

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	eZ8
Core Size	8-Bit
Speed	5MHz
Connectivity	IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	22
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0823sj005sc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Warning: DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP, Z8 Encore! MC, Crimzon, eZ80, and ZNEO are trademarks or registered trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.

Table of Contents

Overview	. 1
Features	. 1
Part Selection Guide	. 2
Block Diagram	. 3
CPU and Peripheral Overview	. 4
eZ8 CPU Features	
General-Purpose I/O	
Flash Controller	
Internal Precision Oscillator	
Analog Comparator	
Universal Asynchronous Receiver/Transmitter	
Timers	
Interrupt Controller	. 5
Reset Controller	. 6
On-Chip Debugger	
Pin Description	. 7
Available Packages	. 7
Pin Configurations	
Signal Descriptions	. 9
Pin Characteristics	10
Address Space	13
Register File	13
Program Memory	13
Data Memory	15
Flash Information Area	15
Register Map	17
Reset and Stop Mode Recovery	21
Reset Types	21
Reset Sources	22
Power-On Reset	
Voltage Brownout Reset	
Watchdog Timer Reset	
External Reset Input	
	20

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1
Port A	PA0	T0IN/T0OUT*	Timer 0 Input/Timer 0 Output Complement	N/A
		Reserved		-
	PA1	TOOUT	Timer 0 Output	-
		Reserved		-
	PA2	DE0	UART 0 Driver Enable	-
		Reserved		-
	PA3	CTS0	UART 0 Clear to Send	-
		Reserved		-
	PA4	RXD0/IRRX0	UART 0 / IrDA 0 Receive Data	-
		Reserved		
	PA5	TXD0/IRTX0	UART 0 / IrDA 0 Transmit Data	-
		Reserved		
	PA6	T1IN/T1OUT*	Timer 1 Input/Timer 1 Output Complement	-
		Reserved		
	PA7	T1OUT	Timer 1 Output	-
		Reserved		

Table 15. Port Alternate Function Mapping (Non 8-Pin Parts)

Note: Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers are not implemented for Port A. Enabling alternate function selections as described in Port A–C Alternate Function Sub-Registers automatically enables the associated alternate function.

* Whether PA0/PA6 take on the timer input or timer output complement function depends on the timer configuration as described in Timer Pin Signal Operation on page 79.

0 PIN0 X R

BITS	7	6	5	4	3	2	1	
FIELD	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	
RESET	Х	Х	Х	Х	Х	Х	Х	
R/W	R	R	R	R	R	R	R	

Table 28. Port A–C Input Data Registers (PxIN)

PIN[7:0]—Port Input Data

Sampled data from the corresponding port pin input.

0 = Input data is logical 0 (Low)

1 = Input data is logical 1 (High)

Port A–C Output Data Register

The Port A–C Output Data register (Table 29) controls the output data to the pins.

FD2H, FD6H, FDAH

Table 29. Port A–C Output Data Register (PxOUT)

BITS	7	6	5	4	3	2	1	0
FIELD	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	FD3H, FD7H, FDBH							

POUT[7:0]—Port Output Data

These bits contain the data to be driven to the port pins. The values are only driven if the corresponding pin is configured as an output and the pin is not configured for alternate function operation.

0 =Drive a logical 0 (Low).

1 = Drive a logical 1 (High). High value is not driven if the drain has been disabled by setting the corresponding Port Output Control register bit to 1.

LED Drive Enable Register

The LED Drive Enable register (Table 30) activates the controlled current drive. The Port C pin must first be enabled by setting the Alternate Function register to select the LED function.

