

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Core ProcessoreZ8Core Size8-BitSpeed5MHzConnectivityIrDA, UART/USARTPeripheralsBrown-out Detect/Reset, LED, POR, PWM, WDTNumber of I/O6Program Memory Size8KB (8K x 8)Program Memory TypeFLASHEEPROM Size-Nu Size1K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 4x10bOperating Temperature-40°C ~ 105°C (TA)Mounting TypeThrough HolePackage / Case8-DIP (0.300°, 7.62mm)	Details	
Core Size8-BitSpeed5MHzConnectivityIrDA, UART/USARTPeripheralsBrown-out Detect/Reset, LED, POR, PWM, WDTNumber of I/O6Program Memory Size8KB (8K × 8)Program Memory TypeFLASHEEPROM Size.Nutage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 4×10bOperating Temperature.40°C ~ 105°C (TA)Mounting TypeThrough HolePackage / Case8.DIP (0.300", 7.62mm)Supplier Device Package.	Product Status	Obsolete
SpeedSMHzConnectivityIrDA, UART/USARTPeripheralsBrown-out Detect/Reset, LED, POR, PWM, WDTNumber of I/O6Program Memory Size8KB (8K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size1K × 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 4x10bOperating Temperature-40°C ~ 105°C (TA)Mounting TypeThrough HolePackage / Case8-DIP (0.300", 7.62mm)Supplier Device Package-	Core Processor	eZ8
r.ConnectivityIrDA, UART/USARTPeripheralsBrown-out Detect/Reset, LED, POR, PWM, WDTNumber of I/O6Program Memory Size8KB (8K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size1K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 4x10bOgerating Temperature-40°C ~ 105°C (TA)Mounting TypeThrough HolePackage / Case8-DIP (0.300", 7.62mm)Supplier Device Package-	Core Size	8-Bit
PeripheralsBrown-out Detect/Reset, LED, POR, PWM, WDTNumber of I/O6Program Memory Size8KB (8K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size1K × 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 4x10bOperating Temperature-40°C ~ 105°C (TA)Mounting TypeThrough HolePackage / Case8-DIP (0.300", 7.62mm)Supplier Device Package-	Speed	5MHz
Number of I/O6Program Memory Size8KB (8K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size1K × 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 4×10bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeThrough HolePackage / Case8.DIP (0.300", 7.62mm)Supplier Device Package-	Connectivity	IrDA, UART/USART
Program Memory Size8KB (8K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size1K × 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 4x10bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeS-DIP (0.300", 7.62mm)Package / Case-	Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size1K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 4x10bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeThrough HolePackage / Case8-DIP (0.300", 7.62mm)Supplier Device Package-	Number of I/O	6
EEPROM Size-RAM Size1K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 4x10bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeThrough HolePackage / Case8-DIP (0.300", 7.62mm)Supplier Device Package-	Program Memory Size	8KB (8K x 8)
RAM SizeIK x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 4x10bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeThrough HolePackage / Case8-DIP (0.300", 7.62mm)Supplier Device Package-	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)2.7V ~ 3.6VData ConvertersA/D 4x10bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeThrough HolePackage / Case8-DIP (0.300", 7.62mm)Supplier Device Package-	EEPROM Size	<u> </u>
Data ConvertersA/D 4x10bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeThrough HolePackage / Case8-DIP (0.300", 7.62mm)Supplier Device Package-	RAM Size	1K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeThrough HolePackage / Case8-DIP (0.300", 7.62mm)Supplier Device Package-	Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Operating Temperature-40°C ~ 105°C (TA)Mounting TypeThrough HolePackage / Case8-DIP (0.300", 7.62mm)Supplier Device Package-	Data Converters	A/D 4x10b
Mounting TypeThrough HolePackage / Case8-DIP (0.300", 7.62mm)Supplier Device Package-	Oscillator Type	Internal
Package / Case 8-DIP (0.300", 7.62mm) Supplier Device Package -	Operating Temperature	-40°C ~ 105°C (TA)
Supplier Device Package	Mounting Type	Through Hole
	Package / Case	8-DIP (0.300", 7.62mm)
Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f0823pb005ec	Supplier Device Package	-
	Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0823pb005ec

