

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	e200z7
Core Size	32-Bit Tri-Core
Speed	264MHz
Connectivity	EBI/EMI, Ethernet, FlexCANbus, LINbus, SCI, SPI
Peripherals	DMA, LVD, POR, Zipwire
Number of I/O	-
Program Memory Size	8MB (8M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16b Sigma-Delta, eQADC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	516-BGA
Supplier Device Package	516-MAPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5777ck2mmo3r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

1.1 Features summary

On-chip modules available within the family include the following features:

- Three dual issue, 32-bit CPU core complexes (e200z7), two of which run in lockstep
 - Power Architecture embedded specification compliance
 - Instruction set enhancement allowing variable length encoding (VLE), optional encoding of mixed 16-bit and 32-bit instructions, for code size footprint reduction
 - On the two computational cores: Signal processing extension (SPE1.1) instruction support for digital signal processing (DSP)
 - Single-precision floating point operations
 - On the two computational cores: 16 KB I-Cache and 16 KB D-Cache
 - Hardware cache coherency between cores
- 16 hardware semaphores
- 3-channel CRC module
- 8 MB on-chip flash memory
 - Supports read during program and erase operations, and multiple blocks allowing EEPROM emulation
- 512 KB on-chip general-purpose SRAM including 64 KB standby RAM
- Two multichannel direct memory access controllers (eDMA)
 - 64 channels per eDMA
- Dual core Interrupt Controller (INTC)
- Dual phase-locked loops (PLLs) with stable clock domain for peripherals and frequency modulation (FM) domain for computational shell
- Crossbar Switch architecture for concurrent access to peripherals, flash memory, or RAM from multiple bus masters with End-To-End ECC
- External Bus Interface (EBI) for calibration and application use
- System Integration Unit (SIU)
- Error Injection Module (EIM) and Error Reporting Module (ERM)
- Four protected port output (PPO) pins
- Boot Assist Module (BAM) supports serial bootload via CAN or SCI
- Three second-generation Enhanced Time Processor Units (eTPUs)
 - 32 channels per eTPU
 - Total of 36 KB code RAM
 - Total of 9 KB parameter RAM

