

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Discontinued at Digi-Key
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0813pj005sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Flash Information Area	. 130
Operation	. 131
Flash Operation Timing Using the Flash Frequency Registers	
Flash Code Protection Against External Access	
Flash Code Protection Against Accidental Program and Erasure	
Byte Programming	
Page Erase	
Mass Erase	
Flash Controller Bypass	
Flash Controller Behavior in DEBUG Mode	
Flash Control Register Definitions	
Flash Control Register	
Flash Status Register	
Flash Page Select Register Flash Sector Protect Register	
Flash Frequency High and Low Byte Registers	
Flash Option Bits	
Operation	
Option Bit Configuration By Reset	
Option Bit Types	
Reading the Flash Information Page	
Flash Option Bit Control Register Definitions	
Trim Bit Address Register	-
Trim Bit Data Register	
Flash Option Bit Address Space	
Flash Program Memory Address 0000H	
Flash Program Memory Address 0001H	
Trim Bit Address Space	
Trim Bit Address 0000H—Reserved	
Trim Bit Address 0001H—Reserved	
Trim Bit Address 0002H	
Trim Bit Address 00031—Reserved	
Zilog Calibration Data	
Serialization Data	
Randomized Lot Identifier	
On-Chip Debugger	
Architecture	. 151

viii

CPU and Peripheral Overview

eZ8 CPU Features

The eZ8 CPU, Zilog's latest 8-bit central processing unit (CPU), meets the continuing demand for faster and code-efficient microcontrollers. The eZ8 CPU executes a superset of the original $Z8^{\text{(R)}}$ instruction set. The eZ8 CPU features include:

- Direct register-to-register architecture allows each register to function as an accumulator, improving execution time and decreasing the required program memory.
- Software stack allows much greater depth in subroutine calls and interrupts than hardware stacks.
- Compatible with existing Z8 code.
- Expanded internal Register File allows access of up to 4 KB.
- New instructions improve execution efficiency for code developed using higher-level programming languages, including C.
- Pipelined instruction fetch and execution.
- New instructions for improved performance including BIT, BSWAP, BTJ, CPC, LDC, LDCI, LEA, MULT, and SRL.
- New instructions support 12-bit linear addressing of the Register file.
- Up to 10 MIPS operation.
- C-Compiler friendly.
- 2 to 9 clock cycles per instruction.

For more information on eZ8 CPU, refer to eZ8 CPU Core User Manual (UM0128) available for download at <u>www.zilog.com</u>.

General-Purpose I/O

Z8 Encore! XP F0823 Series features 6 to 24 port pins (Ports A–C) for general-purpose I/O (GPIO). The number of GPIO pins available is a function of package. Each pin is individually programmable. 5 V tolerant input pins are available on all I/Os on 8-pin devices, most I/Os on other package types.

Flash Controller

The Flash Controller programs and erases Flash memory. The Flash Controller supports protection against accidental program and erasure, as well as factory serialization and read protection.

7

Pin Description

Z8 Encore! XP[®] F0823 Series products are available in a variety of package styles and pin configurations. This chapter describes the signals and pin configurations available for each of the package styles. For information on physical package specifications, see Packaging on page 209.

Available Packages

Table 2 lists the package styles that are available for each device in the Z8 Encore! XP F0823 Series product line.

Part Number	ADC	8-pin PDIP	8-pin SOIC	20-pin PDIP	20-pin SOIC	20-pin SSOP	28-pin PDIP	28-pin SOIC	28-pin SSOP	8-pin QFN/ MLF-S
Z8F0823	Yes	X	X	X	X	X	X	X	X	X
Z8F0813	No	Х	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0423	Yes	Х	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0413	No	Х	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0223	Yes	Х	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0213	No	Х	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0123	Yes	Х	Х	Х	Х	Х	Х	Х	Х	Х
Z8F0113	No	Х	Х	Х	Х	Х	Х	Х	Х	Х

Table 2. Z8 Encore! XP F0823 Series Package Options

Pin Configurations

Figure 2 through Figure 4 displays the pin configurations for all packages available in the Z8 Encore! XP F0823 Series. For description of signals, see Table 3. The analog input alternate functions (ANA*x*) are not available on the Z8F0x13 devices. The analog supply pins (AV_{DD} and AV_{SS}) are also not available on these parts, and are replaced by PB6 and PB7.

