

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	6
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0823sb005sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 Encore! XP[®] F0823 Series Product Specification

Ordering Information	217
Part Number Suffix Designations	226
Index	227
Customer Support	237

	Devictor Description	Masaais	Decet (Llev)	Dere Ne
Address (Hex)	Register Description	winemonic	Reset (Hex)	Page No
F91-FBF	Reserved		XX	
Interrupt Contr	oller			
FC0	Interrupt Request 0	IRQ0	00	58
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	60
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	61
FC3	Interrupt Request 1	IRQ1	00	59
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	62
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	62
FC6	Interrupt Request 2	IRQ2	00	60
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	63
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	63
FC9–FCC	Reserved		XX	
FCD	Interrupt Edge Select	IRQES	00	64
FCE	Shared Interrupt Select	IRQSS	00	64
FCF	Interrupt Control	IRQCTL	00	65
GPIO Port A				
FD0	Port A Address	PAADDR	00	43
FD1	Port A Control	PACTL	00	45
FD2	Port A Input Data	PAIN	XX	45
FD3	Port A Output Data	PAOUT	00	45
GPIO Port B				
FD4	Port B Address	PBADDR	00	43
FD5	Port B Control	PBCTL	00	45
FD6	Port B Input Data	PBIN	XX	45
FD7	Port B Output Data	PBOUT	00	45
GPIO Port C				
FD8	Port C Address	PCADDR	00	43
FD9	Port C Control	PCCTL	00	45
FDA	Port C Input Data	PCIN	XX	45
FDB	Port C Output Data	PCOUT	00	45
FDC-FEF	Reserved		XX	
Watchdog Time	er (WDT)			
FF0	Reset Status	RSTSTAT	XX	90
	Watchdog Timer Control	WDTCTL	XX	90
FF1		WDTU	FF	91

Table 8. Register File Address Map (Continued)

Low-Power Modes

Z8 Encore! XP[®] F0823 Series products contain power-saving features. The highest level of power reduction is provided by the STOP mode, in which nearly all device functions are powered down. The next lower level of power reduction is provided by the HALT mode, in which the CPU is powered down.

Further power savings can be implemented by disabling individual peripheral blocks while in ACTIVE mode (defined as being in neither STOP nor HALT mode).

STOP Mode

Executing the eZ8 CPU's Stop instruction places the device into STOP mode, powering down all peripherals except the Voltage Brownout detector, and the Watchdog Timer. These two blocks may also be disabled for additional power savings. In STOP mode, the operating characteristics are:

- Primary crystal oscillator and internal precision oscillator are stopped; XIN and XOUT (if previously enabled) are disabled, and PA0/PA1 revert to the states programmed by the GPIO registers.
- System clock is stopped.
- eZ8 CPU is stopped.
- Program counter (PC) stops incrementing.
- Watchdog Timer's internal RC oscillator continues to operate if enabled by the Oscillator Control Register.
- If enabled, the Watchdog Timer logic continues to operate.
- If enabled for operation in STOP mode by the associated Flash Option Bit, the Voltage Brownout protection circuit continues to operate.
- All other on-chip peripherals are idle.

To minimize current in STOP mode, all GPIO pins that are configured as digital inputs must be driven to one of the supply rails (V_{CC} or GND). Additionally, any GPIOs configured as outputs must also be driven to one of the supply rails. The device can be brought out of STOP mode using Stop Mode Recovery. For more information on Stop Mode Recovery, see Reset and Stop Mode Recovery on page 21.

tions as a GPIO pin. If it is not present, the debug feature is disabled until/unless another reset event occurs. For more details, see On-Chip Debugger on page 151.

Crystal Oscillator Override

For systems using a crystal oscillator, PA0 and PA1 are used to connect the crystal. When the crystal oscillator is enabled (see Oscillator Control Register Definitions on page 167), the GPIO settings are overridden and PA0 and PA1 are disabled.