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
F0C	Timer 1 PWM High Byte	T1PWMH	00	81
F0D	Timer 1 PWM Low Byte	T1PWML	00	82
F0E	Timer 1 Control 0	T1CTL0	00	82
F0F	Timer 1 Control 1	T1CTL1	00	80
F10–F3F	Reserved	—	XX	
UART				
F40	UART0 Transmit Data	U0TXD	XX	104
	UART0 Receive Data	U0RXD	XX	105
F41	UART0 Status 0	U0STAT0	0000011Xb	105
F42	UART0 Control 0	U0CTL0	00	107
F43	UART0 Control 1	U0CTL1	00	107
F44	UART0 Status 1	U0STAT1	00	106
F45	UART0 Address Compare	U0ADDR	00	109
F46	UART0 Baud Rate High Byte	U0BRH	FF	110
F47	UART0 Baud Rate Low Byte	U0BRL	FF	110
F48–F6F	Reserved	_	XX	
Analog-to-Digit	al Converter (ADC)			
F70	ADC Control 0	ADCCTL0	00	122
F71	ADC Control 1	ADCCTL1	80	122
F72	ADC Data High Byte	ADCD_H	XX	124
F73	ADC Data Low Bits	ADCD_L	XX	124
F74–F7F	Reserved	_	XX	
Low Power Cor	ntrol			
F80	Power Control 0	PWRCTL0	80	33
F81	Reserved		XX	
LED Controller				
F82	LED Drive Enable	LEDEN	00	51
F83	LED Drive Level High Byte	LEDLVLH	00	51
F84	LED Drive Level Low Byte	LEDLVLL	00	52
F85	Reserved	_	XX	
Oscillator Cont	rol			
F86	Oscillator Control	OSCCTL	A0	167
F87–F8F	Reserved	_	XX	
Comparator 0				
F90	Comparator 0 Control	CMP0	14	128

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page No
F91–FBF	Reserved	—	XX	
Interrupt Contr	oller			
FC0	Interrupt Request 0	IRQ0	00	58
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	60
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	61
FC3	Interrupt Request 1	IRQ1	00	59
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	62
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	62
FC6	Interrupt Request 2	IRQ2	00	60
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	63
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	63
FC9–FCC	Reserved		XX	
FCD	Interrupt Edge Select	IRQES	00	64
FCE	Shared Interrupt Select	IRQSS	00	64
FCF	Interrupt Control	IRQCTL	00	65
GPIO Port A				
FD0	Port A Address	PAADDR	00	43
FD1	Port A Control	PACTL	00	45
FD2	Port A Input Data	PAIN	XX	45
FD3	Port A Output Data	PAOUT	00	45
GPIO Port B				
FD4	Port B Address	PBADDR	00	43
FD5	Port B Control	PBCTL	00	45
FD6	Port B Input Data	PBIN	XX	45
FD7	Port B Output Data	PBOUT	00	45
GPIO Port C	·			
FD8	Port C Address	PCADDR	00	43
FD9	Port C Control	PCCTL	00	45
FDA	Port C Input Data	PCIN	XX	45
FDB	Port C Output Data	PCOUT	00	45
FDC-FEF	Reserved	_	XX	
Watchdog Time				
FF0	Reset Status	RSTSTAT	XX	90
-	Watchdog Timer Control	WDTCTL	XX	90
	0	WDTU		

Table 8. Register File Address Map (Continued)