At reset, all pins of Ports A, B, and C default to an input state. In addition, any alternate functionality is not enabled, so the pins function as general-purpose input ports until programmed otherwise.

tions as a GPIO pin. If it is not present, the debug feature is disabled until/unless another reset event occurs. For more details, see On-Chip Debugger on page 151.

Crystal Oscillator Override

For systems using a crystal oscillator, PA0 and PA1 are used to connect the crystal. When the crystal oscillator is enabled (see Oscillator Control Register Definitions on page 167), the GPIO settings are overridden and PA0 and PA1 are disabled.

5 V Tolerance

All six I/O pins on the 8-pin devices are 5 V-tolerant, unless the programmable pull-ups are enabled. If the pull-ups are enabled and inputs higher than V_{DD} are applied to these parts, excessive current flows through those pull-up devices and can damage the chip.

Note: In the 20- and 28-pin versions of this device, any pin which shares functionality with an ADC, crystal or comparator port is not 5 V-tolerant, including PA[1:0], PB[5:0], and PC[2:0]. All other signal pins are 5 V-tolerant, and can safely handle inputs higher than V_{DD} even with the pull-ups enabled.

External Clock Setup

For systems using an external TTL drive, PB3 is the clock source for 20- and 28-pin devices. In this case, configure PB3 for alternate function CLKIN. Write the Oscillator Control Register (see Oscillator Control Register Definitions on page 167) such that the external oscillator is selected as the system clock. For 8-pin devices use PA1 instead of PB3.

PS024314-0308	

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port B	PB0	Reserved		AFS1[0]: 0
		ANA0	ADC Analog Input	AFS1[0]: 1
	PB1	Reserved		AFS1[1]: 0
		ANA1	ADC Analog Input	AFS1[1]: 1
	PB2	Reserved		AFS1[2]: 0
		ANA2	ADC Analog Input	AFS1[2]: 1
PB3	PB3	CLKIN	External Clock Input	AFS1[3]: 0
		ANA3	ADC Analog Input	AFS1[3]: 1
	PB4	Reserved		AFS1[4]: 0
		ANA7	ADC Analog Input	AFS1[4]: 1
	PB5	Reserved		AFS1[5]: 0
		VREF*	ADC Voltage Reference	AFS1[5]: 1
	PB6	Reserved		AFS1[6]: 0
		Reserved		AFS1[6]: 1
	PB7	Reserved		AFS1[7]: 0
		Reserved		AFS1[7]: 1

Note: Because there are at most two choices of alternate function for any pin of Port B, the Alternate Function Set register AFS2 is implemented but not used to select the function. Also, alternate function selection as described in Port A–C Alternate Function Sub-Registers must also be enabled.

* VREF is available on PB5 in 28-pin products only.

40

PSMRE[7:0]—Port Stop Mode Recovery Source Enabled.

0 = The Port pin is not configured as a Stop Mode Recovery source. Transitions on this pin during STOP mode do not initiate Stop Mode Recovery.

1 = The Port pin is configured as a Stop Mode Recovery source. Any logic transition on this pin during STOP mode initiates Stop Mode Recovery.

Port A–C Pull-up Enable Sub-Registers

The Port A–C Pull-up Enable sub-register (Table 25) is accessed through the Port A–C Control register by writing 06H to the Port A–C Address register. Setting the bits in the Port A–C Pull-up Enable sub-registers enables a weak internal resistive pull-up on the specified Port pins.

Table 25. Port A–C Pull-Up Enable Sub-Registers (PxPUE)

BITS	7	6	5	4	3	2	1	0
FIELD	PPUE7	PPUE6	PPUE5	PPUE4	PPUE3	PPUE2	PPUE1	PPUE0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	lf 06H i	n Port A–C	Address Reg	gister, acces	sible throug	n the Port A-	-C Control F	Register

PPUE[7:0]—Port Pull-up Enabled

0 = The weak pull-up on the Port pin is disabled.

1 = The weak pull-up on the Port pin is enabled.

Port A–C Alternate Function Set 1 Sub-Registers

The Port A–C Alternate Function Set1 sub-register (Table 26) is accessed through the Port A–C Control register by writing 07H to the Port A–C Address register. The Alternate Function Set 1 sub-registers selects the alternate function available at a port pin. Alternate Functions selected by setting or clearing bits of this register are defined in GPIO Alternate Functions on page 36.

Note:

Alternate function selection on port pins must also be enabled as described in Port A–C Alternate Function Sub-Registers *on page 45*.