5 V Tolerance

All six I/O pins on the 8-pin devices are 5 V-tolerant, unless the programmable pull-ups are enabled. If the pull-ups are enabled and inputs higher than V_{DD} are applied to these parts, excessive current flows through those pull-up devices and can damage the chip.

Note: In the 20- and 28-pin versions of this device, any pin which shares functionality with an ADC, crystal or comparator port is not 5 V-tolerant, including PA[1:0], PB[5:0], and PC[2:0]. All other signal pins are 5 V-tolerant, and can safely handle inputs higher than V_{DD} even with the pull-ups enabled.

External Clock Setup

For systems using an external TTL drive, PB3 is the clock source for 20- and 28-pin devices. In this case, configure PB3 for alternate function CLKIN. Write the Oscillator Control Register (see Oscillator Control Register Definitions on page 167) such that the external oscillator is selected as the system clock. For 8-pin devices use PA1 instead of PB3.

page 49. See GPIO Alternate Functions on page 36 to determine the alternate function associated with each port pin.

Caution: Do not enable alternate functions for GPIO port pins for which there is no associated alternate function. Failure to follow this guideline can result in unpredictable operation.

Table 21. Port A–C Alternate Function Sub-Registers (PxAF)

BITS	7	6	5	4	3	2	1	0
FIELD	AF7	AF6	AF5	AF4	AF3	AF2	AF1	AF0
RESET		00H (Ports A–C); 04H (Port A of 8-pin device)						
R/W		R/W						
ADDR	lf 02H i	n Port A–C	Address Reo	gister, acces	sible throug	n the Port A-	-C Control F	Register

AF[7:0]—Port Alternate Function enabled

0 = The port pin is in normal mode and the DDx bit in the Port A–C Data Direction subregister determines the direction of the pin.

1 = The alternate function selected through Alternate Function Set sub-registers is enabled. Port pin operation is controlled by the alternate function.

Port A–C Output Control Sub-Registers

The Port A–C Output Control sub-register (Table 22) is accessed through the Port A–C Control register by writing 03H to the Port A–C Address register. Setting the bits in the Port A–C Output Control sub-registers to 1 configures the specified port pins for opendrain operation. These sub-registers affect the pins directly and, as a result, alternate functions are also affected.

Table 22. Port A–C Output Control Sub-Registers (PxOC)

BITS	7	6	5	4	3	2	1	0
FIELD	POC7	POC6	POC5	POC4	POC3	POC2	POC1	POC0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W						
ADDR	lf 03H i	If 03H in Port A–C Address Register, accessible through the Port A–C Control Register						

POC[7:0]—Port Output Control

These bits function independently of the alternate function bit and always disable the drains if set to 1.

Reserved—Must be 0

T1ENH—Timer 1 Interrupt Request Enable High Bit T0ENH—Timer 0 Interrupt Request Enable High Bit U0RENH—UART 0 Receive Interrupt Request Enable High Bit U0TENH—UART 0 Transmit Interrupt Request Enable High Bit ADCENH—ADC Interrupt Request Enable High Bit

Table 39. IRQ0 Enable Low Bit Register (IRQ0ENL)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved	T1ENL	T0ENL	U0RENL	U0TENL	Reserved	Reserved	ADCENL
RESET	0	0	0	0	0	0	0	0
R/W	R	R R/W R/W R/W R R R/W						
ADDR				FC	2H			

Reserved—0 when read

T1ENL—Timer 1 Interrupt Request Enable Low Bit T0ENL—Timer 0 Interrupt Request Enable Low Bit U0RENL—UART 0 Receive Interrupt Request Enable Low Bit U0TENL—UART 0 Transmit Interrupt Request Enable Low Bit ADCENL—ADC Interrupt Request Enable Low Bit

IRQ1 Enable High and Low Bit Registers

Table 40 describes the priority control for IRQ1. The IRQ1 Enable High and Low Bit registers (Table 41 and Table 42) form a priority encoded enabling for interrupts in the Interrupt Request 1 register. Priority is generated by setting bits in each register.