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
_		VDD	RSTOUT	ANAO_SDA O	ANA4	ANA9	ANA11	ANA15	VDDA_SD	REFBYPCA 25	VRL_SD	VRH_SD	AN28	AN29	AN36	VDDA_E Q	REFBYPCB 25	VRL_EQ	VRH_EQ	ANB5_SDD 5	ANB9	ANB12	ANB18	ANB21	VSS	
1	/DDEH1	VSS	VDD	TEST	ANA1_SDA 1	ANA5	ANA10	ANA14	VDDA_MISC	VSSA_SD	REFBYPCA 75	AN24	AN27	AN30	AN32	VDDA_E Q	VSSA_EQ	REFBYPCB 75	ANB4_SDD 6	ANB8	ANB10	ANB13	ANB19	ANB22	VSS	VSS
E	TPUA30	ETPUA31	VSS	VDD	ANA2_SDA 2	ANA6	ANA7	ANA13	ANA17_SDB 1	ANA19_SD B3	ANA21_SD C1	ANA22_SD C2	AN25	AN31	AN34	AN39	AN37	ANBO_SDD O	ANB7_SDD 7	ANB6_SDD 6	ANB11	ANB15	ANB20	VSS	ETPUCO	ETPUC1
E	TPUA27	ETPUA28	ETPUA29	VSS	VDD	ANA3_SDA 3	ANAS	ANA12	ANA16_SDB 0	ANA18_SD B2	ANA20_SD CO	ANA23_SD C3	AN26	AN33	AN35	AN38	ANB1_SDD 1	ANB2_SDD 2	ANB3_SDD 3	ANB14	ANB16	ANB17	VSS	SENT2_A	ETPUC2	ETPUC3
E	TPUA23	ETPUA24	ETPUA25	ETPUA26	VSS	VDD	VSS	VSS	VSS	vss	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	ANB23	VSS	VSS	VDDEH7	ETPUC4	ETPUC5	ETPUC6
E	TPUA19	ETPUA20	ETPUA21	ETPUA22	VSS	VDDE8		VDDE8		VDDE8	VDDE8		VSS	VSS		VDDE10	VDDE10		VDDE10		VDDE10	TCRCLKC	ETPUC7	ETPUC8	ETPUC9	ETPUC10
E	TPUA11	ETPUA13	ETPUA15	ETPUA17	ETPUA18																	ETPUC11	ETPUC12	ETPUC13	ETPUC14	ETPUC15
	ETPUAS	ETPUA7	ETPUA8	ETPUA3	ETPUA14	ETPUA16															ETPUC19	ETPUC16	ETPUC17	ETPUC18	ETPUC20	ETPUC21
1	ETPUA1	ETPUA2	ETPUA9	ETPUA4	ETPUA12						-		-	-	-	-		_				ETPUC22	ETPUC23	ETPUC24	ETPUC26	ETPUC27
	TXDB	TXDA	RXDA	TCRCLKA	ETPUA6	ETPUA10				VSS	VSS	VSS	VSS	VSS	VSS	vss	VSS				ETPUC25	ETPUC28	ETPUC29	ETPUC30	ETPUC31	D_DAT15
F	PLLCFG1	PLLCFG2	BOOTCFG1	BOOTCFGO	RXDB	ETPUAD				VSS	VSS	VSS	VSS	VSS	VSS	vss	VSS				NC	D_DAT14	D_DAT13	D_DAT12	D_DAT11	D_DAT10
	NC	D_BDIP	PLLCFGO	VSTBY	WKPCFG					VSS	VSS	VSS	VSS	vss	VSS	VSS	VSS					D_DAT9	D_DAT8	D_DAT7	D_DAT5	VDDEH7
1	D_WEO	D_WE2	D_WE3	VDD	RESET	VDDE8				VDDE2	VSS	VSS	VSS	VSS	VSS	VSS	VSS				VDDE10	D_DAT6	VDDEH6	D_DAT2	D_DAT3	D_DAT4
0	D_ADD9	D_ADD10	D_ADD11	VDDEH1	D_WE1	NC				VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VSS				VDDE10	ETPUB13	D_OE	D_ALE	D_DATO	D_DAT1
D	_ADD12	D_ADD13	D_ADD14	D_ADD15	D_ADD16					VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS	VSS					ETPUB9	ETPUB12	ETPUB14	ETPUB15	D_RD_WR
	VDDE2	D_ADD18	D_ADD19	D_ADD20	D_ADD17	D_CS3				VDDE2	VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS				ETPUB17	ETPUB3	ETPUB7	ETPUB8	ETPUB10	ETPUB11
	D_CS2	JCOMP	RDY	мско	MSEO1	MSEOO				VDDE2	VDDE2	VDDE2	VSS	VSS	VSS	VSS	VSS				ETPUB23	ETPU81	ETPUB2	ETPUB4	ETPUB5	ETPUB6
	EVTI	EVTO	MDOO	MDO2	MDO3																	ETPUB21	ETPUB22	ETPUB16	TCRCLKB	ETPUBO
	MDO4	MDO5	MDO6	VDDE2	MD08	MD01															ETPUB25	ETPUB29	REGSEL	ETPUB20	ETPUB19	ETPUB18
	MDO7	MDO9	MDO10	MDO11	MDO12							_		-	_			_				ETPUB31	ETPUB26	ETPUB27	ETPUB24	REGCTL
1	MDO13	MDO14	MDO15	NC	VDDE8	VSS		PCSA5		SOUTB	NC		VDDE9	NC		EMIOS23	EMIOS31		CNRXB		VSS	VDDE10	VDDPMC	ETPUB28	VDDPWR	VSSSYN
	TDO	тск	TMS	VDD	VSS	VDDE9	VDDE9	SCKA	SINB	D_CS1	D_ADD21	D_ADD29	EMIOS1	EMIOS11	EMIOS17	EMIOS19	EMIOS29	VDDE9	VDDE9	VDDE9	VDDE9	VSS	VDD	ETPUB30	VSSPWR	EXTAL
	VDDE2	TDI	VDD	VSS	FEC_TXCLK _REFCLK	PCSA1	SOUTA	SCKB	PCSB3	VDDEH3	VDDEH4	VDD	EMIOSO	EMIOS8	EMIOS13	EMIOS22	EMIOS24	EMIOS28	CNTXB	CNRXD	VDDEH5	PCSC1	VSSPMC	VDD	VDDEH6	XTAL
4	ENGCLK	VDD	VSS	FEC_TXD0	FEC_TXD1	PCSAD	PCSA3	PCSB2	D_CSO	D_ADD22	D_ADD25	D_ADD28	EMIOS2	EMIOS7	EMIOS12	EMIOS16	EMIOS18	EMIOS27	CNRXA	CNTXD	SCKC	RXDC	PCSC3	VSS	VDD	VDDFLA
	VDD	VSS	FEC_RX_D V	FEC_TX_EN	PCSA4	PCSB5	SINA	PCSB1	D_TS	D_ADD23	D_ADD26	D_ADD30	EMIOS3	EMIOS6	EMIOS10	EMIOS15	EMIOS21	EMIOS26	CNTXA	CNRXC	PCSCO	SINC	PCSC2	PCSC5	VSS	VDD
		VDDE2A	FEC_RXD0	FEC_RXD1	VDDEH3A	PCSA2	PCSB4	PCSBO	D_TA	D_ADD24	D_ADD27	D_CLKOUT	EMIOS4	EMIOS5	EMIOS9	EMIOS20	EMIOS14	EMIOS25	EMIOS30	CNTXC	SOUTC	VDDEH4	TXDC	PCSC4	VDDEH5	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

Figure 3. MPC5777C 516-ball MAPBGA (full diagram)

The following information includes details about power considerations, DC/AC electrical characteristics, and AC timing specifications.

3.1 Absolute maximum ratings

Absolute maximum specifications are stress ratings only. Functional operation at these maxima is not guaranteed.

CAUTION

Stress beyond listed maxima may affect device reliability or cause permanent damage to the device.

See Operating conditions for functional operation specifications.