ADDR

Writing a 1 to the IRQE bit in the Interrupt Control register

Interrupts are globally disabled by any of the following actions:

- Execution of a Disable Interrupt (DI) instruction
- eZ8 CPU acknowledgement of an interrupt service request from the interrupt controller
- Writing a 0 to the IRQE bit in the Interrupt Control register
- Reset
- Execution of a Trap instruction
- Illegal Instruction Trap
- Primary Oscillator Fail Trap
- Watchdog Timer Oscillator Fail Trap

Interrupt Vectors and Priority

The interrupt controller supports three levels of interrupt priority. Level 3 is the highest priority, Level 2 is the second highest priority, and Level 1 is the lowest priority. If all interrupts are enabled with identical interrupt priority (for example, all as Level 2 interrupts), the interrupt priority is assigned from highest to lowest as specified in Table 33 on page 54. Level 3 interrupts are always assigned higher priority than Level 2 interrupts which, in turn, always are assigned higher priority than Level 1 interrupts. Within each interrupt priority level (Level 1, Level 2, or Level 3), priority is assigned as specified in Table 33. Reset, Watchdog Timer interrupt (if enabled), Primary Oscillator Fail Trap, Watchdog Timer Oscillator Fail Trap, and Illegal Instruction Trap always have highest (Level 3) priority.

Interrupt Assertion

Interrupt sources assert their interrupt requests for only a single system clock period (single pulse). When the interrupt request is acknowledged by the eZ8 CPU, the corresponding bit in the Interrupt Request register is cleared until the next interrupt occurs. Writing a 0 to the corresponding bit in the Interrupt Request register likewise clears the interrupt request.

Caution: The following coding style that clears bits in the Interrupt Request registers is not recommended. All incoming interrupts received between execution of the first LDX command and the final LDX command are lost.

Poor coding style that can result in lost interrupt requests: LDX r0, IRQ0 AND r0, MASK LDX IRQ0, r0

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved				PC3I	PC2I	PC1I	PC0I
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR		FC6H						

Table 36. Interrupt Request 2 Register (IRQ2)

Reserved—Must be 0

PCxI—Port C Pin x Interrupt Request

0 = No interrupt request is pending for GPIO Port C pin x

1 = An interrupt request from GPIO Port C pin x is awaiting service

where x indicates the specific GPIO Port C pin number (0-3)

IRQ0 Enable High and Low Bit Registers

Table 37 describes the priority control for IRQ0. The IRQ0 Enable High and Low Bit registers (Table 38 and Table 39) form a priority encoded enabling for interrupts in the Interrupt Request 0 register. Priority is generated by setting bits in each register.

-			
IRQ0ENH[x]	IRQ0ENL[x]	Priority	Description
0	0	Disabled	Disabled
0	1	Level 1	Low
1	0	Level 2	Nominal
1	1	Level 3	High

where x indicates the register bits from 0–7.

Table 38. IRQ0 Enable High Bit Register (IRQ0ENH)

BITS	7	6	5	4	3	2	1	0
FIELD	Reserved	T1ENH	T0ENH	U0RENH	U0TENH	Reserved	Reserved	ADCENH
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR		FC1H						

ONE-SHOT Mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

CONTINUOUS Mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

COUNTER Mode

If the timer is enabled the Timer Output signal is complemented after timer reload.

- 0 =Count occurs on the rising edge of the Timer Input signal
- 1 = Count occurs on the falling edge of the Timer Input signal

PWM SINGLE OUTPUT Mode

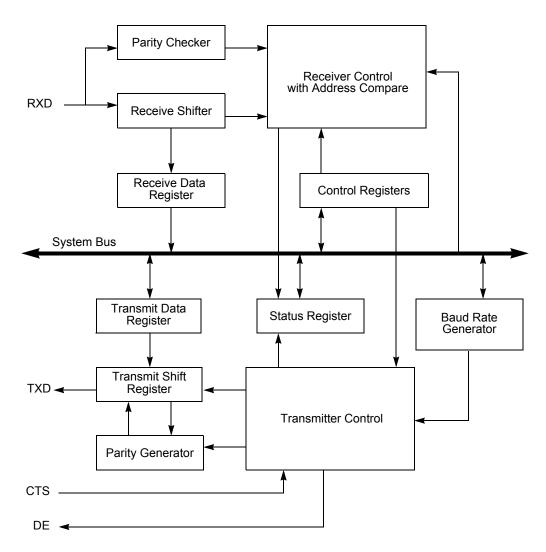
0 = Timer Output is forced Low (0) when the timer is disabled. When enabled, the Timer Output is forced High (1) upon PWM count match and forced Low (0) upon Reload.

1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon PWM count match and forced High (1) upon Reload.