IRQ1ENH[x]	IRQ1ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Nominal
1	1	Level 3	High

Table 40. IRQ1 Enable and Priority Encoding

where x indicates the register bits from 0–7.

BITS	7	6	5	4	3	2	1	0	
FIELD		PWML							
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W							
ADDR				F05H,	F0DH				

Table 54. Timer 0–1 PWM Low Byte Register (TxPWML)

PWMH and PWML—Pulse-Width Modulator High and Low Bytes These two bytes, {PWMH[7:0], PWML[7:0]}, form a 16-bit value that is compared to the current 16-bit timer count. When a match occurs, the PWM output changes state. The PWM output value is set by the TPOL bit in the Timer Control Register (TxCTL1) register.

The TxPWMH and TxPWML registers also store the 16-bit captured timer value when operating in CAPTURE or CAPTURE/COMPARE modes.

Timer 0–1 Control Registers

Time 0–1 Control Register 0

The Timer Control Register 0 (TxCTL0) and Timer Control Register 1 (TxCTL1) determine the timer operating mode. It also includes a programmable PWM deadband delay, two bits to configure timer interrupt definition, and a status bit to identify if the most recent timer interrupt is caused by an input Capture event.

Table 55. Timer 0–1 Control Register 0 (TxCTL0)

BITS	7	6	5	4	3	2	1	0
FIELD	TMODEHI	TICONFIG		Reserved	d PWMD		INPCAP	
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR				F06H,	F0EH			

TMODEHI—Timer Mode High Bit

This bit along with the TMODE field in TxCTL1 register determines the operating mode of the timer. This is the most-significant bit of the Timer mode selection value. See the TxCTL1 register description for more details.

TICONFIG—Timer Interrupt Configuration

This field configures timer interrupt definition.

(BRG[15:0]) that sets the data transmission rate (baud rate) of the UART. The UART data rate is calculated using the following equation:

UART Data Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$

When the UART is disabled, the Baud Rate Generator functions as a basic 16-bit timer with interrupt on time-out. Follow the steps below to configure the Baud Rate Generator as a timer with interrupt on time-out:

- 1. Disable the UART by clearing the REN and TEN bits in the UART Control 0 register to 0.
- 2. Load the acceptable 16-bit count value into the UART Baud Rate High and Low Byte registers.
- 3. Enable the Baud Rate Generator timer function and associated interrupt by setting the BIRQ bit in the UART Control 1 register to 1.

When configured as a general purpose timer, the interrupt interval is calculated using the following equation:

Interrupt Interval (s) = System Clock Period (s) \times BRG[15:0]

UART Control Register Definitions

The UART control registers support the UART and the associated Infrared Encoder/ Decoders. For more information on the infrared operation, see Infrared Encoder/Decoder on page 113.

UART Transmit Data Register

Data bytes written to the UART Transmit Data register (Table 62) are shifted out on the TXDx pin. The Write-only UART Transmit Data register shares a Register File address with the read-only UART Receive Data register.

Table 62. UART Transmit Data Register (U0TXD)

BITS	7	6	5	4	3	2	1	0	
FIELD		TXD							
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	W	w w							
ADDR				F4	0H				

TXD—Transmit Data

UART transmitter data byte to be shifted out through the TXDx pin.

Endec, and passed to the UART. Communication is half-duplex, which means simultaneous data transmission and reception is not allowed.