Electrical characteristics

Symbol	Parameter	Conditions ¹	Va	lue	Unit
Symbol	Parameter	Conditions	Min	Max	Unit
Cycle	Lifetime power cycles	—	—	1000k	—
V _{DD}	1.2 V core supply voltage ^{2, 3, 4}	—	-0.3	1.5	V
V _{DDEHx}	I/O supply voltage (medium I/O pads) ⁵	—	-0.3	6.0	V
V _{DDEx}	I/O supply voltage (fast I/O pads) ⁵	—	-0.3	6.0	V
V _{DDPMC}	Power Management Controller supply voltage ⁵	—	-0.3	6.0	V
V _{DDFLA}	Decoupling pin for flash regulator ⁶	—	-0.3	4.5	V
V _{STBY}	RAM standby supply voltage ⁵	—	-0.3	6.0	V
V _{SSA_SD}	SDADC ground voltage	Reference to V _{SS}	-0.3	0.3	V
V_{SSA_EQ}	eQADC ground voltage	Reference to V _{SS}	-0.3	0.3	V
V _{DDA_EQA/B}	eQADC supply voltage	Reference to V _{SSA_EQ}	-0.3	6.0	V
V _{DDA_SD}	SDADC supply voltage	Reference to V _{SSA_SD}	-0.3	6.0	V
V _{RL_SD}	SDADC ground reference	Reference to V _{SS}	-0.3	0.3	V
V_{RL}_{EQ}	eQADC ground reference	Reference to V _{SS}	-0.3	0.3	V
V_{RH}_{EQ}	eQADC alternate reference	Reference to V _{RL_EQ}	-0.3	6.0	V
V _{RH_SD}	SDADC alternate reference	Reference to V _{RL_SD}	-0.3	6.0	V
V _{REFBYPC}	eQADC reference decoupling capacitor pins	REFBYPCA25, REFBYPCA75, REFBYPCB25, REFBYPC75	-0.3	6.0	V
V _{DDA_MISC}	TRNG and IRC supply voltage	—	-0.3	6.0	V
V _{DDPWR}	SMPS driver supply pin	—	-0.3	6.0	V
V _{SSPWR}	SMPS driver supply pin	Reference to V _{SS}	-0.3	0.3	V
$V_{SS} - V_{SSA_EQ}$	V _{SSA_EQ} differential voltage	—	-0.3	0.3	V
$V_{SS} - V_{SSA_SD}$	V _{SSA_SD} differential voltage	—	-0.3	0.3	V
$V_{SS} - V_{RL_{EQ}}$	V _{RL_EQ} differential voltage	—	-0.3	0.3	V
$V_{SS} - V_{RL_{SD}}$	V _{RL_SD} differential voltage	—	-0.3	0.3	V
V _{IN}	I/O input voltage range ⁷	—	-0.3	6.0	V
		Relative to V _{DDEx} /V _{DDEHx}	—	0.3	V
		Relative to V _{SS}	-0.3	_	V
I _{INJD}	Maximum DC injection current for digital pad	Per pin, applies to all digital pins	-5	5	mA
I _{INJA}	Maximum DC injection current for analog pad	Per pin, applies to all analog pins	-5	5	mA
I _{MAXSEG} ^{8, 9}	Maximum current per I/O power segment	_	-120	120	mA
T _{STG}	Storage temperature range and non- operating times	_	-55	175	°C
STORAGE	Maximum storage time, assembled part programmed in ECU	No supply; storage temperature in range –40 °C to 60 °C	-	20	years
T _{SDR}	Maximum solder temperature ¹⁰ Pb-free package		-	260	°C

Table 1. Absolute maximum ratings

Table continues on the next page ...

Symbol	Parameter	Conditions ¹	Value		Unit	
Symbol	Farameter	Conditions	Min	Max		
MSL	Moisture sensitivity level ¹¹	—	—	3	—	

- 1. Voltages are referred to V_{SS} if not specified otherwise
- Allowed 1.45 V 1.5 V for 60 seconds cumulative time at maximum T_J = 150 °C; remaining time as defined in note 3 and note 4
- 3. Allowed 1.375 V 1.45 V for 10 hours cumulative time at maximum T_J = 150 °C; remaining time as defined in note 4
- 4. 1.32 V 1.375 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.275 V at maximum T_J = 150 °C
- 5. Allowed 5.5 V 6.0 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in reset, T_J = 150 °C; remaining time at or below 5.5 V
- 6. Allowed 3.6 V 4.5 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in reset, T_J = 150 °C; remaining time at or below 3.6 V
- 7. The maximum input voltage on an I/O pin tracks with the associated I/P supply maximum. For the injection current condition on a pin, the voltage will be equal to the supply plus the voltage drop across the internal ESD diode from I/O pin to supply. The diode voltage varies greatly across process and temperature, but a value of 0.3V can be used for nominal calculations.
- The sum of all controller pins (including both digital and analog) must not exceed 200 mA. A V_{DDEx}/V_{DDEHx} power segment is defined as one or more GPIO pins located between two V_{DDEx}/V_{DDEHx} supply pins.
- 9. The average current values given in I/O pad current specifications should be used to calculate total I/O segment current.
- 10. Solder profile per IPC/JEDEC J-STD-020D
- 11. Moisture sensitivity per JEDEC test method A112

3.2 Electromagnetic interference (EMI) characteristics

Test reports with EMC measurements to IC-level IEC standards are available on request.

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions, go to nxp.com and perform a keyword search for "radiated emissions."

3.3 Electrostatic discharge (ESD) characteristics

Symbol	Parameter	Conditions	Value	Unit
V _{HBM}	ESD for Human Body Model (HBM)	All pins	2000	V
V _{CDM}	V _{CDM} ESD for Charged Device Model (CDM)		750	V
		Non-corner pins	500	

Table 2. ESD Ratings^{1, 2}

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

 A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements.

3.4 Operating conditions

The following table describes the operating conditions for the device, and for which all specifications in the data sheet are valid, except where explicitly noted.

If the device operating conditions are exceeded, the functionality of the device is not guaranteed.

Cumb al	Devementer	Conditions		Value		11
Symbol	Parameter	Conditions	Min	Тур	Max	- Unit
		Frequency			•	
f _{SYS}	Device operating frequency ¹	_	—	_	264 ²	MHz
f _{PLATF}	Platform operating frequency	—	—	_	132	MHz
f _{ETPU}	eTPU operating frequency	—	—		200	MHz
f _{EBI}	EBI operating frequency	—	—		66	MHz
f _{PER}	Peripheral block operating frequency	—	—		132	MHz
f _{FM_PER}	Frequency-modulated peripheral block operating frequency	_	-	—	132	MHz
t _{CYC}	Platform clock period	—	_	_	1/f _{PLATF}	ns
t _{CYC_ETPU}	eTPU clock period	—	_		1/f _{ETPU}	ns
t _{CYC_PER}	Peripheral clock period	—	—		1/f _{PER}	ns
		Temperature				
TJ	Junction operating temperature range	Packaged devices	-40.0	—	150.0	°C
$T_A (T_L \text{ to } T_H)$	Ambient operating temperature range	Packaged devices	-40.0		125.0 ³	°C
		Voltage			I	
V _{DD}	External core supply voltage ^{4, 5}	LVD/HVD enabled	1.2	_	1.32	V
		LVD/HVD disabled ^{6, 7, 8, 9}	1.2		1.38	1
V _{DDA_MISC}	TRNG and IRC supply voltage	—	3.5	_	5.5	V
V _{DDEx}	I/O supply voltage (fast I/O pads)	5 V range	4.5		5.5	V
		3.3 V range	3.0		3.6	
V _{DDEHx} 9	I/O supply voltage (medium I/O	5 V range	4.5		5.5	V
	pads)	3.3 V range	3.0		3.6	
V _{DDEH1}	eTPU_A, eSCI_A, eSCI_B, and configuration I/O supply voltage (medium I/O pads)	5 V range	4.5	—	5.5	V
V _{DDPMC} ¹⁰	Power Management Controller (PMC) supply voltage	Full functionality	3.15	—	5.5	V
V _{DDPWR}	SMPS driver supply voltage	Reference to V _{SSPWR}	3.0		5.5	V
V _{DDFLA}	Flash core voltage	—	3.15	_	3.6	V
V _{STBY}	RAM standby supply voltage	—	0.95 ¹¹		5.5	V