CAPTURE Mode

0 = Count is captured on the rising edge of the Timer Input signal

1 = Count is captured on the falling edge of the Timer Input signal


COMPARE Mode

When the timer is disabled, the Timer Output signal is set to the value of this bit. When the timer is enabled, the Timer Output signal is complemented upon timer Reload.

GATED Mode

0 = Timer counts when the Timer Input signal is High (1) and interrupts are generated on the falling edge of the Timer Input.

1 = Timer counts when the Timer Input signal is Low (0) and interrupts are generated on the rising edge of the Timer Input.

Operation

Data Format

The UART always transmits and receives data in an 8-bit data format, least-significant bit (lsb) first. An even or odd parity bit can be added to the data stream. Each character begins with an active Low Start bit and ends with either 1 or 2 active High Stop bits. Figure 11 and Figure 12 display the asynchronous data format employed by the UART without parity and with parity, respectively.

Reserved—R/W bits must be 0 during writes; 0 when read.

NEWFRM—Status bit denoting the start of a new frame. Reading the UART Receive Data register resets this bit to 0.

0 = The current byte is not the first data byte of a new frame

1 = The current byte is the first data byte of a new frame

MPRX—Multiprocessor Receive

Returns the value of the most recent multiprocessor bit received. Reading from the UART Receive Data register resets this bit to 0.

UART Control 0 and Control 1 Registers

The UART Control 0 and Control 1 registers (Table 66 and Table 67) configure the properties of the UART's transmit and receive operations. The UART Control registers must not be written while the UART is enabled.

Table 66. UART Control 0 Register (U0CTL0)

BITS	7	6	5	4	3	2	1	0
FIELD	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADDR	F42H							

TEN—Transmit Enable

This bit enables or disables the transmitter. The enable is also controlled by the $\overline{\text{CTS}}$ signal and the CTSE bit. If the $\overline{\text{CTS}}$ signal is low and the CTSE bit is 1, the transmitter is enabled.

0 = Transmitter disabled

1 = Transmitter enabled

REN—Receive Enable

This bit enables or disables the receiver.

0 =Receiver disabled

1 = Receiver enabled

CTSE—CTS Enable

 $0 = \text{The }\overline{\text{CTS}}$ signal has no effect on the transmitter

1 = The UART recognizes the $\overline{\text{CTS}}$ signal as an enable control from the transmitter

PEN—Parity Enable

This bit enables or disables parity. Even or odd is determined by the PSEL bit.

0 =Parity is disabled

1 = The transmitter sends data with an additional parity bit and the receiver receives an additional parity bit

The baud rate error relative to the acceptable baud rate is calculated using the following equation:

UART Baud Rate Error (%) = $100 \times \left(\frac{\text{Actual Data Rate} - \text{Desired Data Rate}}{\text{Desired Data Rate}}\right)$

For reliable communication, the UART baud rate error must never exceed five percent. Table 71 provides information about data rate errors for 5.5296 MHz System Clock.

5.5296 MHz System Clock							
Acceptable Rate (kHz)	BRG Divisor (Decimal)	Actual Rate (kHz)	Error (%)				
1250.0	N/A	N/A	N/A				
625.0	N/A	N/A	N/A				
250.0	1	345.6	38.24				
115.2	3	115.2	0.00				
57.6	6	57.6	0.00				
38.4	9	38.4	0.00				
19.2	18	19.2	0.00				
9.60	36	9.60	0.00				
4.80	72	4.80	0.00				
2.40	144	2.40	0.00				
1.20	288	1.20	0.00				
0.60	576	0.60	0.00				
0.30	1152	0.30	0.00				

Table 71. UART Baud Rates

Table 78. Flash Code Pr	rotection Using	the Flash O	ntion Bits
	olection bailing	the mash o	

FWP	Flash Code Protection Description
0	Programming and erasing disabled for all of Flash Program Memory. In user code programming, Page Erase, and Mass Erase are all disabled. Mass Erase is available through the On-Chip Debugger.
1	Programming, Page Erase, and Mass Erase are enabled for all of Flash Program Memory.

