E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	<u>.</u>
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0423sh005sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Flash Information Area	. 130
Operation	. 131
Flash Operation Timing Using the Flash Frequency Registers	
Flash Code Protection Against External Access	
Flash Code Protection Against Accidental Program and Erasure	
Byte Programming	
Page Erase	
Mass Erase	
Flash Controller Bypass	
Flash Controller Behavior in DEBUG Mode	
Flash Control Register Definitions	
Flash Control Register	
Flash Status Register	
Flash Page Select Register Flash Sector Protect Register	
Flash Frequency High and Low Byte Registers	
Flash Option Bits	
Operation	
Option Bit Configuration By Reset	
Option Bit Types	
Reading the Flash Information Page	
Flash Option Bit Control Register Definitions	
Trim Bit Address Register	-
Trim Bit Data Register	
Flash Option Bit Address Space	
Flash Program Memory Address 0000H	
Flash Program Memory Address 0001H	
Trim Bit Address Space	
Trim Bit Address 0000H—Reserved	
Trim Bit Address 0001H—Reserved	
Trim Bit Address 0002H	
Trim Bit Address 00031—Reserved	
Zilog Calibration Data	
Serialization Data	
Randomized Lot Identifier	
On-Chip Debugger	
Architecture	. 151

viii

- 2.7 V to 3.6 V operating voltage
- Up to thirteen 5 V-tolerant input pins
- 8-, 20-, and 28-pin packages
- 0 °C to +70 °C and -40 °C to +105 °C for operating temperature ranges

Part Selection Guide

Table 1 lists the basic features and package styles available for each device within the Z8 Encore! XP[®] F0823 Series product line.

Part Number	Flash (KB)	RAM (B)	I/O	ADC Inputs	Packages
Z8F0823	8	1024	6–22	4–8	8-, 20-, and 28-pins
Z8F0813	8	1024	6–24	0	8-, 20-, and 28-pins
Z8F0423	4	1024	6–22	4–8	8-, 20-, and 28-pins
Z8F0413	4	1024	6–24	0	8-, 20-, and 28-pins
Z8F0223	2	512	6–22	4–8	8-, 20-, and 28-pins
Z8F0213	2	512	6–24	0	8-, 20-, and 28-pins
Z8F0123	1	256	6–22	4–8	8-, 20-, and 28-pins
Z8F0113	1	256	6–24	0	8-, 20-, and 28-pins

Block Diagram

Figure 1 on page 3 displays the block diagram of the architecture of Z8 Encore! XP F0823 Series devices.

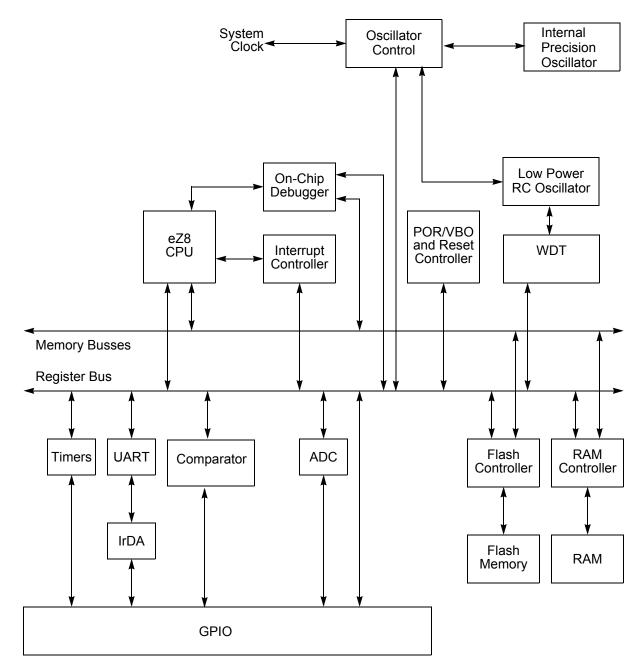


Figure 1. Z8 Encore! XP[®] F0823 Series Block Diagram

Program Memory Address (Hex)	Function
0002–0003	Reset Vector
0004–0005	WDT Interrupt Vector
0006–0007	Illegal Instruction Trap
0008–0037	Interrupt Vectors*
0038–003D	Oscillator Fail Traps*
003E-03FF	Program Memory
ee Table 33 on page 54 for a list of the in	terrupt vectors and traps.