Table 3. Device operating conditions

Table continues on the next page...

Cumhal	Deverseter	Conditions		Value		L lus it
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{STBY_BO}	Standby RAM brownout flag trip point voltage	—	-	—	0.9 ¹²	V
V _{RL_SD}	SDADC ground reference voltage	—		V		
V _{DDA_SD}	SDADC supply voltage ¹³	—	4.5	—	5.5	V
V _{DDA_EQA/B}	eQADC supply voltage	—	4.75	—	5.25	V
V _{RH_SD}	SDADC reference	—	4.5	V _{DDA_SD}	5.5	V
$V_{DDA_SD} - V_{RH_SD}$	SDADC reference differential voltage	—	_	—	25	mV
$V_{SSA_SD} - V_{RL_SD}$	V _{RL_SD} differential voltage	-	-25	—	25	mV
V _{RH_EQ}	eQADC reference	—	4.75	—	5.25	V
V _{DDA_EQA/B} – V _{RH_EQ}	eQADC reference differential voltage	—	_	—	25	mV
$V_{SSA_EQ} - V_{RL_EQ}$	V _{RL_EQ} differential voltage	—	-25	—	25	mV
$V_{SSA_{EQ}} - V_{SS}$	V _{SSA_EQ} differential voltage	—	-25	—	25	mV
$V_{SSA_SD} - V_{SS}$	V _{SSA_SD} differential voltage	-	-25	—	25	mV
V _{RAMP}	Slew rate on power supply pins	—	_	—	100	V/ms
		Current				
I _{IC}	DC injection current (per pin) ^{14,} 15, 16	Digital pins and analog pins	-3.0	—	3.0	mA
I _{MAXSEG}	Maximum current per power segment ^{17, 18}	—	-80	—	80	mA

Table 3.	Device o	perating	conditions ((continued))
----------	-----------------	----------	--------------	-------------	---

- Maximum operating frequency is applicable to the computational cores and platform for the device. See the Clocking chapter in the MPC5777C Microcontroller Reference Manual for more information on the clock limitations for the various IP blocks on the device.
- 2. If frequency modulation (FM) is enabled, the maximum frequency still cannot exceed this value.
- 3. The maximum specification for operating junction temperature T_J must be respected. Thermal characteristics provides details.
- 4. Core voltage as measured on device pin to guarantee published silicon performance
- 5. During power ramp, voltage measured on silicon might be lower. Maximum performance is not guaranteed, but correct silicon operation is guaranteed. See power management and reset management for description.
- 6. Maximum core voltage is not permitted for entire product life. See absolute maximum rating.
- 7. When internal LVD/HVDs are disabled, external monitoring is required to guarantee device operation. Failure to monitor externally supply voltage may result in erroneous operation of the device.
- 8. This LVD/HVD disabled supply voltage condition only applies after LVD/HVD are disabled by the application during the reset sequence, and the LVD/HVD are active until that point.
- 9. This spec does not apply to V_{DDEH1} .
- 10. When internal flash memory regulator is used:
 - Flash memory read operation is supported for a minimum V_{DDPMC} value of 3.15 V.
 - Flash memory read, program, and erase operations are supported for a minimum V_{DDPMC} value of 3.5 V.

When flash memory power is supplied externally (V_{DDPMC} shorted to V_{DDFLA}): The V_{DDPMC} range must be within the limits specified for LVD_FLASH and HVD_FLASH monitoring. Table 29 provides the monitored LVD_FLASH and HVD_FLASH limits.

- 11. If the standby RAM regulator is not used, the V_{STBY} supply input pin must be tied to ground.
- 12. V_{STBY_BO} is the maximum voltage that sets the standby RAM brownout flag in the device logic. The minimum voltage for RAM data retention is guaranteed always to be less than the V_{STBY_BO} maximum value.

Symbol	Parameter	Conditions		Value		Unit
Symbol		Conditions	Min	Тур	Max	
I _{WPU}	Weak pullup current	V _{IN} = 0.35 * V _{DDEx}	40	—	120	μA
		4.5 V < V _{DDEx} < 5.5 V				
		V _{IN} = 0.35 * V _{DDEx}	25	—	80	
		3.0 V < V _{DDEx} < 3.6 V				
I _{WPD}	Weak pulldown current	V _{IN} = 0.65 * V _{DDEx}	40	—	120	μA
		4.5 V < V _{DDEx} < 5.5 V				
		$V_{IN} = 0.65 * V_{DDEx}$	25	—	80	
		$3.0 \text{ V} < \text{V}_{\text{DDEx}} < 3.6 \text{ V}$				

Table 7. I/O pullup/pulldown DC electrical characteristics

The specifications in Table 8 apply to the pins ANA0_SDA0 to ANA7, ANA16_SDB0 to ANA23_SDC3, and ANB0_SDD0 to ANB7_SDD7.