Flash Code Protection Using the Flash Controller

At Reset, the Flash Controller locks to prevent accidental program or erasure of the Flash memory. To program or erase the Flash memory, first write the Page Select Register with the target page. Unlock the Flash Controller by making two consecutive writes to the Flash Control register with the values 73H and 8CH, sequentially. The Page Select Register must be rewritten with the same page previously stored there. If the two Page Select writes do not match, the controller reverts to a locked state. If the two writes match, the selected page becomes active. For more details, see Figure 21.

After unlocking a specific page, you can enable either Page Program or Erase. Writing the value 95H causes a Page Erase only if the active page resides in a sector that is not protected. Any other value written to the Flash Control register locks the Flash Controller. Mass Erase is not allowed in the user code but only in through the Debug Port.

After unlocking a specific page, you can also write to any byte on that page. After a byte is written, the page remains unlocked, allowing for subsequent writes to other bytes on the same page. Further writes to the Flash Control Register cause the active page to revert to a locked state.

Sector Based Flash Protection

The final protection mechanism is implemented on a per-sector basis. The Flash memories of Z8 Encore! XP devices are divided into maximum number of 8 sectors. A sector is 1/8 of the total size of the Flash memory, unless this value is smaller than the page size, in which case the sector and page sizes are equal.

The Sector Protect Register controls the protection state of each Flash sector. This register is shared with the Page Select Register. It is accessed by writing 73H followed by 5EH to the Flash controller. The next write to the Flash Control Register targets the Sector Protect Register.

The Sector Protect Register is initialized to 0 on reset, putting each sector into an unprotected state. When a bit in the Sector Protect Register is written to 1, the corresponding sector can no longer be written or erased by the CPU. External Flash programming through the OCD or via the Flash Controller Bypass mode are unaffected. After

Flash Option Bits

Programmable Flash option bits allow user configuration of certain aspects of Z8 Encore! XP[®] F0823 Series operation. The feature configuration data is stored in the Flash program memory and loaded into holding registers during Reset. The features available for control through the Flash Option Bits include:

- Watchdog Timer time-out response selection-interrupt or system reset
- Watchdog Timer always on (enabled at Reset)
- The ability to prevent unwanted read access to user code in Program Memory
- The ability to prevent accidental programming and erasure of all or a portion of the user code in Program Memory
- Voltage Brownout configuration-always enabled or disabled during STOP mode to reduce STOP mode power consumption
- Factory trimming information for the internal precision oscillator
- Factory calibration values for ADC
- Factory serialization and randomized lot identifier (optional)

Operation

Option Bit Configuration By Reset

Each time the Flash Option Bits are programmed or erased, the device must be Reset for the change to take effect. During any reset operation (System Reset, Power-On Reset, or Stop Mode Recovery), the Flash Option Bits are automatically read from the Flash Program Memory and written to Option Configuration registers. The Option Configuration registers control operation of the devices within the Z8 Encore! XP F0823 Series. Option Bit control is established before the device exits Reset and the eZ8 CPU begins code execution. The Option Configuration registers are not part of the Register File and are not accessible for read or write access.

Option Bit Types

User Option Bits

The user option bits are contained in the first two bytes of program memory. Access to these bits has been provided because these locations contain application-specific device

On-Chip Debugger

Z8 Encore! XP[®] F0823 Series devices contain an integrated On-Chip Debugger (OCD) that provides advanced debugging features that include:

- Single pin interface
- Reading and writing of the register file
- Reading and writing of program and data memory
- Setting of breakpoints and watchpoints
- Executing eZ8 CPU instructions
- Debug pin sharing with general-purpose input-output function to maximize the pins available

Architecture

The on-chip debugger consists of four primary functional blocks: transmitter, receiver, auto-baud detector/generator, and debug controller. Figure 22 displays the architecture of the OCD.

