figure 8. Interrupt Controller Block Diagram

Operation

Master Interrupt Enable

The master interrupt enable bit (IRQE) in the Interrupt Control register globally enables and disables interrupts.

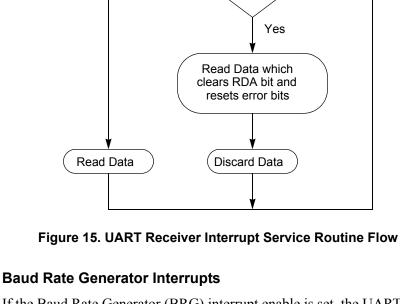
Interrupts are globally enabled by any of the following actions:

- Execution of an Enable Interrupt (EI) instruction
- Execution of an Return from Interrupt (IRET) instruction

COMPARATOR COUNTER Mode

In COMPARATOR COUNTER mode, the timer counts input transitions from the analog comparator output. The TPOL bit in the Timer Control Register selects whether the count occurs on the rising edge or the falling edge of the comparator output signal. In COMPARATOR COUNTER mode, the prescaler is disabled.

Caution: *The frequency of the comparator output signal must not exceed one-fourth the system clock frequency.*


After reaching the Reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

Follow the steps below for configuring a timer for COMPARATOR COUNTER mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for COMPARATOR COUNTER mode.
 - Select either the rising edge or falling edge of the comparator output signal for the count. This also sets the initial logic level (High or Low) for the Timer Output alternate function. However, the Timer Output function is not required to be enabled.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This action only affects the first pass in COMPARATOR COUNTER mode. After the first timer Reload in COMPARATOR COUNTER mode, counting always begins at the reset value of 0001H. Generally, in COMPARATOR COUNTER mode the Timer High and Low Byte registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 6. Write to the Timer Control register to enable the timer.

In COMPARATOR COUNTER mode, the number of comparator output transitions since the timer start is given by the following equation:

Comparator Output Transitions = Current Count Value – Start Value

No

If the Baud Rate Generator (BRG) interrupt enable is set, the UART Receiver interrupt asserts when the UART Baud Rate Generator reloads. This condition allows the Baud Rate Generator to function as an additional counter if the UART functionality is not employed.

Receiver Ready

Receiver Interrupt

Read Status

Errors?

UART Baud Rate Generator

The UART Baud Rate Generator creates a lower frequency baud rate clock for data transmission. The input to the Baud Rate Generator is the system clock. The UART Baud Rate High and Low Byte registers combine to create a 16-bit baud rate divisor value

Table 83. Flash Frequency High Byte Register (FFREQH)

BITS	7	6	5	4	3	2	1	0
FIELD		FFREQH						
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W R/W R/W R/W R/W R/W						
ADDR		FFAH						

FFREQH—Flash Frequency High Byte High byte of the 16-bit Flash Frequency value

Table 84. Flash Frequency Low Byte Register (FFREQL)

BITS	7	6	5	4	3	2	1	0	
FIELD		FFREQL							
RESET	0								
R/W		R/W							
ADDR		FFBH							

FFREQL—Flash Frequency Low Byte Low byte of the 16-bit Flash Frequency value

Trim Bit Data Register

The Trim Bid Data (TRMDR) register contains the read or write data for access to the trim option bits.

Table 86. Trim Bit Data Register (TRMDR)

BITS	7	6	5	4	3	2	1	0
FIELD	TRMDR - Trim Bit Data							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR		FF7H						

Flash Option Bit Address Space

The first two bytes of Flash program memory at addresses 0000H and 0001H are reserved for the user-programmable Flash option bits.

Flash Program Memory Address 0000H

 Table 87. Flash Option Bits at Program Memory Address 0000H

BITS	7	6	5	4	3	2	1	0	
FIELD	WDT_RES	WDT_AO	Rese	erved	VBO_AO	FRP	Reserved	FWP	
RESET	U	U	U	U	U	U	U	U	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADDR	Program Memory 0000H								
Note: U =	Note: U = Unchanged by Reset. R/W = Read/Write.								

WDT RES—Watchdog Timer Reset

0 = Watchdog Timer time-out generates an interrupt request. Interrupts must be globally enabled for the eZ8 CPU to acknowledge the interrupt request.

1 = Watchdog Timer time-out causes a system reset. This setting is the default for unprogrammed (erased) Flash.