 Table 8. I/O pullup/pulldown resistance electrical characteristics

Symbol	Parameter	Conditions		Unit		
Symbol		Conditions	Min	Тур	Мах	
R _{PUPD}		200 kΩ	130	200	280	kΩ
	pulldown resistance	100 kΩ	65	100	140	
		5 kΩ	1.4	5	7.5	
Δ_{PUPD}	R _{PUPD} pullup/pulldown resistance mismatch				5	%

3.6.2 Output pad specifications

Figure 5 shows output DC electrical characteristics.

1. PCR[DSC] values refer to the setting of that register field in the SIU.

3.6.3 I/O pad current specifications

The I/O pads are distributed across the I/O supply segments. Each I/O supply segment is associated with a V_{DDEx} supply segment.

Table 11 provides I/O consumption figures.

To ensure device reliability, the average current of the I/O on a single segment should remain below the I_{MAXSEG} value given in Table 1.

To ensure device functionality, the average current of the I/O on a single segment should remain below the I_{MAXSEG} value given in Table 3.

NOTE

The MPC5777C I/O Signal Description and Input Multiplexing Tables are contained in a Microsoft Excel® file attached to the Reference Manual. In the spreadsheet, select the I/O Signal Table tab.

Symbol	Parameter	Conditions		Value		Unit
Symbol		Conditions	Min	Тур	Max	
I _{AVG_GPIO}	Average I/O current for GPIO pads	C _L = 25 pF, 2 MHz	—	—	0.42	mA
	(per pad)	$V_{DDEx} = 5.0 V \pm 10\%$				
		C _L = 50 pF, 1 MHz	—	_	0.35	
		$V_{DDEx} = 5.0 V \pm 10\%$				
I _{AVG_EBI}	-	C _{DRV} = 10 pF, f _{EBI} = 66 MHz	_	_	9	mA
	bus output pins (per pad)	V _{DDEx} = 3.3 V ± 10%				
		$C_{DRV} = 20 \text{ pF}, \text{ f}_{EBI} = 66 \text{ MHz}$		_	18	
		$V_{DDEx} = 3.3 V \pm 10\%$				
		$C_{DRV} = 30 \text{ pF}, f_{EBI} = 66 \text{ MHz}$	—	_	30	
		$V_{DDEx} = 3.3 V \pm 10\%$				

Table 11. I/O consumption

3.7 Oscillator and PLL electrical specifications

The on-chip dual PLL—consisting of the peripheral clock and reference PLL (PLL0) and the frequency-modulated system PLL (PLL1)—generates the system and auxiliary clocks from the main oscillator driver.

3.8.1 Enhanced Queued Analog-to-Digital Converter (eQADC) Table 17. eQADC conversion specifications (operating)

Cumb al	Devenueter	Va	Value	
Symbol	Parameter	Min	Max	- Unit
f _{ADCLK}	ADC Clock (ADCLK) Frequency	2	33	MHz
CC	Conversion Cycles	2 + 13	128 + 15	ADCLK cycles
T _{SR}	Stop Mode Recovery Time ¹	10	_	μs
_	Resolution ²	1.25	_	mV
INL	INL: 16.5 MHz eQADC clock ³	-4	4	LSB ⁴
	INL: 33 MHz eQADC clock ³	-6	6	LSB
DNL	DNL: 16.5 MHz eQADC clock ³	-3	3	LSB
	DNL: 33 MHz eQADC clock ³	-3	3	LSB
OFFNC	Offset Error without Calibration	0	140	LSB
OFFWC	Offset Error with Calibration	-8	8	LSB
GAINNC	Full Scale Gain Error without Calibration	-150	0	LSB
GAINWC	Full Scale Gain Error with Calibration	-8	8	LSB
I _{INJ}	Disruptive Input Injection Current ^{5, 6, 7, 8}	-3	3	mA
E _{INJ}	Incremental Error due to injection current ^{9, 10}	—	+4	Counts
TUE	TUE value ^{11, 12} (with calibration)	_	±8	Counts
GAINVGA1	Variable gain amplifier accuracy (gain = 1) ¹³	-	-	Counts ¹⁵
	INL, 16.5 MHz ADC	-4	4	
	INL, 33 MHz ADC	-8	8	
	DNL, 16.5 MHz ADC	-3 ¹⁴	3 ¹⁴	
	DNL, 33 MHz ADC	-3 ¹⁴	3 ¹⁴	
GAINVGA2	Variable gain amplifier accuracy (gain = 2) ¹³	-	-	Counts
	INL, 16.5 MHz ADC	-5	5	
	INL, 33 MHz ADC	-8	8	
	DNL, 16.5 MHz ADC	-3	3	
	DNL, 33 MHz ADC	-3	3	
GAINVGA4	Variable gain amplifier accuracy (gain = 4) ¹³	-	-	Counts
	INL, 16.5 MHz ADC	-7	7	
	INL, 33 MHz ADC	-8	8	
	DNL, 16.5 MHz ADC	-4	4	
	DNL, 33 MHz ADC	-4	4	
	Current consumption per ADC (two ADCs per EQADC)		10	mA
	Reference voltage current consumption per EQADC		200	
I _{ADR}			200	μΑ

1. Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to the time that the ADC is ready to perform conversions. Delay from power up to full accuracy = 8 ms.

At V_{RH_EQ} - V_{RL_EQ} = 5.12 V, one count = 1.25 mV without using pregain. Based on 12-bit conversion result; does not account for AC and DC errors

- 3. INL and DNL are tested from V_{RL} + 50 LSB to V_{RH} 50 LSB.
- 4. At $V_{RH_{EQ}} V_{RL_{EQ}} = 5.12 \text{ V}$, one LSB = 1.25 mV.