Table 6. Z8 Encore! XP F0823 Series Program Memory Maps (Continued)

Data Memory

Z8 Encore! XP[®] F0823 Series does not use the eZ8 CPU's 64 KB Data Memory address space.

Flash Information Area

Table 7 lists the Z8 Encore! XP F0823 Series Flash Information Area. This 128 B Information Area is accessed by setting bit 7 of the Flash Page Select Register to 1. When access is enabled, the Flash Information Area is mapped into the Program Memory and overlays the 128 bytes at addresses FE00H to FF7FH. When the Information Area access is enabled, all reads from these Program Memory addresses return the Information Area data rather than the Program Memory data. Access to the Flash Information Area is read-only.

Program Memory Address (Hex)	Function
FE00–FE3F	Zilog Option Bits.
FE40–FE53	Part Number. 20-character ASCII alphanumeric code Left justified and filled with FH.
FE54–FE5F	Reserved.
FE60–FE7F	Zilog Calibration Data.
FE80–FFFF	Reserved.

Table 7. Z8 Encore! XP F0823 Series Flash Memory Information Area Map

17

Register Map

Table 8 lists the address map for the Register File of the Z8 Encore! XP[®] F0823 Series devices. Not all devices and package styles in the Z8 Encore! XP F0823 Series support the ADC, or all GPIO ports. Consider registers for unimplemented peripherals as reserved.