Z8 Encore! XP[®] F0823 Series Product Specification

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port C	PC0	Reserved		AFS1[0]: 0
		ANA4/CINP/LED Drive	ADC or Comparator Input, or LED drive	AFS1[0]: 1
	PC1	Reserved		AFS1[1]: 0
		ANA5/CINN/ LED ADC or Comparator Input, or LED drive Drive		AFS1[1]: 1
	PC2	Reserved		AFS1[2]: 0
PC		ANA6/LED/ VREF*	ADC Analog Input or LED Drive or ADC Voltage Reference	AFS1[2]: 1
	PC3	COUT	Comparator Output	AFS1[3]: 0
		LED	LED drive	AFS1[3]: 1
	PC4	Reserved		AFS1[4]: 0
		LED	LED Drive	AFS1[4]: 1
	PC5	Reserved		AFS1[5]: 0
		LED	LED Drive	AFS1[5]: 1
	PC6	Reserved		AFS1[6]: 0
		LED	LED Drive	AFS1[6]: 1
	PC7	Reserved		AFS1[7]: 0
		LED	LED Drive	AFS1[7]: 1

Table 15. Port Alternate Function Mapping (Non 8-Pin Parts) (Continued)

Note: Because there are at most two choices of alternate function for any pin of Port C, the Alternate Function Set register AFS2 is implemented but not used to select the function. Also, Alternate Function selection as described in Port A–C Alternate Function Sub-Registers must also be enabled. *VREF is available on PC2 in 20-pin parts only.

Interrupt Controller

The interrupt controller on the Z8 Encore! XP[®] F0823 Series products prioritizes the interrupt requests from the on-chip peripherals and the GPIO port pins. The features of interrupt controller include:

- 20 unique interrupt vectors
 - 12 GPIO port pin interrupt sources (two are shared)
 - 8 on-chip peripheral interrupt sources (two are shared)
- Flexible GPIO interrupts
 - Eight selectable rising and falling edge GPIO interrupts
 - Four dual-edge interrupts
- Three levels of individually programmable interrupt priority
- Watchdog Timer can be configured to generate an interrupt

Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly manner and force the CPU to start an interrupt service routine (ISR). Usually this interrupt service routine is involved with the exchange of data, status information, or control information between the CPU and the interrupting peripheral. When the service routine is completed, the CPU returns to the operation from which it was interrupted.

The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts, the interrupt controller has no effect on operation. For more information on interrupt servicing by the eZ8 CPU, refer to *eZ8 CPU Core User Manual (UM0128)* available for download at <u>www.zilog.com</u>.

Interrupt Vector Listing

Table 33 lists all of the interrupts available in order of priority. The interrupt vector is stored with the most-significant byte (MSB) at the even Program Memory address and the least-significant byte (LSB) at the following odd Program Memory address.

Note: Some port interrupts are not available on the 8- and 20-pin packages. The ADC interrupt is unavailable on devices not containing an ADC.

Operation

The timers are 16-bit up-counters. Minimum time-out delay is set by loading the value 0001H into the Timer Reload High and Low Byte registers and setting the prescale value to 1. Maximum time-out delay is set by loading the value 0000H into the Timer Reload High and Low Byte registers and setting the prescale value to 128. If the Timer reaches FFFFH, the timer rolls over to 0000H and continues counting.

Timer Operating Modes

The timers can be configured to operate in the following modes:

ONE-SHOT Mode

In ONE-SHOT mode, the timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the Reload value, the timer generates an interrupt and the count value in the Timer High and Low Byte registers is reset to 0001H. The timer is automatically disabled and stops counting.

Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state for one system clock cycle (from Low to High or from High to Low) upon timer Reload. If it is appropriate to have the Timer Output make a state change at a One-Shot time-out (rather than a single cycle pulse), first set the TPOL bit in the Timer Control register to the start value before enabling ONE-SHOT mode. After starting the timer, set TPOL to the opposite bit value.

Follow the steps below for configuring a timer for ONE-SHOT mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for ONE-SHOT mode
 - Set the prescale value
 - Set the initial output level (High or Low) if using the Timer Output alternate function
- 2. Write to the Timer High and Low Byte registers to set the starting count value.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.