The baud rate is set by the UART's baud rate generator and supports IrDA standard baud rates from 9600 baud to 115.2 kbaud. Higher baud rates are possible, but do not meet IrDA specifications. The UART must be enabled to use the Infrared Endec. The Infrared Endec data rate is calculated using the following equation:

Infrared Data Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{16 \times \text{UART Baud Rate Divisor Value}}$

Transmitting IrDA Data

The data to be transmitted using the infrared transceiver is first sent to the UART. The UART's transmit signal (TXD) and baud rate clock are used by the IrDA to generate the modulation signal (IR_TXD) that drives the infrared transceiver. Each UART/Infrared data bit is 16 clocks wide. If the data to be transmitted is 1, the IR_TXD signal remains low for the full 16 clock period. If the data to be transmitted is 0, the transmitter first outputs a 7 clock low period, followed by a 3 clock high pulse. Finally, a 6 clock low pulse is output to complete the full 16 clock data period. Figure 17 displays IrDA data transmission. When the Infrared Endec is enabled, the UART's TXD signal is internal to Z8 Encore! XP[®] F0823 Series products while the IR_TXD signal is output through the TXD pin.

Figure 17. Infrared Data Transmission

Z8 Encore! XP[®] F0823 Series Product Specification

118

Figure 19. Analog-to-Digital Converter Block Diagram

Operation

Data Format

The output of the ADC is an 11-bit, signed, two's complement digital value. The output generally ranges from 0 to +1023, but offset errors can cause small negative values.

The ADC registers return 13 bits of data, but the two LSBs are intended for compensation use only. When the compensation routine is performed on the 13 bit raw ADC value, two

On-Chip Debugger

Z8 Encore! XP[®] F0823 Series devices contain an integrated On-Chip Debugger (OCD) that provides advanced debugging features that include:

- Single pin interface
- Reading and writing of the register file
- Reading and writing of program and data memory
- Setting of breakpoints and watchpoints
- Executing eZ8 CPU instructions
- Debug pin sharing with general-purpose input-output function to maximize the pins available

Architecture

The on-chip debugger consists of four primary functional blocks: transmitter, receiver, auto-baud detector/generator, and debug controller. Figure 22 displays the architecture of the OCD.

Figure 22. On-Chip Debugger Block Diagram

is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, the data is discarded.

DBG \leftarrow 0AH DBG \leftarrow Program Memory Address[15:8] DBG \leftarrow Program Memory Address[7:0] DBG \leftarrow Size[15:8] DBG \leftarrow Size[7:0] DBG \leftarrow 1-65536 data bytes

• **Read Program Memory (0BH)**—The Read Program Memory command reads data from Program Memory. This command is equivalent to the LDC and LDCI instructions. Data can be read 1–65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option Bit is enabled, this command returns FFH for the data.

```
DBG \leftarrow 0BH

DBG \leftarrow Program Memory Address[15:8]

DBG \leftarrow Program Memory Address[7:0]

DBG \leftarrow Size[15:8]

DBG \leftarrow Size[7:0]

DBG \rightarrow 1-65536 data bytes
```

• Write Data Memory (0CH)—The Write Data Memory command writes data to Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). If the device is not in DEBUG mode or if the Flash Read Protect Option Bit is enabled, the data is discarded.

```
DBG \leftarrow 0CH
DBG \leftarrow Data Memory Address[15:8]
DBG \leftarrow Data Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \leftarrow 1-65536 data bytes
```

• **Read Data Memory (0DH)**—The Read Data Memory command reads from Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be read 1 to 65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in DEBUG mode, this command returns FFH for the data.

```
DBG \leftarrow 0DH
DBG \leftarrow Data Memory Address[15:8]
DBG \leftarrow Data Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-65536 data bytes
```

Caution: Unintentional accesses to the oscillator control register can actually stop the chip by switching to a non-functioning oscillator. To prevent this condition, the oscillator control block employs a register unlocking/locking scheme.

OSC Control Register Unlocking/Locking

To write the oscillator control register, unlock it by making two writes to the OSCCTL register with the values E7H followed by 18H. A third write to the OSCCTL register changes the value of the actual register and returns the register to a locked state. Any other sequence of oscillator control register writes has no effect. The values written to unlock the register must be ordered correctly, but are not necessarily consecutive. It is possible to write to or read from other registers within the unlocking/locking operation.