WDT_AO—Watchdog Timer Always ON

0 = Watchdog Timer is automatically enabled upon application of system power. Watchdog Timer can not be disabled.

1 = Watchdog Timer is enabled upon execution of the WDT instruction. Once enabled, the

150

Info Page Address	Memory Address	Usage
5C	FE5C	Randomized Lot ID Byte 23
5D	FE5D	Randomized Lot ID Byte 22
5E	FE5E	Randomized Lot ID Byte 21
5F	FE5F	Randomized Lot ID Byte 20
61	FE61	Randomized Lot ID Byte 19
62	FE62	Randomized Lot ID Byte 18
64	FE64	Randomized Lot ID Byte 17
65	FE65	Randomized Lot ID Byte 16
67	FE67	Randomized Lot ID Byte 15
68	FE68	Randomized Lot ID Byte 14
6A	FE6A	Randomized Lot ID Byte 13
6B	FE6B	Randomized Lot ID Byte 12
6D	FE6D	Randomized Lot ID Byte 11
6E	FE6E	Randomized Lot ID Byte 10
70	FE70	Randomized Lot ID Byte 9
71	FE71	Randomized Lot ID Byte 8
73	FE73	Randomized Lot ID Byte 7
74	FE74	Randomized Lot ID Byte 6
76	FE76	Randomized Lot ID Byte 5
77	FE77	Randomized Lot ID Byte 4
79	FE79	Randomized Lot ID Byte 3
7A	FE7A	Randomized Lot ID Byte 2
7C	FE7C	Randomized Lot ID Byte 1
7D	FE7D	Randomized Lot ID Byte 0 (least significant)

Table 97. Randomized Lot ID Locations (Continued)

On-Chip Debugger Commands

The host communicates to the OCD by sending OCD commands using the DBG interface. During normal operation, only a subset of the OCD commands are available. In DEBUG mode, all OCD commands become available unless the user code and control registers are protected by programming the Flash Read Protect Option bit (FRP). The Flash Read Protect Option bit prevents the code in memory from being read out of Z8 Encore! XP[®] F0823 Series products. When this option is enabled, several of the OCD commands are disabled. Table 99 on page 162 is a summary of the OCD commands. Each OCD command is described in further detail in the bulleted list following this table. Table 99 on page 162 also indicates those commands that operate when the device is not in DEBUG mode (normal operation) and those commands that are disabled by programming the Flash Read Protect Option bit.

Debug Command	Command Byte	Enabled when NOT in DEBUG mode?	Disabled by Flash Read Protect Option Bit
Read OCD Revision	00H	Yes	-
Reserved	01H	_	_
Read OCD Status Register	02H	Yes	-
Read Runtime Counter	03H	_	-
Write OCD Control Register	04H	Yes	Cannot clear DBGMODE bit.
Read OCD Control Register	05H	Yes	-
Write Program Counter	06H	_	Disabled.
Read Program Counter	07H	_	Disabled.
Write Register	08H	_	Only writes of the Flash Memory Control registers are allowed. Additionally, only the Mass Erase command is allowed to be written to the Flash Control register.
Read Register	09H	-	Disabled.
Write Program Memory	0AH	_	Disabled.
Read Program Memory	0BH	_	Disabled.
Write Data Memory	0CH	_	Yes.
Read Data Memory	0DH	-	-
Read Program Memory CRC	0EH	-	-
Reserved	0FH	-	-
Step Instruction	10H	_	Disabled.

is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, the data is discarded.

DBG \leftarrow 0AH DBG \leftarrow Program Memory Address[15:8] DBG \leftarrow Program Memory Address[7:0] DBG \leftarrow Size[15:8] DBG \leftarrow Size[7:0] DBG \leftarrow 1-65536 data bytes

• **Read Program Memory (0BH)**—The Read Program Memory command reads data from Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be read 1–65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option Bit is enabled, this command returns FFH for the data.

```
DBG \leftarrow 0BH

DBG \leftarrow Program Memory Address[15:8]

DBG \leftarrow Program Memory Address[7:0]

DBG \leftarrow Size[15:8]

DBG \leftarrow Size[7:0]

DBG \rightarrow 1-65536 data bytes
```