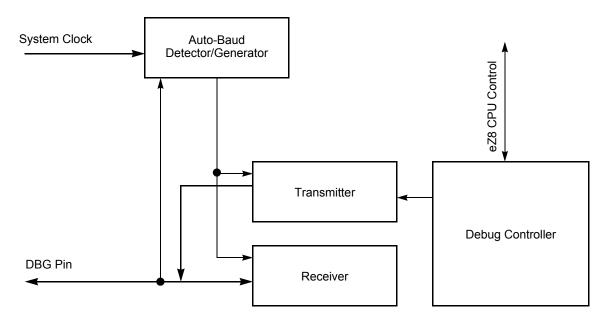


Figure 22. On-Chip Debugger Block Diagram

Table 110. CPU Control Instructions (Continued)

Mnemonic	Operands	Instruction							
SCF	—	Set Carry Flag							
SRP	SrC	Set Register Pointer							
STOP	_	STOP Mode							
WDT	_	Watchdog Timer Refresh							

Table 111. Load Instructions

Mnemonic	Operands	Instruction
CLR	dst	Clear
LD	dst, src	Load
LDC	dst, src	Load Constant to/from Program Memory
LDCI	dst, src	Load Constant to/from Program Memory and Auto-Increment Addresses
LDE	dst, src	Load External Data to/from Data Memory
LDEI	dst, src	Load External Data to/from Data Memory and Auto-Increment Addresses
LDWX	dst, src	Load Word using Extended Addressing
LDX	dst, src	Load using Extended Addressing
LEA	dst, X(src)	Load Effective Address
POP	dst	Рор
POPX	dst	Pop using Extended Addressing
PUSH	src	Push
PUSHX	SrC	Push using Extended Addressing

Table 112. Logical Instructions

Mnemonic	Operands	Instruction
AND	dst, src	Logical AND
ANDX	dst, src	Logical AND using Extended Addressing
СОМ	dst	Complement
OR	dst, src	Logical OR

Table 114. Rotate and Shift Instructions	(Continued)
--	-------------

Mnemonic	Operands	Instruction
SRA	dst	Shift Right Arithmetic
SRL	dst	Shift Right Logical
SWAP	dst	Swap Nibbles

eZ8 CPU Instruction Summary

Table 115 summarizes the eZ8 CPU instructions. The table identifies the addressing modes employed by the instruction, the effect upon the Flags register, the number of CPU clock cycles required for the instruction fetch, and the number of CPU clock cycles required for the instruction.

Assembly		Addre	ss Mode	- Opcode(s)	Flags						- Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	v	D	Н		Cycles
ADC dst, src	$dst \gets dst + src + C$	r	r	12	*	*	*	*	0	*	2	3
		r	lr	13	_						2	4
		R	R	14	_						3	3
		R	IR	15	_						3	4
		R	IM	16	_						3	3
		IR	IM	17	_						3	4
ADCX dst, src	$dst \gets dst + src + C$	ER	ER	18	*	*	*	*	0	*	4	3
		ER	IM	19	_						4	3
ADD dst, src	$dst \gets dst + src$	r	r	02	*	*	*	*	0	*	2	3
		r	lr	03	_						2	4
		R	R	04	_						3	3
		R	IR	05	_						3	4
		R	IM	06	_						3	3
		IR	IM	07	_						3	4
ADDX dst, src	$dst \gets dst + src$	ER	ER	08	*	*	*	*	0	*	4	3
		ER	IM	09	_						4	3
Flags Notation:	* = Value is a function o – = Unaffected X = Undefined	f the resu	It of the o	peration.		= Re = Se			0			

Table 115. eZ8 CPU Instruction Summary

Assembly		Addre	ss Mode	Opcode(s)	Flags						- Fetch	Instr.
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	v	D	Н	Cycles	
COM dst	dst ← ~dst	R		60	-	*	*	0	_	_	2	2
		IR		61	_						2	3
CP dst, src	dst - src	r	r	A2	*	*	*	*	_	_	2	3
		r	lr	A3	_						2	4
		R	R	A4	_						3	3
		R	IR	A5	_						3	4
		R	IM	A6	_						3	3
		IR	IM	A7	_						3	4
CPC dst, src	dst - src - C	r	r	1F A2	*	*	*	*	-	_	3	3
		r	lr	1F A3	_						3	4
		R	R	1F A4	_						4	3
		R	IR	1F A5	_						4	4
		R	IM	1F A6							4	3
		IR	IM	1F A7							4	4
CPCX dst, src	dst - src - C	ER	ER	1F A8	*	*	*	*	-	_	5	3
		ER	IM	1F A9	_						5	3
CPX dst, src	dst - src	ER	ER	A8	*	*	*	*	_	_	4	3
		ER	IM	A9	_						4	3
DA dst	$dst \gets DA(dst)$	R		40	*	*	*	Х	_	_	2	2
		IR		41	_						2	3
DEC dst	dst ← dst - 1	R		30	-	*	*	*	_	_	2	2
		IR		31	_						2	3
DECW dst	dst ← dst - 1	RR		80	-	*	*	*	-	_	2	5
		IRR		81	_						2	6
DI	$IRQCTL[7] \leftarrow 0$			8F	-	-	-	_	_	_	1	2
DJNZ dst, RA	$dst \leftarrow dst - 1$ if dst $\neq 0$ PC \leftarrow PC + X	r		0A-FA	-	_	_	_	-	_	2	3
El	IRQCTL[7] ← 1			9F	_	_	_	_	_	_	1	2
Flags Notation:	* = Value is a function – = Unaffected X = Undefined	of the resu	It of the o	peration.		= Re = Se			0			