When selecting a new clock source, the primary oscillator failure detection circuitry and the Watchdog Timer oscillator failure circuitry must be disabled. If POFEN and WOFEN are not disabled prior to a clock switch-over, it is possible to generate an interrupt for a failure of either oscillator. The Failure detection circuitry can be enabled anytime after a successful write of OSCSEL in the oscillator control register.

The internal precision oscillator is enabled by default. If the user code changes to a different oscillator, it is appropriate to disable the IPO for power savings. Disabling the IPO does not occur automatically.

Clock Failure Detection and Recovery

Primary Oscillator Failure

Z8 Encore! XP[®] F0823 Series devices can generate non-maskable interrupt-like events when the primary oscillator fails. To maintain system function in this situation, the clock failure recovery circuitry automatically forces the Watchdog Timer oscillator to drive the system clock. The Watchdog Timer oscillator must be enabled to allow the recovery. Although this oscillator runs at a much slower speed than the original system clock, the CPU continues to operate, allowing execution of a clock failure vector and software routines that either remedy the oscillator failure or issue a failure alert. This automatic switchover is not available if the Watchdog Timer is the primary oscillator. It is also unavailable if the Watchdog Timer oscillator is disabled, though it is not necessary to enable the Watchdog Timer reset function outlined in the Watchdog Timer on page 87.

The primary oscillator failure detection circuitry asserts if the system clock frequency drops below 1 kHz \pm 50%. If an external signal is selected as the system oscillator, it is possible that a very slow but non-failing clock can generate a failure condition. Under these conditions, do not enable the clock failure circuitry (POFEN must be deasserted in the OSCCTL register).

Table 108.	Bit Mani	pulation	Instructions

Mnemonic	Operands	Instruction
BCLR	bit, dst	Bit Clear
BIT	p, bit, dst	Bit Set or Clear
BSET	bit, dst	Bit Set
BSWAP	dst	Bit Swap
CCF	_	Complement Carry Flag
RCF	_	Reset Carry Flag
SCF	_	Set Carry Flag
ТСМ	dst, src	Test Complement Under Mask
TCMX	dst, src	Test Complement Under Mask using Extended Addressing
ТМ	dst, src	Test Under Mask
TMX	dst, src	Test Under Mask using Extended Addressing

Table 109. Block Transfer Instructions

Mnemonic	Operands	Instruction
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDEI	dst, src	Load External Data to/from Data Memory and Auto-Increment Addresses

Table 110. CPU Control Instructions

Mnemonic	Operands	Instruction
ATM	—	Atomic Execution
CCF	—	Complement Carry Flag
DI	—	Disable Interrupts
EI	—	Enable Interrupts
HALT	—	HALT Mode
NOP	—	No Operation
RCF		Reset Carry Flag

		Address Mode			Flags						E. ()	
Assembly Mnemonic	Symbolic Operation	dst	src	- Opcode(s) (Hex)	С	z	S	v	D	Н	- Fetch Cycles	Instr. Cycles
RR dst		R		E0	*	*	*	*	-	_	2	2
	► D7 D6 D5 D4 D3 D2 D1 D0 ► C	IR		E1							2	3
RRC dst		R		C0	*	*	*	*	_	_	2	2
	► D7 D6 D5 D4 D3 D2 D1 D0 ► C dst	IR		C1	-						2	3
SBC dst, src	dst ← dst – src - C	r	r	32	*	*	*	*	1	*	2	3
		r	lr	33	-						2	4
		R	R	34	-						3	3
		R	IR	35	-						3	4
		R	IM	36	-						3	3
		IR	IM	37	-						3	4
SBCX dst, src	$dst \gets dst - src - C$	ER	ER	38	*	*	*	*	1	*	4	3
		ER	IM	39	-						4	3
SCF	C ← 1			DF	1	_	_	_	_	-	1	2
SRA dst		R		D0	*	*	*	0	_	_	2	2
	D7_D6_D5_D4_D3_D2_D1_D0 dst	IR		D1	-						2	3
SRL dst	0 - D7 D6 D5 D4 D3 D2 D1 D0 D C	R		1F C0	*	*	0	*	_	_	3	2
	dst	IR		1F C1	_						3	3
SRP src	$RP \leftarrow src$		IM	01	_	_	_	_	-	-	2	2
STOP	STOP Mode			6F	_	_	-	_	-	_	1	2
SUB dst, src	$dst \gets dst - src$	r	r	22	*	*	*	*	1	*	2	3
		r	lr	23	-						2	4
		R	R	24	-						3	3
		R	IR	25	-						3	4
		R	IM	26	-						3	3
		IR	IM	27	-						3	4
Flags Notation:	* = Value is a function of t – = Unaffected X = Undefined	he resu	It of the o	peration.	0 = 1 =	= Re = Se	eset et to	to 1	0			