PWM SINGLE OUTPUT Mode

In PWM SINGLE OUTPUT mode, the timer outputs a PWM output signal through a GPIO port pin. The timer input is the system clock. The timer first counts up to the 16-bit PWM match value stored in the Timer PWM High and Low Byte registers. When the timer count value matches the PWM value, the Timer Output toggles. The timer continues counting until it reaches the Reload value stored in the Timer Reload High and Low Byte registers. Upon reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes.

If the TPOL bit in the Timer Control register is set to 1, the Timer Output signal begins as a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The Timer Output signal returns to a High (1) after the timer reaches the Reload value and is reset to 0001H.

If the TPOL bit in the Timer Control register is set to 0, the Timer Output signal begins as a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The Timer Output signal returns to a Low (0) after the timer reaches the Reload value and is reset to 0001H.

Follow the steps below for configuring a timer for PWM Single Output mode and initiating the PWM operation:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for PWM mode
 - Set the prescale value
 - Set the initial logic level (High or Low) and PWM High/Low transition for the Timer Output alternate function
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H). This only affects the first pass in PWM mode. After the first timer reset in PWM mode, counting always begins at the reset value of 0001H.
- 3. Write to the PWM High and Low Byte registers to set the PWM value.
- 4. Write to the Timer Reload High and Low Byte registers to set the Reload value (PWM period). The Reload value must be greater than the PWM value.
- 5. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 6. Configure the associated GPIO port pin for the Timer Output alternate function.
- 7. Write to the Timer Control register to enable the timer and initiate counting.

The PWM period is represented by the following equation:

 $PWM Period (s) = \frac{Reload Value \times Prescale}{System Clock Frequency (Hz)}$

generated and the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL1 register is set to indicate the timer interrupt is because of an input capture event.

If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the Timer Reload High and Low Byte registers. Upon reaching the Reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL1 register is cleared to indicate the timer interrupt is not caused by an input capture event.

Follow the steps below for configuring a timer for CAPTURE RESTART mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer.
 - Configure the timer for CAPTURE RESTART mode. Setting the mode also involves writing to TMODEHI bit in TxCTL1 register.
 - Set the prescale value.
 - Set the Capture edge (rising or falling) for the Timer Input.
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. Clear the Timer PWM High and Low Byte registers to 0000H. This allows the software to determine if interrupts were generated by either a Capture or a Reload event. If the PWM High and Low Byte registers still contain 0000H after the interrupt, the interrupt was generated by a Reload.
- 5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input Capture and Reload events. If appropriate, configure the timer interrupt to be generated only at the input Capture event or the Reload event by setting TICONFIG field of the TxCTL1 register.
- 6. Configure the associated GPIO port pin for the Timer Input alternate function.
- 7. Write to the Timer Control register to enable the timer and initiate counting.

In CAPTURE mode, the elapsed time from timer start to Capture event can be calculated using the following equation:

Capture Elapsed Time (s) =
$$\frac{(Capture Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$$

COMPARE Mode

In COMPARE mode, the timer counts up to the 16-bit maximum Compare value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the Compare value, the timer generates an interrupt and counting continues (the

Follow the steps below to configure a timer for GATED mode and to initiate the count:

- 1. Write to the Timer Control register to:
 - Disable the timer
 - Configure the timer for Gated mode
 - Set the prescale value
- 2. Write to the Timer High and Low Byte registers to set the starting count value. Writing these registers only affects the first pass in GATED mode. After the first timer reset in GATED mode, counting always begins at the reset value of 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the Reload value.
- 4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input deassertion and Reload events. If appropriate, configure the timer interrupt to be generated only at the input deassertion event or the Reload event by setting TICONFIG field of the TxCTL1 register.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. Write to the Timer Control register to enable the timer.
- 7. Assert the Timer Input signal to initiate the counting.