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
General-Purpos	<u> </u>			1 490 110
Z8F0823/Z8F08				
			~~~	
000–3FF	General-Purpose Register File RAM		XX	
400–EFF	Reserved	_	XX	
Z8F0423/Z8F04				
000–3FF	General-Purpose Register File RAM		XX	
400–EFF	Reserved	—	XX	
Z8F0223/Z8F02	13 Devices			
000–1FF	General-Purpose Register File RAM	—	XX	
200–EFF	Reserved	—	XX	
Z8F0123/Z8F01	13 Devices			
000–0FF	General-Purpose Register File RAM	_	XX	
100–EFF	Reserved	_	XX	
Timer 0				
F00	Timer 0 High Byte	ТОН	00	80
F01	Timer 0 Low Byte	TOL	01	80
F02	Timer 0 Reload High Byte	TORH	FF	81
F03	Timer 0 Reload Low Byte	TORL	FF	81
F04	Timer 0 PWM High Byte	<b>T0PWMH</b>	00	81
F05	Timer 0 PWM Low Byte	TOPWML	00	82
F06	Timer 0 Control 0	TOCTLO	00	82
F07	Timer 0 Control 1	T0CTL1	00	83
Timer 1				
F08	Timer 1 High Byte	T1H	00	80
F09	Timer 1 Low Byte	T1L	01	80
F0A	Timer 1 Reload High Byte	T1RH	FF	81
F0B	Timer 1 Reload Low Byte	T1RL	FF	81

# Architecture

Figure 7 displays a simplified block diagram of a GPIO port pin. In this figure, the ability to accommodate alternate functions and variable port current drive strength is not displayed.

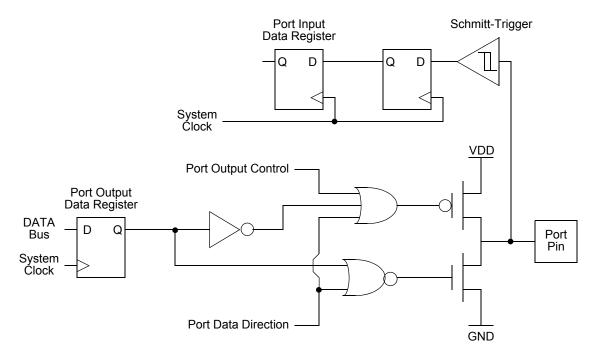



Figure 7. GPIO Port Pin Block Diagram

# **GPIO Alternate Functions**

Many of the GPIO port pins are used for general-purpose I/O and access to on-chip peripheral functions such as the timers and serial communication devices. The port A–D Alternate Function sub-registers configure these pins for either GPIO or alternate function operation. When a pin is configured for alternate function, control of the port pin direction (input/output) is passed from the Port A–D Data Direction registers to the alternate function assigned to this pin. Table 15 on page 39 lists the alternate functions possible with each port pin. The alternate function associated at a pin is defined through Alternate Function Sets sub-registers AFS1 and AFS2.

The crystal oscillator functionality is not controlled by the GPIO block. When the crystal oscillator is enabled in the oscillator control block, the GPIO functionality of PA0 and PA1 is overridden. In that case, those pins function as input and output for the crystal oscillator.

# **Interrupt Control Register Definitions**

For all interrupts other than the Watchdog Timer interrupt, the Primary Oscillator Fail Trap, and the Watchdog Timer Oscillator Fail Trap, the interrupt control registers enable individual interrupts, set interrupt priorities, and indicate interrupt requests.

## **Interrupt Request 0 Register**

The Interrupt Request 0 (IRQ0) register (Table 34) stores the interrupt requests for both vectored and polled interrupts. When a request is presented to the interrupt controller, the corresponding bit in the IRQ0 register becomes 1. If interrupts are globally enabled (vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU reads the Interrupt Request 0 register to determine if any interrupt requests are pending.

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved	T1I	ТОІ	<b>U0RXI</b>	U0TXI	Reserved	Reserved	ADCI
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR		FC0H						

Table 34. Interrupt Request 0 Register (IRQ0)

Reserved—Must be 0

T1I—Timer 1 Interrupt Request

- 0 = No interrupt request is pending for Timer 1
- 1 = An interrupt request from Timer 1 is awaiting service

T0I—Timer 0 Interrupt Request

- 0 = No interrupt request is pending for Timer 0
- 1 = An interrupt request from Timer 0 is awaiting service

U0RXI-UART 0 Receiver Interrupt Request

- 0 = No interrupt request is pending for the UART 0 receiver
- 1 = An interrupt request from the UART 0 receiver is awaiting service

U0TXI-UART 0 Transmitter Interrupt Request

- 0 = No interrupt request is pending for the UART 0 transmitter
- 1 = An interrupt request from the UART 0 transmitter is awaiting service

ADCI—ADC Interrupt Request

- 0 = No interrupt request is pending for the ADC
- 1 = An interrupt request from the ADC is awaiting service

Reserved—Must be 0

T1ENH—Timer 1 Interrupt Request Enable High Bit T0ENH—Timer 0 Interrupt Request Enable High Bit U0RENH—UART 0 Receive Interrupt Request Enable High Bit U0TENH—UART 0 Transmit Interrupt Request Enable High Bit ADCENH—ADC Interrupt Request Enable High Bit

#### Table 39. IRQ0 Enable Low Bit Register (IRQ0ENL)

BITS	7	6	5	4	3	2	1	0	