COUNTER Mode

In COUNTER mode, the timer counts input transitions from a GPIO port pin. The timer input is taken from the GPIO port pin Timer Input alternate function. The TPOL bit in the Timer Control register selects whether the count occurs on the rising edge or the falling edge of the timer input signal. In COUNTER mode, the prescaler is disabled.

Caution: *The input frequency of the timer input signal must not exceed one-fourth the system clock frequency.*

Upon reaching the Reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

Follow the steps below for configuring a timer for COUNTER mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for COUNTER mode.
 - Select either the rising edge or falling edge of the Timer Input signal for the count. This selection also sets the initial logic level (High or Low) for the Timer Output alternate function. However, the Timer Output function is not required to be enabled.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This only affects the first pass in COUNTER mode. After the first timer Reload in COUNTER mode, counting always begins at the reset value of 0001H. In COUNTER mode the Timer High and Low Byte registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 7. Write to the Timer Control register to enable the timer.

In COUNTER mode, the number of Timer Input transitions since the timer start is given by the following equation:

COUNTER Mode Timer Input Transitions = Current Count Value – Start Value

COMPARATOR COUNTER Mode

In COMPARATOR COUNTER mode, the timer counts input transitions from the analog comparator output. The TPOL bit in the Timer Control Register selects whether the count occurs on the rising edge or the falling edge of the comparator output signal. In COMPARATOR COUNTER mode, the prescaler is disabled.

Caution: *The frequency of the comparator output signal must not exceed one-fourth the system clock frequency.*

After reaching the Reload value stored in the Timer Reload High and Low Byte registers, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer Reload.

Follow the steps below for configuring a timer for COMPARATOR COUNTER mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for COMPARATOR COUNTER mode.
 - Select either the rising edge or falling edge of the comparator output signal for the count. This also sets the initial logic level (High or Low) for the Timer Output alternate function. However, the Timer Output function is not required to be enabled.
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This action only affects the first pass in COMPARATOR COUNTER mode. After the first timer Reload in COMPARATOR COUNTER mode, counting always begins at the reset value of 0001H. Generally, in COMPARATOR COUNTER mode the Timer High and Low Byte registers must be written with the value 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 6. Write to the Timer Control register to enable the timer.

In COMPARATOR COUNTER mode, the number of comparator output transitions since the timer start is given by the following equation:

Comparator Output Transitions = Current Count Value – Start Value

- Set the initial logic level (High or Low) and PWM High/Low transition for the Timer Output alternate function
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H). This only affects the first pass in PWM mode. After the first timer reset in PWM mode, counting always begins at the reset value of 0001H.
- 3. Write to the PWM High and Low Byte registers to set the PWM value.
- 4. Write to the PWM Control register to set the PWM dead band delay value. The deadband delay must be less than the duration of the positive phase of the PWM signal (as defined by the PWM high and low byte registers). It must also be less than the duration of the negative phase of the PWM signal (as defined by the difference between the PWM registers and the Timer Reload registers).
- 5. Write to the Timer Reload High and Low Byte registers to set the Reload value (PWM period). The Reload value must be greater than the PWM value.
- 6. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 7. Configure the associated GPIO port pin for the Timer Output and Timer Output Complement alternate functions. The Timer Output Complement function is shared with the Timer Input function for both timers. Setting the timer mode to Dual PWM automatically switches the function from Timer In to Timer Out Complement.
- 8. Write to the Timer Control register to enable the timer and initiate counting.

The PWM period is represented by the following equation: $PWM \text{ Period (s)} = \frac{\text{Reload Value} \times \text{Prescale}}{\text{System Clock Frequency (Hz)}}$

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, the ONE-SHOT mode equation determines the first PWM time-out period.

If TPOL is set to 0, the ratio of the PWM output High time to the total period is represented by:

PWM Output High Time Ratio (%) = $\frac{\text{Reload Value} - \text{PWM Value}}{\text{Reload Value}} \times 100$

If TPOL is set to 1, the ratio of the PWM output High time to the total period is represented by:

PWM Output High Time Ratio (%) = $\frac{PWM Value}{Reload Value} \times 100$

CAPTURE Mode

In CAPTURE mode, the current timer count value is recorded when the appropriate external Timer Input transition occurs. The Capture count value is written to the Timer PWM High and Low Byte Registers. The timer input is the system clock. The TPOL bit in the Timer Control register determines if the Capture occurs on a rising edge or a falling edge

Watchdog Timer Refresh

When first enabled, the WDT is loaded with the value in the Watchdog Timer Reload registers. The Watchdog Timer counts down to 000000H unless a WDT instruction is executed by the eZ8 CPU. Execution of the WDT instruction causes the down counter to be reloaded with the WDT Reload value stored in the Watchdog Timer Reload registers. Counting resumes following the reload operation.