Table 115. eZ8 CPU Instruction Summary (Continued)

			40 °C to + therwise	105 °C specified)			
Symbol	Parameter	arameter Minimum Typical Maximum		Maximum	Units	Conditions	
V _{OH2}	High Level Output Voltage	2.4	_	-	V	I _{OH} = -20 mA; V _{DD} = 3.3 V High Output Drive enabled.	
I _{IH}	Input Leakage Current	-	<u>+</u> 0.002	<u>+</u> 5	μA	$V_{IN} = V_{DD}$ $V_{DD} = 3.3 \text{ V};$	
IIL	Input Leakage Current	-	<u>+</u> 0.007	<u>+</u> 5	μA	$V_{IN} = V_{SS}$ $V_{DD} = 3.3 V;$	
I _{TL}	Tristate Leakage Current	-	-	<u>+</u> 5	μA		
I _{LED}	Controlled Current	1.8	3	4.5	mA	{AFS2,AFS1} = {0,0}	
	Drive	2.8	7	10.5	mA	{AFS2,AFS1} = {0,1}	
		7.8	13	19.5	mA	{AFS2,AFS1} = {1,0}	
		12	20	30	mA	{AFS2,AFS1} = {1,1}	
C _{PAD}	GPIO Port Pad Capacitance	-	8.0 ²	-	pF		
C _{XIN}	XIN Pad Capacitance	-	8.0 ²	_	pF		
C _{XOUT}	XOUT Pad Capacitance	-	9.5 ²	-	pF		
I _{PU}	Weak Pull-up Current	30	100	350	μA	V _{DD} = 3.0 V–3.6 V	
V _{RAM}	RAM Data Retention Voltage	TBD			V	Voltage at which RAM retains static values; no reading or writing is allowed.	

Table 118. DC Characteristics (Continued)

Notes

1. This condition excludes all pins that have on-chip pull-ups, when driven Low.

2. These values are provided for design guidance only and are not tested in production.

	$T_A = -$	= 2.7 V to 40 °C to + otherwis	105 °C				
Parameter	Minimum	Typical	Maximum	Units	Notes		
Flash Byte Read Time	100	-	-	ns			
Flash Byte Program Time	20	-	40	μs			
Flash Page Erase Time	10	-	-	ms			
Flash Mass Erase Time	200	-	_	ms			
Writes to Single Address Before Next Erase	-	-	2				
Flash Row Program Time	_	-	8	ms	Cumulative program time for single row cannot exceed limit before next erase. This parameter is only an issue when bypassing the Flash Controller.		
Data Retention	100	_	-	years	25 °C		
Endurance	10,000	_	_	cycles	Program/erase cycles		