FIELD	Reserved	T1ENL	<b>T0ENL</b>	<b>U0RENL</b>	<b>U0TENL</b>	Reserved	Reserved	ADCENL	
RESET	0	0	0	0	0	0	0	0	
R/W	R	R/W	R/W	R/W	R/W	R	R	R/W	
ADDR		FC2H							

Reserved—0 when read

T1ENL—Timer 1 Interrupt Request Enable Low Bit T0ENL—Timer 0 Interrupt Request Enable Low Bit U0RENL—UART 0 Receive Interrupt Request Enable Low Bit U0TENL—UART 0 Transmit Interrupt Request Enable Low Bit ADCENL—ADC Interrupt Request Enable Low Bit

### **IRQ1 Enable High and Low Bit Registers**

Table 40 describes the priority control for IRQ1. The IRQ1 Enable High and Low Bit registers (Table 41 and Table 42) form a priority encoded enabling for interrupts in the Interrupt Request 1 register. Priority is generated by setting bits in each register.

		-	
IRQ1ENH[x]	IRQ1ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Nominal
1	1	Level 3	High

Table 40. IRQ1 Enable and Priority Encoding

where x indicates the register bits from 0–7.

#### **COUNTER Mode**

In COUNTER mode, the timer counts input transitions from a GPIO port pin. The timer input is taken from the GPIO port pin Timer Input alternate function. The TPOL bit in the Timer Control register selects whether the count occurs on the rising edge or the falling edge of the timer input signal. In COUNTER mode, the prescaler is disabled.

**Caution:** *The input frequency of the timer input signal must not exceed one-fourth the system clock frequency.* 

Upon reaching the Reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

Follow the steps below for configuring a timer for COUNTER mode and initiating the count:

- 1. Write to the Timer Control register to:
  - Disable the timer.
  - Configure the timer for COUNTER mode.
  - Select either the rising edge or falling edge of the Timer Input signal for the count. This selection also sets the initial logic level (High or Low) for the Timer Output alternate function. However, the Timer Output function is not required to be enabled.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This only affects the first pass in COUNTER mode. After the first timer Reload in COUNTER mode, counting always begins at the reset value of 0001H. In COUNTER mode the Timer High and Low Byte registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 7. Write to the Timer Control register to enable the timer.

In COUNTER mode, the number of Timer Input transitions since the timer start is given by the following equation:

COUNTER Mode Timer Input Transitions = Current Count Value – Start Value

- Configure the timer for CAPTURE/COMPARE mode
- Set the prescale value
- Set the Capture edge (rising or falling) for the Timer Input
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the Compare value.
- 4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers.By default, the timer interrupt are generated for both input Capture and Reload events. If appropriate, configure the timer interrupt to be generated only at the input Capture event or the Reload event by setting TICONFIG field of the TxCTL1 register.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. Write to the Timer Control register to enable the timer.
- 7. Counting begins on the first appropriate transition of the Timer Input signal. No interrupt is generated by this first edge.

In CAPTURE/COMPARE mode, the elapsed time from timer start to Capture event can be calculated using the following equation:

Capture Elapsed Time (s) =  $\frac{(Capture Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$ 

#### **Reading the Timer Count Values**

The current count value in the timers can be read while counting (enabled). This capability has no effect on timer operation. When the timer is enabled and the Timer High Byte register is read, the contents of the Timer Low Byte register are placed in a holding register. A subsequent read from the Timer Low Byte register returns the value in the hold-ing register. This operation allows accurate reads of the full 16-bit timer count value while enabled. When the timers are not enabled, a read from the Timer Low Byte register returns the actual value in the counter.

#### **Timer Pin Signal Operation**

Timer Output is a GPIO port pin alternate function. The Timer Output is toggled every time the counter is reloaded.