When Z8 Encore! XP[®] F0823 Series devices are operating in DEBUG Mode (using the OCD), the Watchdog Timer is continuously refreshed to prevent any Watchdog Timer time-outs.

Watchdog Timer Time-Out Response

The Watchdog Timer times out when the counter reaches 000000H. A time-out of the Watchdog Timer generates either an interrupt or a system reset. The WDT_RES Flash Option Bit determines the time-out response of the Watchdog Timer. For information on programming of the WDT_RES Flash Option Bit, see Flash Option Bits on page 141.

WDT Interrupt in Normal Operation

If configured to generate an interrupt when a time-out occurs, the Watchdog Timer issues an interrupt request to the interrupt controller and sets the WDT status bit in the Watchdog Timer Control register. If interrupts are enabled, the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executing code from the vector address. After time-out and interrupt generation, the Watchdog Timer counter rolls over to its maximum value of FFFFFH and continues counting. The Watchdog Timer counter is not automatically returned to its Reload Value.

The Reset Status Register (see Reset Status Register on page 28) must be read before clearing the WDT interrupt. This read clears the WDT time-out Flag and prevents further WDT interrupts for immediately occurring.

WDT Interrupt in STOP Mode

If configured to generate an interrupt when a time-out occurs and Z8 Encore! XP F0823 Series are in STOP mode, the Watchdog Timer automatically initiates a Stop Mode Recovery and generates an interrupt request. Both the WDT status bit and the STOP bit in the Watchdog Timer Control register are set to 1 following a WDT time-out in STOP mode. For more information on Stop Mode Recovery, see Reset and Stop Mode Recovery on page 21.

If interrupts are enabled, following completion of the Stop Mode Recovery the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executing code from the vector address.

received and the UART Receive Data register has not been read. If the RDA bit is reset to 0, reading the UART Receive Data register clears this bit.

0 = No overrun error occurred

1 = An overrun error occurred

FE—Framing Error

This bit indicates that a framing error (no Stop bit following data reception) was detected. Reading the UART Receive Data register clears this bit.

0 = No framing error occurred

1 = A framing error occurred

BRKD-Break Detect

This bit indicates that a break occurred. If the data bits, parity/multiprocessor bit, and Stop bit(s) are all 0s this bit is set to 1. Reading the UART Receive Data register clears this bit.

0 = No break occurred

1 = A break occurred

TDRE—Transmitter Data Register Empty

This bit indicates that the UART Transmit Data register is empty and ready for additional data. Writing to the UART Transmit Data register resets this bit.

0 = Do not write to the UART Transmit Data register

1 = The UART Transmit Data register is ready to receive an additional byte to be transmitted

TXE—Transmitter Empty

This bit indicates that the transmit shift register is empty and character transmission is finished.

0 = Data is currently transmitting

1 = Transmission is complete

$CTS \longrightarrow \overline{CTS}$ signal

When this bit is read it returns the level of the $\overline{\text{CTS}}$ signal. This signal is active Low.

UART Status 1 Register

This register contains multiprocessor control and status bits.

Table 65. UART Status 1 Register (U0STAT1)

BITS	7	6	5	4	3	2	1	0
FIELD			NEWFRM	MPRX				
RESET	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R/W	R/W	R	R
ADDR				F4	4H			

Reserved—R/W bits must be 0 during writes; 0 when read.

NEWFRM—Status bit denoting the start of a new frame. Reading the UART Receive Data register resets this bit to 0.

0 = The current byte is not the first data byte of a new frame

1 = The current byte is the first data byte of a new frame

MPRX—Multiprocessor Receive

Returns the value of the most recent multiprocessor bit received. Reading from the UART Receive Data register resets this bit to 0.

UART Control 0 and Control 1 Registers

The UART Control 0 and Control 1 registers (Table 66 and Table 67) configure the properties of the UART's transmit and receive operations. The UART Control registers must not be written while the UART is enabled.