• Write Data Memory (0CH)—The Write Data Memory command writes data to Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option Bit is enabled, the data is discarded.

```
DBG \leftarrow 0CH

DBG \leftarrow Data Memory Address[15:8]

DBG \leftarrow Data Memory Address[7:0]

DBG \leftarrow Size[15:8]

DBG \leftarrow Size[7:0]

DBG \leftarrow 1-65536 data bytes
```

• **Read Data Memory (0DH)**—The Read Data Memory command reads from Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be read 1 to 65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in DEBUG mode, this command returns FFH for the data.

```
DBG \leftarrow 0DH
DBG \leftarrow Data Memory Address[15:8]
DBG \leftarrow Data Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-65536 data bytes
```

182

Assembly Mnemonic	Symbolic Operation	Address Mode Opcode(s)			Flags						- Fetch	Instr
		dst	src	(Hex)	С	z	S	v	D	Н	Cycles	
HALT	HALT Mode			7F	-	_	_	_	-	-	1	2
INC dst	$dst \leftarrow dst + 1$	R		20	-	*	*	_	-	-	2	2
		IR		21	-						2	3
		r		0E-FE	-						1	2
INCW dst	$dst \leftarrow dst + 1$	RR		A0	-	*	*	*	-	-	2	5
		IRR		A1	-						2	6
IRET	FLAGS \leftarrow @SP SP \leftarrow SP + 1 PC \leftarrow @SP SP \leftarrow SP + 2 IRQCTL[7] \leftarrow 1			BF	*	*	*	*	*	*	1	5
JP dst	$PC \gets dst$	DA		8D	_	_	_	_	_	_	3	2
		IRR		C4	-						2	3
JP cc, dst	if cc is true PC \leftarrow dst	DA		0D-FD	-	_	-	_	_	-	3	2
JR dst	$PC \leftarrow PC + X$	DA		8B	-	_	-	_	-	-	2	2
JR cc, dst	if cc is true PC \leftarrow PC + X	DA		0B-FB	-		-	_	_	-	2	2
LD dst, rc	$dst \gets src$	r	IM	0C-FC	-	_	-	-	-	-	2	2
		r	X(r)	C7	_						3	3
		X(r)	r	D7							3	4
		r	lr	E3	_						2	3
		R	R	E4	_						3	2
		R	IR	E5	_						3	4
		R	IM	E6							3	2
		IR	IM	E7							3	3
		lr	r	F3	_						2	3
		IR	R	F5	_						3	3
Flags Notation:	* = Value is a function o – = Unaffected X = Undefined	f the resul	t of the o	peration.			eset et to		0			

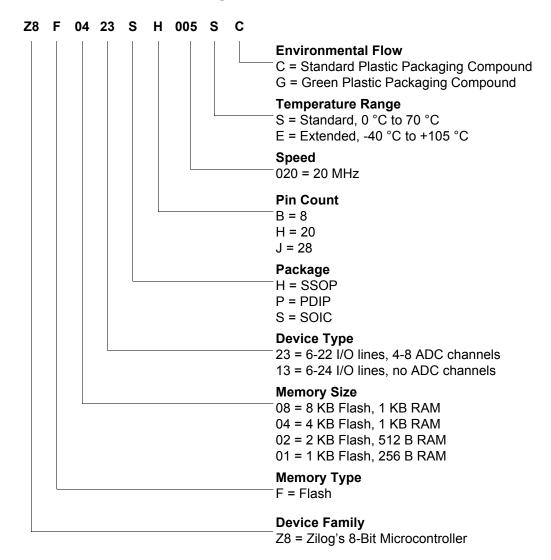
Table 115. eZ8 CPU Instruction Summary (Continued)