Cumbal	Deverseter	Canditions		Value		L Incia
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
GAIN	ADC gain	Defined through SDADC_MCR[PGAN]. Only integer powers of 2 are valid gain values.	1	—	16	_
δ _{GAIN}	Absolute value of the ADC gain error ^{6, 7}	Before calibration (applies to gain setting = 1)	—	—	1.5	%
		After calibration	—	_	5	mV
		$\Delta V_{RH_SD} < 5\%, \Delta V_{DDA_SD} < 10\%$				
		$\Delta T_{\rm J} < 50 \ ^{\circ}{\rm C}$				
		After calibration	_	_	7.5	
		$\Delta V_{RH_{SD}} < 5\%, \Delta V_{DDA_{SD}} < 10\%$				
		$\Delta T_{\rm J} < 100 \ ^{\circ}{\rm C}$				
		After calibration	_	_	10	
		$\Delta V_{RH_{SD}} < 5\%, \Delta V_{DDA_{SD}} < 10\%$				
		$\Delta T_{\rm J} < 150 \ ^{\circ}{\rm C}$				
V _{OFFSET}	Conversion offset ^{6, 7}	Before calibration (applies to all gain settings: 1, 2, 4, 8, 16)	—	10*(1+1/ gain)	20	mV
		After calibration	—	—	5	
		$\Delta V_{\text{DDA}_\text{SD}} < 10\%$				
		$\Delta T_{\rm J} < 50 \ ^{\circ}{\rm C}$				
		After calibration	_	—	7.5	
		$\Delta V_{\text{DDA}_\text{SD}} < 10\%$				
		ΔT _J < 100 °C				
		After calibration	_	_	10	
		$\Delta V_{\text{DDA}SD} < 10\%$				
		ΔT _J < 150 °C				

Table 18. SDADC electrical specifications (continued)	Table 18.	SDADC electrical s	pecifications	(continued)
---	-----------	--------------------	---------------	-------------

Table continues on the next page ...

Cumhal	Devenueter	Canditiana		Value		11
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
SINAD _{DIFF333}	Signal to noise and	Gain = 1	66	_		dBFS
	distortion ratio in differential mode, 333	4.5 V < V _{DDA_SD} < 5.5 V				
	Ksps output rate	$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 2	66	_	—	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 4	63	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 8	62	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 16	59	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
SINAD _{SE150}	Signal to noise and	Gain = 1	66	_		dBFS
	distortion ratio in single-ended mode,	4.5 V < V _{DDA_SD} < 5.5 V				
	150 Ksps output rate	$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 2	66	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 4	63	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 8	62	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 16	54	_	_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				

Table 18. SDADC electrical specifications (continued)

Table continues on the next page ...

Symbol	Parameter	Conditions		Valu	e 	Uni
Cymbol	T drameter	Conditions	Min	Тур	Max	
THD _{SE150}	Total harmonic	Gain = 1	68	—	—	dBF
	distortion in single- ended mode, 150	4.5 V < V _{DDA_SD} < 5.5 V				
	Ksps output rate	$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 2	68	_	—	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 4	66		_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 8	68			
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
		Gain = 16	68		_	
		4.5 V < V _{DDA_SD} < 5.5 V				
		$V_{RH_{SD}} = V_{DDA_{SD}}$				
SFDR	Spurious free dynamic		60		_	dB
	range					
Z_{DIFF}	Differential input impedance ^{10, 11}	GAIN = 1	1000	1250	1500	kΩ
	Impedance ¹⁰ , 11	GAIN = 2	600	800	1000	
		GAIN = 4	300	400	500	
		GAIN = 8	200	250	300	
		GAIN = 16	200	250	300	
Z _{CM}	Common Mode input impedance ^{11, 12}	GAIN = 1	1400	1800	2200	kΩ
		GAIN = 2	1000	1300	1600	
		GAIN = 4	700	950	1150	
		GAIN = 8	500	650	800	
		GAIN = 16	500	650	800	
R _{BIAS}	Bare bias resistance	_	110	144	180	kΩ
ΔV_{INTCM}	Common Mode input reference voltage ¹³	_	-12		+12	%
V_{BIAS}	Bias voltage	—	—	V _{RH_SD} /2		۷
δV_{BIAS}	Bias voltage accuracy	—	-2.5		+2.5	%
CMRR	Common mode rejection ratio	_	20	—	—	dB
R _{Caaf}	Anti-aliasing filter	External series resistance			20	kΩ
		Filter capacitances	220		—	pF
f _{PASSBAND}	Pass band ⁹	—	0.01	—	0.333 * f _{ADCD_S}	kHz
δ _{RIPPLE}	Pass band ripple ¹⁴	0.333 * f _{ADCD_S}	-1	_	1	%

Table 18. SDADC electrical specifications (continued)

Table continues on the next page...

Table 21. LFAST transmitter electrical characteristics¹ (continued)

Symphol	bol Parameter Conditions				Unit	
Symbol	Parameter	Conditions	Min	Тур	Мах	
V _{OS}	Common mode voltage	—	1.08		1.32	V
IV _{OD} I	Differential output voltage swing (terminated) ^{2,3}	—	110	200	285	mV
t _{TR}	Rise/fall time (10% – 90% of swing) ² , ³	—	0.26		1.5	ns
CL	External lumped differential load capacitance ²	V _{DDE} = 4.5 V	—	—	12.0	pF
		V _{DDE} = 3.0 V	_		8.5	
I _{LVDS_TX}	Transmitter DC current consumption	Enabled		_	3.2	mA

1. The LFAST pad electrical characteristics are based on worst-case internal capacitance values shown in Figure 11.

 Valid for maximum data rate f_{DATA}. Value given is the capacitance on each terminal of the differential pair, as shown in Figure 11.