Table 115. eZ8 CPU Instruction Summary (Continued)

Accombly		Address Mode		Opendo(a)	Flags						Fotob	Inotr
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	z	S	V	D	Н	Cycles	Cycles
SUBX dst, src	$dst \gets dst - src$	ER	ER	28	*	*	*	*	1	*	4	3
		ER	IM	29	_						4	3
SWAP dst	$dst[7:4] \leftrightarrow dst[3:0]$	R		F0	Х	*	*	Х	-	_	2	2
		IR		F1	-						2	3
TCM dst, src	(NOT dst) AND src	r	r	62	_	*	*	0	-	-	2	3
		r	lr	63	-						2	4
		R	R	64	-						3	3
		R	IR	65	-						3	4
		R	IM	66	-						3	3
		IR	IM	67	-						3	4
TCMX dst, src	(NOT dst) AND src	ER	ER	68	_	*	*	0	-	_	4	3
		ER	IM	69	-						4	3
TM dst, src	dst AND src	r	r	72	_	*	*	0	_	_	2	3
		r	lr	73	-						2	4
		R	R	74	-						3	3
		R	IR	75	-						3	4
		R	IM	76	-						3	3
		IR	IM	77	-						3	4
TMX dst, src	dst AND src	ER	ER	78	_	*	*	0	_	_	4	3
		ER	IM	79	-						4	3
TRAP Vector	$SP \leftarrow SP - 2$ @SP \leftarrow PC SP \leftarrow SP - 1 @SP \leftarrow FLAGS PC \leftarrow @Vector		Vector	F2	_	_	_	_	_	_	2	6
WDT				5F	_	-	-	-	_	_	1	2
Flags Notation:	* = Value is a function of – = Unaffected X = Undefined	peration.	0 = Reset to 0 1 = Set to 1									

Table 115. eZ8 CPU Instruction Summary (Continued)

	V _{DD} T _A = - (unless	= 2.7 V to 40 °C to + otherwise	3.6 V 105 °C e stated)			
Parameter	Minimum	Typical	Maximum	Units	Notes	
Flash Byte Read Time	100	-	-	ns		
Flash Byte Program Time	20	-	40	μs		
Flash Page Erase Time	10	-	-	ms		
Flash Mass Erase Time	200	-	-	ms		
Writes to Single Address Before Next Erase	-	-	2			
Flash Row Program Time	_	-	8	ms	Cumulative program time for single row cannot exceed limit before next erase. This parameter is only an issue when bypassing the Flash Controller.	
Data Retention	100	-	-	years	25 °C	
Endurance	10,000	-	-	cycles	Program/erase cycles	

Table 123. Flash Memory Electrical Characteristics and Timing

Table 124. Watchdog Timer Electrical Characteristics and Timing

		V _{DD} = 2.7 V to 3.6 V T _A = -40 °C to +105 °C (unless otherwise stated)				
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
F _{WDT}	WDT Oscillator Frequency		10		kHz	
F _{WDT}	WDT Oscillator Error			<u>+</u> 50	%	
T _{WDTCAL}	WDT Calibrated Timeout	0.98	1	1.02	S	V _{DD} = 3.3 V; T _A = 30 °C
		0.70	1	1.30	S	V _{DD} = 2.7 V to 3.6 V T _A = 0 °C to 70 °C
		0.50	1	1.50	S	V _{DD} = 2.7 V to 3.6 V T _A = -40 °C to +105 °C