The timer input can be used as a selectable counting source. It shares the same pin as the complementary timer output. When selected by the GPIO Alternate Function Registers, this pin functions as a timer input in all modes except for the DUAL PWM OUTPUT mode. For this mode, there is no timer input available.

# **Infrared Encoder/Decoder**

Z8 Encore! XP[®] F0823 Series products contain a fully-functional, high-performance UART with Infrared Encoder/Decoder (Endec). The Infrared Endec is integrated with an on-chip UART to allow easy communication between the Z8 Encore! XP and IrDA Physical Layer Specification, Version 1.3-compliant infrared transceivers. Infrared communication provides secure, reliable, low-cost, point-to-point communication between PCs, PDAs, cell phones, printers and other infrared enabled devices.

# Architecture

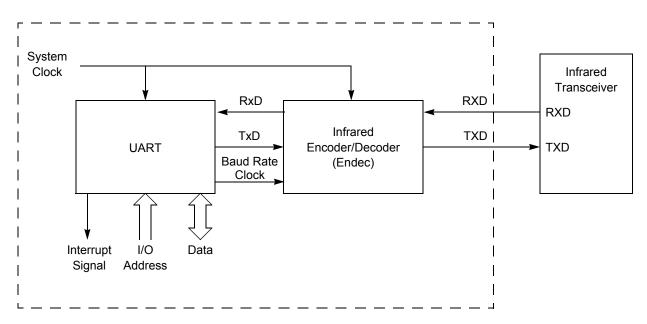



Figure 16 displays the architecture of the Infrared Endec.

Figure 16. Infrared Data Communication System Block Diagram

# Operation

When the Infrared Endec is enabled, the transmit data from the associated on-chip UART is encoded as digital signals in accordance with the IrDA standard and output to the infrared transceiver through the TXD pin. Similarly, data received from the infrared transceiver is passed to the Infrared Endec through the RXD pin, decoded by the Infrared

REFSELL—Voltage Reference Level Select Low Bit; in conjunction with the High bit (REFSELH) in ADC Control/Status Register 1, this determines the level of the internal voltage reference; the following details the effects of {REFSELH, REFSELL};

Note:

*This reference is independent of the Comparator reference.* 

00= Internal Reference Disabled, reference comes from external pin.

01= Internal Reference set to 1.0 V

10= Internal Reference set to 2.0 V (default)

REFEXT—External Reference Select

0 = External reference buffer is disabled; V_{ref} pin is available for GPIO functions

1 = The internal ADC reference is buffered and connected to the  $V_{ref}$  pin

#### CONT

0 = Single-shot conversion. ADC data is output once at completion of the 5129 system clock cycles.

1 = Continuous conversion. ADC data updated every 256 system clock cycles.

ANAIN[3:0]—Analog Input Select

These bits select the analog input for conversion. Not all port pins in this list are available in all packages for Z8 Encore! XP[®] F0823 Series. For information on the port pins available with each package style, see Pin Description on page 7. Do not enable unavailable analog inputs. Usage of these bits changes depending on the buffer mode selected in ADC Control/Status Register 1.

For the reserved values, all input switches are disabled to avoid leakage or other undesirable operation. ADC samples taken with reserved bit settings are undefined.

Single-Ended:

0000 = ANA00001 = ANA10010 = ANA20011 = ANA3 0100 = ANA40101 = ANA50110 = ANA60111 = ANA71000 = Reserved1001 = Reserved1010 = Reserved1011 = Reserved1100 = Reserved1101 = Reserved1110 = Reserved1111 = Reserved

# Comparator

Z8 Encore! XP[®] F0823 Series devices feature a general purpose comparator that compares two analog input signals. A GPIO (CINP) pin provides the positive comparator input. The negative input (CINN) can be taken from either an external GPIO pin or an internal reference. The output is available as an interrupt source or can be routed to an external pin using the GPIO multiplex. The features of Comparator include:

- Two inputs which can be connected up using the GPIO multiplex (MUX)
- One input can be connected to a programmable internal reference
- One input can be connected to the on-chip temperature sensor
- Output can be either an interrupt source or an output to an external pin

# Operation

One of the comparator inputs can be connected to an internal reference which is a user selectable reference that is user programmable with 200 mV resolution.

The comparator can be powered down to save on supply current. For details, see Power Control Register 0 on page 32.

**Caution:** Because of the propagation delay of the comparator, it is not recommended to enable the comparator without first disabling interrupts and waiting for the comparator output to settle. Doing so can result in spurious interrupts after comparator enabling. The following example shows how to safely enable the comparator:

```
di
ld cmp0
nop
  ; wait for output to settle
clr irq0 ; clear any spurious interrupts pending
ei
```

# **Comparator Control Register Definitions**

### **Comparator Control Register**

The Comparator Control register (CMPCTL) configures the comparator inputs and sets the value of the internal voltage reference.

#### Table 83. Flash Frequency High Byte Register (FFREQH)

BITS	7	6	5	4	3	2	1	0
FIELD	FFREQH							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FFAH							

FFREQH—Flash Frequency High Byte High byte of the 16-bit Flash Frequency value

### Table 84. Flash Frequency Low Byte Register (FFREQL)

BITS	7	6	5	4	3	2	1	0			
FIELD	FFREQL										
RESET	0										
R/W	R/W										
ADDR		FFBH									

FFREQL—Flash Frequency Low Byte Low byte of the 16-bit Flash Frequency value

150
-----

Info Page Address	Memory Address	Usage
5C	FE5C	Randomized Lot ID Byte 23
5D	FE5D	Randomized Lot ID Byte 22
5E	FE5E	Randomized Lot ID Byte 21
5F	FE5F	Randomized Lot ID Byte 20
61	FE61	Randomized Lot ID Byte 19
62	FE62	Randomized Lot ID Byte 18
64	FE64	Randomized Lot ID Byte 17
65	FE65	Randomized Lot ID Byte 16
67	FE67	Randomized Lot ID Byte 15
68	FE68	Randomized Lot ID Byte 14
6A	FE6A	Randomized Lot ID Byte 13
6B	FE6B	Randomized Lot ID Byte 12
6D	FE6D	Randomized Lot ID Byte 11
6E	FE6E	Randomized Lot ID Byte 10
70	FE70	Randomized Lot ID Byte 9
71	FE71	Randomized Lot ID Byte 8
73	FE73	Randomized Lot ID Byte 7
74	FE74	Randomized Lot ID Byte 6
76	FE76	Randomized Lot ID Byte 5
77	FE77	Randomized Lot ID Byte 4
79	FE79	Randomized Lot ID Byte 3
7A	FE7A	Randomized Lot ID Byte 2
7C	FE7C	Randomized Lot ID Byte 1
7D	FE7D	Randomized Lot ID Byte 0 (least significant)

## Table 97. Randomized Lot ID Locations (Continued)

177

## Table 110. CPU Control Instructions (Continued)

Mnemonic	Operands	Instruction				
SCF	—	Set Carry Flag				
SRP	SrC	Set Register Pointer				
STOP	_	STOP Mode				
WDT	_	Watchdog Timer Refresh				

## Table 111. Load Instructions

Mnemonic	Operands	Instruction
CLR	dst	Clear
LD	dst, src	Load
LDC	dst, src	Load Constant to/from Program Memory
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDE	dst, src	Load External Data to/from Data Memory
LDEI	dst, src	Load External Data to/from Data Memory and Auto-Increment Addresses
LDWX	dst, src	Load Word using Extended Addressing
LDX	dst, src	Load using Extended Addressing
LEA	dst, X(src)	Load Effective Address
POP	dst	Рор
POPX	dst	Pop using Extended Addressing
PUSH	SrC	Push
PUSHX	SrC	Push using Extended Addressing

# Table 112. Logical Instructions

Mnemonic	Operands	Instruction
AND	dst, src	Logical AND
ANDX	dst, src	Logical AND using Extended Addressing
СОМ	dst	Complement
OR	dst, src	Logical OR

# UART Timing

Figure 32 and Table 130 provide timing information for UART pins for the case where CTS is used for flow control. The CTS to DE assertion delay (T1) assumes the transmit data register has been loaded with data prior to CTS assertion.