Table 66. UART Control 0 Register (U0CTL0)

BITS	7	6	5	4	3	2	1	0		
FIELD	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR		F42H								

TEN—Transmit Enable

This bit enables or disables the transmitter. The enable is also controlled by the $\overline{\text{CTS}}$ signal and the CTSE bit. If the $\overline{\text{CTS}}$ signal is low and the CTSE bit is 1, the transmitter is enabled.

0 = Transmitter disabled

1 = Transmitter enabled

REN—Receive Enable

This bit enables or disables the receiver.

- 0 =Receiver disabled
- 1 =Receiver enabled

CTSE—CTS Enable

 $0 = \text{The }\overline{\text{CTS}}$ signal has no effect on the transmitter

1 = The UART recognizes the $\overline{\text{CTS}}$ signal as an enable control from the transmitter

PEN—Parity Enable

This bit enables or disables parity. Even or odd is determined by the PSEL bit.

0 =Parity is disabled

1 = The transmitter sends data with an additional parity bit and the receiver receives an additional parity bit

The randomized lot identifier is a 32 byte binary value, stored in the flash information page (for more details, see Reading the Flash Information Page on page 143 and Randomized Lot Identifier on page 149) and is unaffected by mass erasure of the device's flash memory.

Reading the Flash Information Page

The following code example shows how to read data from the Flash Information Area.

; get value at info address 60 (FE60h)
ldx FPS, #%80 ; enable access to flash info page
ld R0, #%FE
ld R1, #%60
ldc R2, @RR0 ; R2 now contains the calibration value

Flash Option Bit Control Register Definitions

Trim Bit Address Register

The Trim Bit Address (TRMADR) register contains the target address for an access to the trim option bits.

Table 85. Trim Bit Address Register (TRMADR)

BITS	7	6	5	4	3	2	1	0		
FIELD	TRMADR - Trim Bit Address (00H to 1FH)									
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR				FF	6H					

Debug Command	Command Byte	Enabled when NOT in DEBUG mode?	Disabled by Flash Read Protect Option Bit
Stuff Instruction	11H	-	Disabled.
Execute Instruction	12H	-	Disabled.
Reserved	13H–FFH	_	_

In the following list of OCD Commands, data and commands sent from the host to the OCD are identified by 'DBG \leftarrow Command/Data'. Data sent from the OCD back to the host is identified by 'DBG \rightarrow Data'.

• **Read OCD Revision (00H)**—The Read OCD Revision command determines the version of the OCD. If OCD commands are added, removed, or changed, this revision number changes.

```
DBG \leftarrow 00H
DBG \rightarrow OCDRev[15:8] (Major revision number)
DBG \rightarrow OCDRev[7:0] (Minor revision number)
```

 Read OCD Status Register (02H)—The Read OCD Status register command reads the OCDSTAT register.

```
DBG \leftarrow 02H
DBG \rightarrow OCDSTAT[7:0]
```

 Read Runtime Counter (03H)—The Runtime Counter counts system clock cycles in between breakpoints. The 16-bit Runtime Counter counts up from 0000H and stops at the maximum count of FFFFH. The Runtime Counter is overwritten during the Write Memory, Read Memory, Write Register, Read Register, Read Memory CRC, Step Instruction, Stuff Instruction, and Execute Instruction commands.

```
DBG \leftarrow 03H
DBG \rightarrow RuntimeCounter[15:8]
DBG \rightarrow RuntimeCounter[7:0]
```

• Write OCD Control Register (04H)—The Write OCD Control Register command writes the data that follows to the OCDCTL register. When the Flash Read Protect Option Bit is enabled, the DBGMODE bit (OCDCTL[7]) can only be set to 1, it cannot be cleared to 0 and the only method of returning the device to normal operating mode is to reset the device.

```
DBG \leftarrow 04H
DBG \leftarrow OCDCTL[7:0]
```

• **Read OCD Control Register (05H)**—The Read OCD Control Register command reads the value of the OCDCTL register.

Watchdog Timer Failure

In the event of a Watchdog Timer oscillator failure, a similar non-maskable interrupt-like event is issued. This event does not trigger an attendant clock switch-over, but alerts the CPU of the failure. After a Watchdog Timer failure, it is no longer possible to detect a primary oscillator failure. The failure detection circuitry does not function if the Watchdog Timer is used as the primary oscillator or if the Watchdog Timer oscillator has been disabled. For either of these cases, it is necessary to disable the detection circuitry by deasserting the WDFEN bit of the OSCCTL register.