Table 123. Flash Memory Electrical Characteristics and Timing

Table 124. Watchdog Timer Electrical Characteristics and Timing

		$T_A = -4$	= 2.7 V to 40 °C to + otherwise	105 °C		
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
F _{WDT}	WDT Oscillator Frequency		10		kHz	
F _{WDT}	WDT Oscillator Error			<u>+</u> 50	%	
T _{WDTCAL}	WDT Calibrated Timeout	0.98	1	1.02	S	V _{DD} = 3.3 V; T _A = 30 °C
		0.70	1	1.30	S	V _{DD} = 2.7 V to 3.6 V T _A = 0 °C to 70 °C
		0.50	1	1.50	S	V _{DD} = 2.7 V to 3.6 V T _A = -40 °C to +105 °C

mber			S	ts	imers	10-Bit A/D Channels	UART with IrDA	tion			
Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A	UART w	Description			
Z8 Encore! XP with 2	KB Flash	, 10-Bit A	Analog	g-to-D	igital C	onve	erter				
Standard Temperature: 0 °C to 70 °C											
Z8F0223PB005SC	2 KB	512 B	6	12	2	4	1	PDIP 8-pin package			
Z8F0223QB005SC	2 KB	512 B	6	12	2	4	1	QFN 8-pin package			
Z8F0223SB005SC	2 KB	512 B	6	12	2	4	1	SOIC 8-pin package			
Z8F0223SH005SC	2 KB	512 B	16	18	2	7	1	SOIC 20-pin package			
Z8F0223HH005SC	2 KB	512 B	16	18	2	7	1	SSOP 20-pin package			
Z8F0223PH005SC	2 KB	512 B	16	18	2	7	1	PDIP 20-pin package			
Z8F0223SJ005SC	2 KB	512 B	22	18	2	8	1	SOIC 28-pin package			
Z8F0223HJ005SC	2 KB	512 B	22	18	2	8	1	SSOP 28-pin package			
Z8F0223PJ005SC	2 KB	512 B	22	18	2	8	1	PDIP 28-pin package			
Extended Temperatur	e: -40 °C	to 105 °C)								
Z8F0223PB005EC	2 KB	512 B	6	12	2	4	1	PDIP 8-pin package			
Z8F0223QB005EC	2 KB	512 B	6	12	2	4	1	QFN 8-pin package			
Z8F0223SB005EC	2 KB	512 B	6	12	2	4	1	SOIC 8-pin package			
Z8F0223SH005EC	2 KB	512 B	16	18	2	7	1	SOIC 20-pin package			
Z8F0223HH005EC	2 KB	512 B	16	18	2	7	1	SSOP 20-pin package			
Z8F0223PH005EC	2 KB	512 B	16	18	2	7	1	PDIP 20-pin package			
Z8F0223SJ005EC	2 KB	512 B	22	18	2	8	1	SOIC 28-pin package			
Z8F0223HJ005EC	2 KB	512 B	22	18	2	8	1	SSOP 28-pin package			
Z8F0223PJ005EC	2 KB	512 B	22	18	2	8	1	PDIP 28-pin package			
Replace C with G for Leas	d-Free Pac	kaging									

Z8 Encore! XP[®] F0823 Series Product Specification

Index

Symbols

174 % 174 @ 174

Numerics

10-bit ADC 4 40-lead plastic dual-inline package 214, 215

Α

absolute maximum ratings 193 AC characteristics 197 ADC 175 architecture 117 automatic power-down 118 block diagram 118 continuous conversion 120 control register 122, 124 control register definitions 122 data high byte register 124 data low bits register 125 electrical characteristics and timing 201 operation 118 single-shot conversion 119 ADCCTL register 122, 124 ADCDH register 124 ADCDL register 125 ADCX 175 ADD 175 add - extended addressing 175 add with carry 175 add with carry - extended addressing 175 additional symbols 174 address space 13 ADDX 175 analog signals 10 analog-to-digital converter (ADC) 117 AND 177

ANDX 177 arithmetic instructions 175 assembly language programming 171 assembly language syntax 172

В

B 174 b 173 baud rate generator, UART 103 **BCLR 176** binary number suffix 174 **BIT 176** bit 173 clear 176 manipulation instructions 176 set 176 set or clear 176 swap 176 test and jump 178 test and jump if non-zero 178 test and jump if zero 178 bit jump and test if non-zero 178 bit swap 178 block diagram 3 block transfer instructions 176 **BRK 178 BSET 176** BSWAP 176, 178 **BTJ 178 BTJNZ 178 BTJZ 178**

С

CALL procedure 178 CAPTURE mode 84, 85 CAPTURE/COMPARE mode 85 cc 173 CCF 176 characteristics, electrical 193 clear 177 CLR 177 COM 177 227