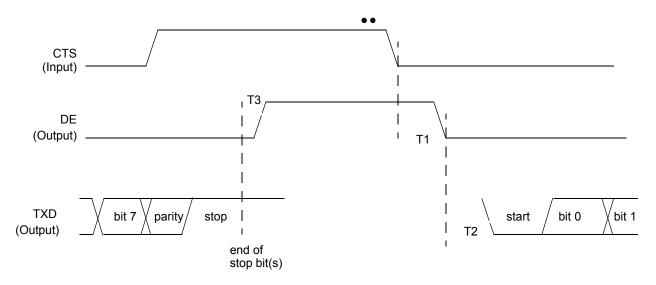



Figure 32. UART Timing With CTS

		Delay (ns)			
Parameter	Abbreviation	Minimum	Maximum		
UART					
T ₁	CTS Fall to DE output delay	2 * XIN period	2 * XIN period + 1 bit time		
T ₂	DE assertion to TXD falling edge (start bit) dela	y ± 5			
T ₃	End of Stop Bit(s) to DE deassertion delay	± 5			

#### Table 130. UART Timing With CTS

Part Number	F		/O Lines	nterrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description		
Part	Flash	RAM	10 L	Inter	16-Bit T w/PWM	10-B	UAR	Desc		
Z8 Encore! XP with 1		, 10-Bit A	Analog	j-to-D	igital C	onve	erter			
Standard Temperatur	Standard Temperature: 0 °C to 70 °C									
Z8F0123PB005SC	1 KB	256 B	6	12	2	4	1	PDIP 8-pin package		
Z8F0123QB005SC	1 KB	256 B	6	12	2	4	1	QFN 8-pin package		
Z8F0123SB005SC	1 KB	256 B	6	12	2	4	1	SOIC 8-pin package		
Z8F0123SH005SC	1 KB	256 B	16	18	2	7	1	SOIC 20-pin package		
Z8F0123HH005SC	1 KB	256 B	16	18	2	7	1	SSOP 20-pin package		
Z8F0123PH005SC	1 KB	256 B	16	18	2	7	1	PDIP 20-pin package		
Z8F0123SJ005SC	1 KB	256 B	22	18	2	8	1	SOIC 28-pin package		
Z8F0123HJ005SC	1 KB	256 B	22	18	2	8	1	SSOP 28-pin package		
Z8F0123PJ005SC	1 KB	256 B	22	18	2	8	1	PDIP 28-pin package		
Extended Temperatur	e: -40 °C	to 105 °C	;							
Z8F0123PB005EC	1 KB	256 B	6	12	2	4	1	PDIP 8-pin package		
Z8F0123QB005EC	1 KB	256 B	6	12	2	4	1	QFN 8-pin package		
Z8F0123SB005EC	1 KB	256 B	6	12	2	4	1	SOIC 8-pin package		
Z8F0123SH005EC	1 KB	256 B	16	18	2	7	1	SOIC 20-pin package		
Z8F0123HH005EC	1 KB	256 B	16	18	2	7	1	SSOP 20-pin package		
Z8F0123PH005EC	1 KB	256 B	16	18	2	7	1	PDIP 20-pin package		
Z8F0123SJ005EC	1 KB	256 B	22	18	2	8	1	SOIC 28-pin package		
Z8F0123HJ005EC	1 KB	256 B	22	18	2	8	1	SSOP 28-pin package		
Z8F0123PJ005EC	1 KB	256 B	22	18	2	8	1	PDIP 28-pin package		
Replace C with G for Lead-Free Packaging										

223

Jagen N Za Encorel XP [®] E0823 S	Flash	W W W W W W W W W W W W W W W W W W W	I/O Lines	∓ Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description
Z8F08A28100KITG	8 Encore! XP [®] F0823 Series Development Kit 8F08A28100KITG Z8 Encore! XP F082A Series Development Kit (20- and 28-Pin)							
Z8F04A28100KITG		Z8 Enco	re! XP	F042	A Serie	es De	velo	pment Kit (20- and 28-Pin)
Z8F04A08100KITG		Z8 Enco	re! XP	F042	A Serie	es De	velo	pment Kit (8-Pin)
ZUSBSC00100ZACG		USB Smart Cable Accessory Kit						
ZUSBOPTSC01ZACG		Opto-Isolated USB Smart Cable Accessory Kit						
ZENETSC0100ZACG	Ethernet Smart Cable Accessory Kit							

## Z8 Encore! XP[®] F0823 Series Product Specification

235

reset in STOP mode 89 time-out response 88 Watchdog Timer Control Register (WDTCTL) 90 WDTCTL register 90, 128, 167 WDTH register 91 WDTL register 91 WDTU register 91 working register 173 working register pair 173

# Χ

X 173 XOR 178 XORX 178

# Ζ

Z8 Encore! block diagram 3 features 1 part selection guide 2