The Watchdog Timer oscillator failure detection circuit counts system clocks while searching for a Watchdog Timer clock. The logic counts 8004 system clock cycles before determining that a failure has occurred. The system clock rate determines the speed at which the Watchdog Timer failure can be detected. A very slow system clock results in very slow detection times.

Caution: It is possible to disable the clock failure detection circuitry as well as all functioning clock sources. In this case, the Z8 Encore! XP F0823 Series device ceases functioning and can only be recovered by Power-On Reset.

Oscillator Control Register Definitions

The following section provides the bit definitions for the Oscillator Control register.

Oscillator Control Register

The Oscillator Control register (OSCCTL) enables/disables the various oscillator circuits, enables/disables the failure detection/recovery circuitry and selects the primary oscillator, which becomes the system clock.

The Oscillator Control register must be unlocked before writing. Writing the two step sequence E7H followed by 18H to the Oscillator Control Register unlocks it. The register is locked at successful completion of a register write to the OSCCTL.

BITS	7	6	5	4	3	2	1	0
FIELD	INTEN	Reserved	WDTEN	POFEN	WDFEN		SCKSEL	
RESET	1	0	1	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				F8	6H			

Table 102. Oscillator Control Register (OSCCTL)

• Rotate and Shift

Tables 107 through Table 114 contain the instructions belonging to each group and the number of operands required for each instruction. Some instructions appear in more than one table as these instruction can be considered as a subset of more than one category. Within these tables, the source operand is identified as 'src', the destination operand is 'dst' and a condition code is 'cc'.

Mnemonic	Operands	Instruction
	•	
ADC	dst, src	Add with Carry
ADCX	dst, src	Add with Carry using Extended Addressing
ADD	dst, src	Add
ADDX	dst, src	Add using Extended Addressing
CP	dst, src	Compare
CPC	dst, src	Compare with Carry
CPCX	dst, src	Compare with Carry using Extended Addressing
СРХ	dst, src	Compare using Extended Addressing
DA	dst	Decimal Adjust
DEC	dst	Decrement
DECW	dst	Decrement Word
INC	dst	Increment
INCW	dst	Increment Word
MULT	dst	Multiply
SBC	dst, src	Subtract with Carry
SBCX	dst, src	Subtract with Carry using Extended Addressing
SUB	dst, src	Subtract
SUBX	dst, src	Subtract using Extended Addressing

Table 107. Arithmetic Instructions

Table 119. Power Consumption

		V _{DI}	_o = 2.7 V to 3	3.6 V			
			Maximum ²	Maximum ³	-		
Symbol	Parameter	Typical ¹	Std Temp	Ext Temp	Units	Conditions	
I _{DD} Stop	Supply Current in STOP Mode	0.1	2	7.5	μA	No peripherals enabled. All pins driven to V_{DD} or V_{SS} .	
I _{DD} Halt	Supply Current in HALT	35	55	65	μA	32 kHz	
	Mode (with all peripherals disabled)	520	630	700	μA	5.5 MHz	
I _{DD}	Supply Current in	2.8	4.5	4.8	mA	32 kHz	
	ACTIVE Mode (with all peripherals disabled)	4.5	5.2	5.2	mA	5.5 MHz	
I _{DD} WDT	Watchdog Timer Supply Current	0.9	1.0	1.1	μA		
I _{DD} IPO	Internal Precision Oscillator Supply Current	350	500	550	μA		
I _{DD} VBO	Voltage Brownout Supply Current	50			μA	For 20-/28-pin devices (VBO only); see Note 4	
						For 8-pin devices; See Note 4	
I _{DD} ADC	Analog-to-Digital	2.8	3.1	3.2	mA	32 kHz	
	Converter Supply Current (with External Reference)	3.1	3.6	3.7	mA	5.5 MHz	
		3.3	3.7	3.8	mA	10 MHz	
		3.7	4.2	4.3	mA	20 MHz	
I _{DD} ADCRef	ADC Internal Reference Supply Current	0			μA	See Note 4	
I _{DD} CMP	Comparator supply Current	150	180	190	μA	See Note 4	

197

Table 119. Power Consumption (Continued)

		V _{DE}	_o = 2.7 V to 3	3.6 V				
		Maximum ² M		Maximum ³				
Symbol	Parameter	Typical ¹	Std Temp	Ext Temp	Units	Conditions		
I _{DD} BG			480	500	μA	For 20-/28-pin devices		
Current						For 8-pin devices		
Notes 1. Typical conditions are defined as $V_{PP} = 3.3$ V and ± 30 °C.								