3. Valid for maximum external load CL.

Table 22. MSC/DSPI LVDS transmitter electrical characteristics¹

Symbol	Parameter Conditions			Value		Unit
Symbol	Farameter	Conditions	Min	Тур	Max	
f _{DATA}	Data rate	—	_	—	80	Mbps
V _{OS}	Common mode voltage	—	1.08		1.32	V
IV _{OD} I	Differential output voltage swing (terminated) ^{2,3}	—	150	200	400	mV
t _{TR}	Rise/Fall time (10%–90% of swing) ^{2,3}	—	0.8	—	4.0	ns
CL	External lumped differential load capacitance ²	V _{DDE} = 4.5 V	_	—	50	pF
		V _{DDE} = 3.0 V	—	—	39	
I _{LVDS_TX}	Transmitter DC current consumption	Enabled	_	_	4.0	mA

1. The MSC and DSPI LVDS pad electrical characteristics are based on the application circuit and typical worst-case internal capacitance values given in Figure 11.

 Valid for maximum data rate f_{DATA}. Value given is the capacitance on each terminal of the differential pair, as shown in Figure 11.

3. Valid for maximum external load C_L.

NOTE

In these descriptions, *star route layout* means a track split as close as possible to the power supply source. Each of the split tracks is routed individually to the intended end connection.

- 1. For both LDO mode and SMPS mode, V_{DDPMC} and V_{DDPWR} must be connected together (shorted) to ensure aligned voltage ramping up/down. In addition:
 - For SMPS mode, a star route layout of the power track is required to minimize mutual noise. If SMPS mode is not used, the star route layout is not required. V_{DDPWR} is the supply pin for the SMPS circuitry.
 - For 3.3 V operation, V_{DDFLA} must also be star routed and shorted to V_{DDPWR} and V_{DDPMC} . This triple connection is required because 3.3 V does not guarantee correct functionality of the internal V_{DDFLA} regulator. Consequently, V_{DDFLA} is supplied externally.
- 2. V_{DDA MISC}: IRC operation is required to provide the clock for chip startup.
 - The V_{DDPMC}, V_{DD}, and V_{DDEH1} (reset pin pad segment) supplies are monitored. They hold IRC until all of them reach operational voltage. In other words, V_{DDA_MISC} must reach its specified minimum operating voltage before or at the same time that all of these monitored voltages reach their respective specified minimum voltages.
 - An alternative is to connect the same supply voltage to both V_{DDEH1} and V_{DDA_MISC} . This alternative approach requires a star route layout to minimize mutual noise.
- 3. Multiple V_{DDEx} supplies can be powered up in any order.

During any time when V_{DD} is powered up but V_{DDEx} is not yet powered up: pad outputs are unpowered.

During any time when V_{DDEx} is powered up before all other supplies: all pad output buffers are tristated.

- 4. Ramp up $V_{DDA EQ}$ before V_{DD} . Otherwise, a reset might occur.
- 5. When the device is powering down while using the internal SMPS regulator, V_{DDPMC} and V_{DDPWR} supplies must ramp down through the voltage range from 2.5 V to 1.5 V in less than 1 second. Slower ramp-down times might result in reduced lifetime reliability of the device.

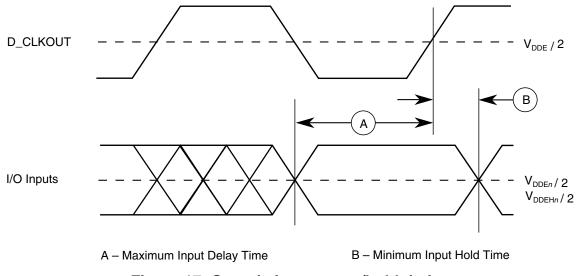


Figure 17. Generic input setup/hold timing

3.13.2 Reset and configuration pin timing

Table 35. Reset and configuration pin timing¹

Spec	Characteristic	Symbol	Min	Мах	Unit
1	RESET Pulse Width	t _{RPW}	10	—	t _{cyc} ²
2	RESET Glitch Detect Pulse Width	t _{GPW}	2	_	t _{cyc} ²
3	PLLCFG, BOOTCFG, WKPCFG Setup Time to RSTOUT Valid	t _{RCSU}	10	—	t _{cyc} ²
4	PLLCFG, BOOTCFG, WKPCFG Hold Time to RSTOUT Valid	t _{RCH}	0		t _{cyc} ²

1. Reset timing specified at: V_{DDEH} = 3.0 V to 5.25 V, V_{DD} = 1.08 V to 1.32 V, TA = TL to TH.

2. For further information on t_{cyc} , see Table 3.

Electrical characteristics

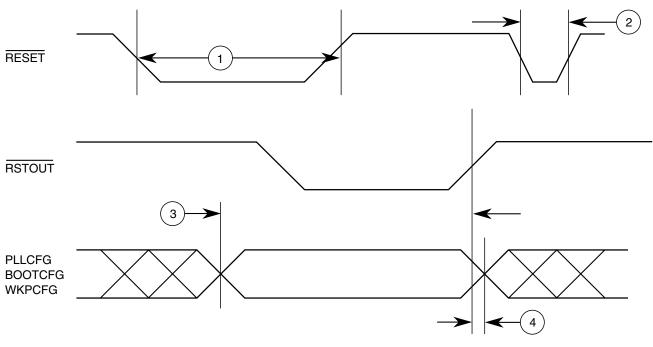


Figure 18. Reset and configuration pin timing

3.13.3 IEEE 1149.1 interface timing Table 36. JTAG pin AC electrical characteristics¹

#	Symbol	Characteristic	Va	lue	Unit
#	Symbol	Characteristic	Min	Max	Unit
1	t _{JCYC}	TCK cycle time	100	—	ns
2	t _{JDC}	TCK clock pulse width	40	60	%
3	t _{TCKRISE}	TCK rise and fall times (40%–70%)	_	3	ns
4	t _{TMSS} , t _{TDIS}	TMS, TDI data setup time	5	—	ns
5	t _{TMSH} , t _{TDIH}	TMS, TDI data hold time	5	—	ns
6	t _{TDOV}	TCK low to TDO data valid	_	16 ²	ns
7	t _{TDOI}	TCK low to TDO data invalid	0	—	ns
8	t _{TDOHZ}	TCK low to TDO high impedance	_	15	ns
9	t _{JCMPPW}	JCOMP assertion time	100		ns
10	t _{JCMPS}	JCOMP setup time to TCK low	40	—	ns
11	t _{BSDV}	TCK falling edge to output valid	_	600 ³	ns
12	t _{BSDVZ}	TCK falling edge to output valid out of high impedance	_	600	ns
13	t _{BSDHZ}	TCK falling edge to output high impedance		600	ns
14	t _{BSDST}	Boundary scan input valid to TCK rising edge	15	—	ns
15	t _{BSDHT}	TCK rising edge to boundary scan input invalid	15		ns