Table 127. GFIO FOIL IIIpul Tilling	Table	127.	GPIO	Port	Input	Timing
-------------------------------------	-------	------	-------------	------	-------	--------

		Dela	y (ns)
Parameter	Abbreviation	Minimum	Maximum
T _{S_PORT}	Port Input Transition to XIN Rise Setup Time (Not pictured)	5	_
T _{H_PORT}	XIN Rise to Port Input Transition Hold Time (Not pictured)	0	_
T _{SMR}	GPIO Port Pin Pulse Width to ensure Stop Mode Recovery (for GPIO Port Pins enabled as SMR sources)	1 μs	

Figure 36 displays the 8-pin Quad Flat No-Lead package (QFN)/MLF-S available for the Z8 Encore! XP F0823 Series devices. This package has a footprint identical to that of the 8-pin SOIC, but with a lower profile.

Figure 36. 8-Pin Quad Flat No-Lead Package (QFN)/MLF-S

Figure 37 displays the 20-pin Plastic Dual Inline Package (PDIP) available for Z8 Encore! XP F0823 Series devices.

Figure 37. 20-Pin Plastic Dual Inline Package (PDIP)

er					ers	Channels	IrDA	E	
Part Numb	Flash	RAM	I/O Lines	Interrupts	16-Bit Tim w/PWM	10-Bit A/D	UART with	Descriptio	
Z8 Encore! XP with 2	KB Flash								
Standard Temperature	e: 0 °C to	70 °C							
Z8F0213PB005SC	2 KB	512 B	6	12	2	0	1	PDIP 8-pin package	
Z8F0213QB005SC	2 KB	512 B	6	12	2	0	1	QFN 8-pin package	
Z8F0213SB005SC	2 KB	512 B	6	12	2	0	1	SOIC 8-pin package	
Z8F0213SH005SC	2 KB	512 B	16	18	2	0	1	SOIC 20-pin package	
Z8F0213HH005SC	2 KB	512 B	16	18	2	0	1	SSOP 20-pin package	
Z8F0213PH005SC	2 KB	512 B	16	18	2	0	1	PDIP 20-pin package	
Z8F0213SJ005SC	2 KB	512 B	24	18	2	0	1	SOIC 28-pin package	
Z8F0213HJ005SC	2 KB	512 B	24	18	2	0	1	SSOP 28-pin package	
Z8F0213PJ005SC	2 KB	512 B	24	18	2	0	1	PDIP 28-pin package	
Extended Temperatur	e: -40 °C	to 105 °C	2						
Z8F0213PB005EC	2 KB	512 B	6	12	2	0	1	PDIP 8-pin package	
Z8F0213QB005EC	2 KB	512 B	6	12	2	0	1	QFN 8-pin package	
Z8F0213SB005EC	2 KB	512 B	6	12	2	0	1	SOIC 8-pin package	
Z8F0213SH005EC	2 KB	512 B	16	18	2	0	1	SOIC 20-pin package	
Z8F0213HH005EC	2 KB	512 B	16	18	2	0	1	SSOP 20-pin package	
Z8F0213PH005EC	2 KB	512 B	16	18	2	0	1	PDIP 20-pin package	
Z8F0213SJ005EC	2 KB	512 B	24	18	2	0	1	SOIC 28-pin package	
Z8F0213HJ005EC	2 KB	512 B	24	18	2	0	1	SSOP 28-pin package	
Z8F0213PJ005EC	2 KB	512 B	24	18	2	0	1	PDIP 28-pin package	
Replace C with G for Lead-Free Packaging									