Assembly Mnemonic	Symbolic Operation	Address Mode		- Opcode(s)	Flags						- Fetch	Instr.
		dst	src	(Hex)	С	Ζ	S	v	D	Н		Cycles
RR dst		R		E0	*	*	*	*	_	-	2	2
	► D7 D6 D5 D4 D3 D2 D1 D0 ► C	IR		E1	_						2	3
RRC dst		R		C0	*	*	*	*	_	-	2	2
	► <u>D7D6D5D4D3D2D1D0</u> ► C dst	IR		C1	_						2	3
SBC dst, src	$dst \gets dst - src - C$	r	r	32	*	*	*	*	1	*	2	3
		r	lr	33	_						2	4
		R	R	34	_						3	3
		R	IR	35	_						3	4
		R	IM	36	_						3	3
		IR	IM	37	_						3	4
SBCX dst, src	$dst \gets dst - src - C$	ER	ER	38	*	*	*	*	1	*	4	3
		ER	IM	39	_						4	3
SCF	C ← 1			DF	1	-	_	_	_	-	1	2
SRA dst	* *	R		D0	*	*	*	0	_	-	2	2
	D7D6D5D4D3D2D1D0 ► C dst	IR		D1							2	3
SRL dst	0 - D7 D6 D5 D4 D3 D2 D1 D0 - C	R		1F C0	*	*	0	*	_	-	3	2
	dst	IR		1F C1							3	3
SRP src	$RP \leftarrow src$		IM	01	-	_	_	_	_	-	2	2
STOP	STOP Mode			6F	_	_	_	_	_	_	1	2
SUB dst, src	$dst \gets dst - src$	r	r	22	*	*	*	*	1	*	2	3
		r	lr	23	-						2	4
		R	R	24	-						3	3
		R	IR	25	_						3	4
		R	IM	26	-						3	3
		IR	IM	27	_						3	4
Flags Notation:	* = Value is a function of th – = Unaffected X = Undefined	ne resu	It of the o	peration.			ese et to		0			

Table 115. eZ8 CPU Instruction Summary (Continued)

Electrical Characteristics

The data in this chapter is pre-qualification and pre-characterization and is subject to change. Additional electrical characteristics may be found in the individual chapters.


Absolute Maximum Ratings

Stresses greater than those listed in Table 117 may cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For improved reliability, tie unused inputs to one of the supply voltages (V_{DD} or V_{SS}).

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	-40	+105	°C	
Storage temperature	-65	+150	°C	
Voltage on any pin with respect to V _{SS}	-0.3	+5.5	V	1
	-0.3	+3.9	V	2
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
8-pin Packages Maximum Ratings at 0 °C to 70 °C				
Total power dissipation		220	mW	
Maximum current into V_{DD} or out of V_{SS}		60	mA	
20-pin Packages Maximum Ratings at 0 °C to 70 °C				
Total power dissipation		430	mW	
Maximum current into V_{DD} or out of V_{SS}		120	mA	
28-pin Packages Maximum Ratings at 0 °C to 70 °C				
Total power dissipation		450	mW	

Table 117. Absolute Maximum Ratings

Part Number Suffix Designations

page erase 135 page select register 138, 139 FPS register 138, 139 FSTAT register 137

G

GATED mode 84 general-purpose I/O 35 GPIO 4.35 alternate functions 36 architecture 36 control register definitions 43 input data sample timing 202 interrupts 43 port A-C pull-up enable sub-registers 48, 49 port A-H address registers 44 port A-H alternate function sub-registers 45 port A-H control registers 44 port A-H data direction sub-registers 45 port A-H high drive enable sub-registers 47 port A-H input data registers 49 port A-H output control sub-registers 46 port A-H output data registers 50 port A-H stop mode recovery sub-registers 47 port availability by device 35 port input timing 203 port output timing 204

Η

H 174 HALT 176 halt mode 32, 176 hexadecimal number prefix/suffix 174

I2C 4 IM 173 immediate data 173 immediate operand prefix 174 **INC 175** increment 175 increment word 175 **INCW 175** indexed 173 indirect address prefix 174 indirect register 173 indirect register pair 173 indirect working register 173 indirect working register pair 173 infrared encoder/decoder (IrDA) 113 Instruction Set 171 instruction set. eZ8 CPU 171 instructions ADC 175 **ADCX 175** ADD 175 **ADDX 175** AND 177 **ANDX 177** arithmetic 175 **BCLR 176 BIT 176** bit manipulation 176 block transfer 176 **BRK 178 BSET 176** BSWAP 176, 178 **BTJ 178 BTJNZ 178 BTJZ 178 CALL 178** CCF 176 CLR 177 COM 177 CP 175 **CPC 175 CPCX 175** CPU control 176 **CPX 175** DA 175 **DEC 175 DECW 175**

DI 176

235

reset in STOP mode 89 time-out response 88 Watchdog Timer Control Register (WDTCTL) 90 WDTCTL register 90, 128, 167 WDTH register 91 WDTL register 91 WDTU register 91 working register 173 working register pair 173

Χ

X 173 XOR 178 XORX 178

Ζ

Z8 Encore! block diagram 3 features 1 part selection guide 2

236