CAPTURE/COMPARE Mode

In CAPTURE/COMPARE mode, the timer begins counting on the first external Timer Input transition. The acceptable transition (rising edge or falling edge) is set by the TPOL bit in the Timer Control Register. The timer input is the system clock.

Every subsequent acceptable transition (after the first) of the Timer Input signal captures the current count value. The Capture value is written to the Timer PWM High and Low Byte Registers. When the Capture event occurs, an interrupt is generated, the count value in the Timer High and Low Byte registers is reset to 0001H, and counting resumes. The INPCAP bit in TxCTL1 register is set to indicate the timer interrupt is caused by an input Capture event.

If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the Timer Reload High and Low Byte registers. Upon reaching the Compare value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in TxCTL1 register is cleared to indicate the timer interrupt is not because of an input Capture event.

Follow the steps below for configuring a timer for CAPTURE/COMPARE mode and initiating the count:

- 1. Write to the Timer Control register to:
 - Disable the timer

UART Receive Data Register

Data bytes received through the RXD*x* pin are stored in the UART Receive Data register (Table 63). The read-only UART Receive Data register shares a Register File address with the Write-only UART Transmit Data register.

Table 63. UART Receive Data Register (U0RXD)

BITS	7	6	5	4	3	2	1	0	
FIELD		RXD							
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	R	R R R R R R R							
ADDR				F4	0H				

RXD—Receive Data

UART receiver data byte from the RXDx pin

UART Status 0 Register

The UART Status 0 and Status 1 registers (Table 64 and Table 65) identify the current UART operating configuration and status.

Table 64. UART Status 0 Register (U0STAT0)

BITS	7	6	5	4	3	2	1	0
FIELD	RDA	PE	OE	FE	BRKD	TDRE	TXE	CTS
RESET	0	0	0	0	0	1	1	Х
R/W	R	R	R	R	R	R	R	R
ADDR		F41H						

RDA—Receive Data Available

This bit indicates that the UART Receive Data register has received data. Reading the UART Receive Data register clears this bit.

0 = The UART Receive Data register is empty

1 = There is a byte in the UART Receive Data register

PE—Parity Error

This bit indicates that a parity error has occurred. Reading the UART Receive Data register clears this bit.

0 = No parity error has occurred

1 = A parity error has occurred

OE—Overrun Error

This bit indicates that an overrun error has occurred. An overrun occurs when new data is

124

ADC Control/Status Register 1

The second ADC Control register contains the voltage reference level selection bit.

Table 73. ADC Control/Status Register 1 (ADCCTL1)

BITS	7	6	5	4	3	2	1	0
FIELD	REFSELH		Reserved					
RESET	1	0	0 0 0 0 0 0					
R/W	R/W	R/W	R/W R/W R/W R/W R/W R/W					
ADDR		F71H						

REFSELH—Voltage Reference Level Select High Bit; in conjunction with the Low bit (REFSELL) in ADC Control Register 0, this determines the level of the internal voltage reference; the following details the effects of {REFSELH, REFSELL}; this reference is independent of the Comparator reference

00= Internal Reference Disabled, reference comes from external pin

01= Internal Reference set to 1.0 V

10= Internal Reference set to 2.0 V (default)

ADC Data High Byte Register

The ADC Data High Byte register contains the upper eight bits of the ADC output. The output is an 11-bit two's complement value. During a single-shot conversion, this value is invalid. Access to the ADC Data High Byte register is read-only. Reading the ADC Data High Byte register latches data in the ADC Low Bits register.

Table 74. ADC Data High Byte Register (ADCD_H)

BITS	7	6	5	4	3	2	1	0	
FIELD		ADCDH							
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	R	R R R R R R R							
ADDR				F7	2H				

ADCDH—ADC Data High Byte

This byte contains the upper eight bits of the ADC output. These bits are not valid during a single-shot conversion. During a continuous conversion, the most recent conversion output is held in this register. These bits are undefined after a Reset.