Typical conditions are defined as V_{DD} = 3.3 V and +30 °C.
 Standard temperature is defined as T_A = 0 °C to +70 °C; these values not tested in production for worst case behavior, but are derived from product characterization and provided for design guidance only.

Extended temperature is defined as T_A = -40 °C to +105 °C; these values not tested in production for worst case behavior, but are derived from product characterization and provided for design guidance only.

4. For this block to operate, the bandgap circuit is automatically turned on and must be added to the total supply current. This bandgap current is only added once, regardless of how many peripherals are using it.

AC Characteristics

The section provides information about the AC characteristics and timing. All AC timing information assumes a standard load of 50 pF on all outputs.

		V _{DD} = 2.7 V to 3.6 V T _A = -40 °C to +105 °C (unless otherwise stated)							
Symbol	Parameter	Minimum	Maximum	Units	Conditions				
F _{SYSCLK}	System Clock Frequency	_	20.0 ¹	MHz	Read-only from Flash memory				
		0.032768	20.0 ¹	MHz	Program or erasure of the Flash memory				
T _{XIN}	System Clock Period	50	_	ns	T _{CLK} = 1/F _{sysclk}				
T _{XINH}	System Clock High Time	20	30	ns	T _{CLK} = 50 ns				
T _{XINL}	System Clock Low Time	20	30	ns	T _{CLK} = 50 ns				
T _{XINR}	System Clock Rise Time	-	3	ns	T _{CLK} = 50 ns				
T _{XINF}	System Clock Fall Time	-	3	ns	T _{CLK} = 50 ns				
¹ System 0 Table 12	¹ System Clock Frequency is limited by the Internal Precision Oscillator on the Z8 Encore! XP [®] F0823 Series. See Table 121 on page 198.								

Table 120. AC Characteristics

190

		V _{DD} = 2.7 V to 3.6 V T _A = -40 °C to +105 °C (unless otherwise stated)				
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
F _{IPO}	Internal Precision Oscillator Frequency (High Speed)		5.53		MHz	V _{DD} = 3.3 V T _A = 30 °C
F _{IPO}	Internal Precision Oscillator Frequency (Low Speed)		32.7		kHz	V _{DD} = 3.3 V T _A = 30 °C
F _{IPO}	Internal Precision Oscillator Error		<u>+</u> 1	<u>+</u> 4	%	
T _{IPOST}	Internal Precision Oscillator Startup Time		3		μs	

Table 121. Internal Precision Oscillator Electrical Characteristics

200

	$T_A = -$	= 2.7 V to 40 °C to + otherwis	105 °C		Notes	
Parameter	Minimum	Typical	Maximum	Units		
Flash Byte Read Time	100	-	-	ns		
Flash Byte Program Time	20	-	40	μs		
Flash Page Erase Time	10	-	-	ms		
Flash Mass Erase Time	200	-	_	ms		
Writes to Single Address Before Next Erase	-	-	2			
Flash Row Program Time	_	-	8	ms	Cumulative program time for single row cannot exceed limit before next erase. This parameter is only an issue when bypassing the Flash Controller.	
Data Retention	100	_	-	years	25 °C	
Endurance	10,000	_	_	cycles	Program/erase cycles	

Table 123. Flash Memory Electrical Characteristics and Timing

Table 124. Watchdog Timer Electrical Characteristics and Timing

		V _{DD} = 2.7 V to 3.6 V T _A = -40 °C to +105 °C (unless otherwise stated)					
Symbol	Parameter	Minimum Typical Maximum I		Units	Conditions		
F _{WDT}	WDT Oscillator Frequency		10		kHz		
F _{WDT}	WDT Oscillator Error			<u>+</u> 50	%		
T _{WDTCAL}	WDT Calibrated Timeout	0.98	1	1.02	S	V _{DD} = 3.3 V; T _A = 30 °C	
		0.70	1	1.30	S	V _{DD} = 2.7 V to 3.6 V T _A = 0 °C to 70 °C	
		0.50	1	1.50	S	V _{DD} = 2.7 V to 3.6 V T _A = -40 °C to +105 °C	