Table 83. Flash Frequency High Byte Register (FFREQH)

BITS	7	6	5	4	3	2	1	0	
FIELD		FFREQH							
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W							
ADDR		FFAH							

FFREQH—Flash Frequency High Byte High byte of the 16-bit Flash Frequency value

Table 84. Flash Frequency Low Byte Register (FFREQL)

BITS	7	6	5	4	3	2	1	0		
FIELD		FFREQL								
RESET		0								
R/W		R/W								
ADDR				FF	BH					

FFREQL—Flash Frequency Low Byte Low byte of the 16-bit Flash Frequency value

147

Reserved— Altering this register may result in incorrect device operation.

Trim Bit Address 0002H

Table 91. Trim Option Bits at 0002H (TIPO)

BITS	7	6	5	4	3	2	1	0		
FIELD		IPO_TRIM								
RESET		U								
R/W		R/W								
ADDR	Information Page Memory 0022H									
Note: U =	Note: U = Unchanged by Reset. R/W = Read/Write.									

IPO_TRIM—Internal Precision Oscillator Trim Byte Contains trimming bits for Internal Precision Oscillator.

Trim Bit Address 0003H—Reserved

Trim Bit Address 0004H—Reserved

Zilog Calibration Data

ADC Calibration Data

Table 92. ADC Calibration Bits

BITS	7	6	5	4	3	2	1	0		
FIELD	ADC_CAL									
RESET								U		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
ADDR	Information Page Memory 0060H–007DH									
Note: U =	Unchanged by	y Reset. R/W	= Read/Write).						

ADC CAL—Analog-to-Digital Converter Calibration Values

Contains factory calibrated values for ADC gain and offset compensation. Each of the ten supported modes has one byte of offset calibration and two bytes of gain calibration. These values are read by the software to compensate ADC measurements as detailed in

Software Compensation Procedure on page 122. The location of each calibration byte is provided in Table 93 on page 148.

Info Page	Memory	Compensation		Reference
Address	Address	Usage	ADC Mode	Туре
60	FE60	Offset	Single-Ended Unbuffered	Internal 2.0 V
08	FE08	Gain High Byte	Single-Ended Unbuffered	Internal 2.0 V
09	FE09	Gain Low Byte	Single-Ended Unbuffered	Internal 2.0 V
63	FE63	Offset	Single-Ended Unbuffered	Internal 1.0 V
0A	FE0A	Gain High Byte	Single-Ended Unbuffered	Internal 1.0 V
0B	FE0B	Gain Low Byte	Single-Ended Unbuffered	Internal 1.0 V
66	FE66	Offset	Single-Ended Unbuffered	External 2.0 V
0C	FE0C	Gain High Byte	Single-Ended Unbuffered	External 2.0 V
0D	FE0D	Gain Low Byte	Single-Ended Unbuffered	External 2.0 V

Table 93. ADC Calibration Data Location

Serialization Data

Table 94. Serial Number at 001C-001F (S_NUM)

BITS	7	6	5	4	3	2	1	0		
FIELD	S_NUM									
RESET	U U U U U U U U									
R/W	R/W R/W									
ADDR	Information Page Memory 001C-001F									
Note: U =	Unchanged b	y Reset. R/W	= Read/Write							

S NUM— Serial Number Byte

The serial number is a unique four-byte binary value.

point, the PA0/DBG pin can be used to autobaud and cause the device to enter DEBUG mode. For more details, see OCD Unlock Sequence (8-Pin Devices Only) on page 156.

Exiting DEBUG Mode

The device exits DEBUG mode following any of these operations:

- Clearing the DBGMODE bit in the OCD Control Register to 0
- Power-On Reset
- Voltage Brownout reset
- Watchdog Timer reset
- Asserting the $\overline{\text{RESET}}$ pin Low to initiate a Reset
- Driving the DBG pin Low while the device is in STOP mode initiates a system reset

OCD Data Format

The OCD interface uses the asynchronous data format defined for RS-232. Each character is transmitted as 1 Start bit, 8 data bits (least-significant bit first), and 1 Stop bit as displayed in Figure 25.

STADT	00	D1	50	50	D4	DE	D6	D7	STOD
START	DU		DZ	03	D4	05	DO	Dī	310F

Figure 25. OCD Data Format

Note: When responding to a request for data, the OCD may commence transmitting immediately after receiving the stop bit of an incoming frame. Therefore, when sending the stop bit, the host must not actively drive the DBG pin High for more than 0.5 bit times. It is recommended that, if possible, the host drives the DBG pin using an open-drain output.

OCD Auto-Baud Detector/Generator

To run over a range of baud rates (data bits per second) with various system clock frequencies, the OCD contains an auto-baud detector/generator. After a reset, the OCD is idle until it receives data. The OCD requires that the first character sent from the host is the character 80H. The character 80H has eight continuous bits Low (one Start bit plus 7 data bits), framed between High bits. The auto-baud detector measures this period and sets the OCD baud rate generator accordingly.

The auto-baud detector/generator is clocked by the system clock. The minimum baud rate is the system clock frequency divided by 512. For optimal operation with asynchronous

Oscillator Control

Z8 Encore! XP[®] F0823 Series devices uses three possible clocking schemes, each user-selectable:

- On-chip precision trimmed RC oscillator
- External clock drive
- On-chip low power Watchdog Timer oscillator

In addition, Z8 Encore! XP F0823 Series devices contain clock failure detection and recovery circuitry, allowing continued operation despite a failure of the primary oscillator.

Operation

This chapter discusses the logic used to select the system clock and handle primary oscillator failures. A description of the specific operation of each oscillator is outlined elsewhere in this document.

System Clock Selection

The oscillator control block selects from the available clocks. Table 101 details each clock source and its usage.

Clock Source	Characteristics	Required Setup
Internal Precision RC Oscillator	 32.8 kHz or 5.53 MHz ± 4% accuracy when trimmed No external components required 	Unlock and write Oscillator Control Register (OSCCTL) to enable and select oscillator at either 5.53 MHz or 32.8 kHz
External Clock Drive	 0 to 20 MHz Accuracy dependent on external clock source 	 Write GPIO registers to configure PB3 pin for external clock function Unlock and write OSCCTL to select external system clock Apply external clock signal to GPIO
Internal Watchdog Timer Oscillator	 10 kHz nominal ± 40% accuracy; no external components required Very Low power consumption 	 Enable WDT if not enabled and wait until WDT Oscillator is operating. Unlock and write Oscillator Control Register (OSCCTL) to enable and select oscillator

Table 101. Oscillator Configuration and Selection

Opcode Maps

A description of the opcode map data and the abbreviations are provided in Figure 26. Figure 27 and Figure 28 provide information about each of the eZ8 CPU instructions. Table 116 lists Opcode Map abbreviations.

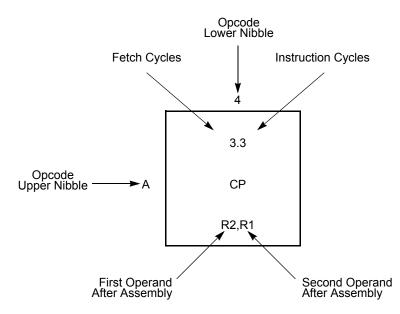


Figure 26. Opcode Map Cell Description

Electrical Characteristics

The data in this chapter is pre-qualification and pre-characterization and is subject to change. Additional electrical characteristics may be found in the individual chapters.

Absolute Maximum Ratings

Stresses greater than those listed in Table 117 may cause permanent damage to the device. These ratings are stress ratings only. Operation of the device at any condition outside those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For improved reliability, tie unused inputs to one of the supply voltages (V_{DD} or V_{SS}).

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	-40	+105	°C	
Storage temperature	-65	+150	°C	
Voltage on any pin with respect to V _{SS}	-0.3	+5.5	V	1
	-0.3	+3.9	V	2
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	+3.6	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
8-pin Packages Maximum Ratings at 0 °C to 70 °C				
Total power dissipation		220	mW	
Maximum current into V_{DD} or out of V_{SS}		60	mA	
20-pin Packages Maximum Ratings at 0 °C to 70 °C				
Total power dissipation		430	mW	
Maximum current into V_{DD} or out of V_{SS}		120	mA	
28-pin Packages Maximum Ratings at 0 °C to 70 °C				
Total power dissipation		450	mW	

Table 117. Absolute Maximum Ratings

190

		$T_A = $	= 2.7 V to 3 -40 °C to +1 s otherwise			
Symbol	Parameter	ameter Minimum Typical Maximum		Units	Conditions	
F _{IPO}	Internal Precision Oscillator Frequency (High Speed)		5.53		MHz	V _{DD} = 3.3 V T _A = 30 °C
F _{IPO}	Internal Precision Oscillator Frequency (Low Speed)		32.7		kHz	V _{DD} = 3.3 V T _A = 30 °C
F _{IPO}	Internal Precision Oscillator Error		<u>+</u> 1	<u>+</u> 4	%	
T _{IPOST}	Internal Precision Oscillator Startup Time		3		μs	

Table 121. Internal Precision Oscillator Electrical Characteristics

Part Number	F		/O Lines	nterrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	UART with IrDA	Description	
Part	Flash	RAM	10 L	Inter	16-Bit T w/PWM	10-B	UAR	Desc	
Z8 Encore! XP with 1		, 10-Bit A	Analog	j-to-D	igital C	onve	erter		
Standard Temperature: 0 °C to 70 °C									
Z8F0123PB005SC	1 KB	256 B	6	12	2	4	1	PDIP 8-pin package	
Z8F0123QB005SC	1 KB	256 B	6	12	2	4	1	QFN 8-pin package	
Z8F0123SB005SC	1 KB	256 B	6	12	2	4	1	SOIC 8-pin package	
Z8F0123SH005SC	1 KB	256 B	16	18	2	7	1	SOIC 20-pin package	
Z8F0123HH005SC	1 KB	256 B	16	18	2	7	1	SSOP 20-pin package	
Z8F0123PH005SC	1 KB	256 B	16	18	2	7	1	PDIP 20-pin package	
Z8F0123SJ005SC	1 KB	256 B	22	18	2	8	1	SOIC 28-pin package	
Z8F0123HJ005SC	1 KB	256 B	22	18	2	8	1	SSOP 28-pin package	
Z8F0123PJ005SC	1 KB	256 B	22	18	2	8	1	PDIP 28-pin package	
Extended Temperatur	e: -40 °C	to 105 °C	;						
Z8F0123PB005EC	1 KB	256 B	6	12	2	4	1	PDIP 8-pin package	
Z8F0123QB005EC	1 KB	256 B	6	12	2	4	1	QFN 8-pin package	
Z8F0123SB005EC	1 KB	256 B	6	12	2	4	1	SOIC 8-pin package	
Z8F0123SH005EC	1 KB	256 B	16	18	2	7	1	SOIC 20-pin package	
Z8F0123HH005EC	1 KB	256 B	16	18	2	7	1	SSOP 20-pin package	
Z8F0123PH005EC	1 KB	256 B	16	18	2	7	1	PDIP 20-pin package	
Z8F0123SJ005EC	1 KB	256 B	22	18	2	8	1	SOIC 28-pin package	
Z8F0123HJ005EC	1 KB	256 B	22	18	2	8	1	SSOP 28-pin package	
Z8F0123PJ005EC	1 KB	256 B	22	18	2	8	1	PDIP 28-pin package	
Replace C with G for Lea	d-Free Pac	kaging							

223