1. These specifications apply to JTAG boundary scan only. See Table 37 for functional specifications.

- 2. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
- 3. Applies to all pins, limited by pad slew rate. Refer to I/O delay and transition specification and add 20 ns for JTAG delay.

Electrical characteristics

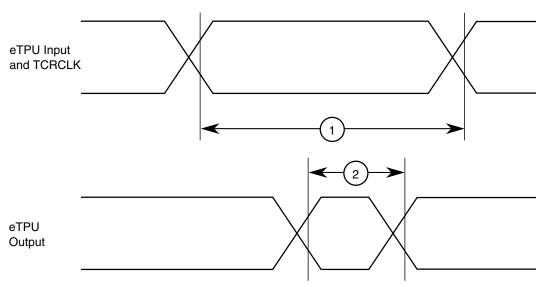


Figure 30. eTPU timing

3.13.8 eMIOS timing Table 41. eMIOS timing¹

Spec	Characteristic	Symbol	Min	Max	Unit
1	eMIOS Input Pulse Width	t _{MIPW}	4	—	t _{CYC_PER} ²
2	eMIOS Output Pulse Width	t _{MOPW}	1 ³	—	t _{CYC_PER} ²

- 1. eMIOS timing specified at V_{DD} = 1.08 V to 1.32 V, V_{DDEH} = 3.0 V to 5.5 V, T_A = T_L to T_H , and C_L = 50 pF with SRC = 0b00.
- 2. For further information on t_{CYC_PER} , see Table 3.
- 3. This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).

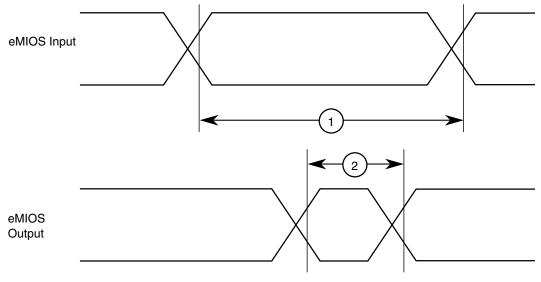


Figure 31. eMIOS timing

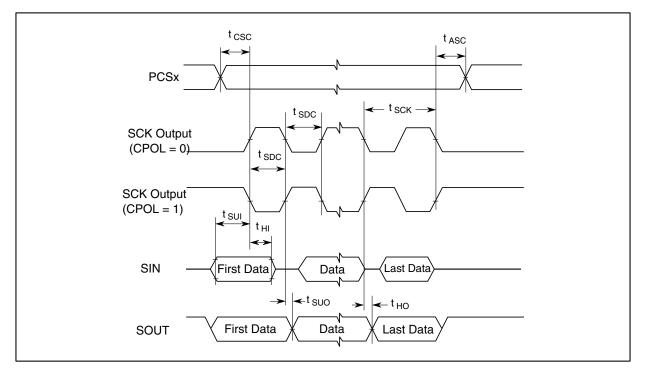


Figure 35. DSPI CMOS master mode – modified timing, CPHA = 0

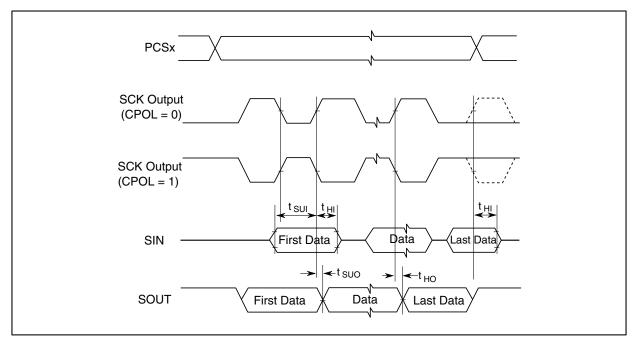


Figure 36. DSPI CMOS master mode – modified timing, CPHA = 1

Table 47. DSPI CMOS master timing – output only – timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock $^{1, 2}$ (continued)

#	Sumbol	Characteristic	Condition	3	Va	lue ⁴	Unit
#	Symbol	Characteristic	Pad drive ⁵	Load (C _L)	Min	Max	
3	t _{CSH}	PCS hold after SCK ⁶	PCR[SRC]=11b	PCS: 0 pF	-14	—	ns
				SCK: 50 pF			
			PCR[SRC]=10b	PCS: 0 pF	-14	—	ns
				SCK: 50 pF			
			PCR[SRC]=01b	PCS: 0 pF	-33	—	ns
				SCK: 50 pF			
			PCS: PCR[SRC]=01b	PCS: 0 pF	-35		ns
			SCK: PCR[SRC]=10b	SCK: 50 pF			
4	t _{SDC}	SCK duty cycle ⁷	PCR[SRC]=11b	0 pF	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns
			PCR[SRC]=10b	0 pF	1/2t _{SCK} – 2	1/2t _{SCK} + 2	ns
			PCR[SRC]=01b	0 pF	1/2t _{SCK} – 5	1/2t _{SCK} + 5	ns
			SOUT data valid time (af	ter SCK edge)			
9	t _{SUO}	SOUT data valid time	PCR[SRC]=11b	25 pF	—	7.0	ns
		from SCK	PCR[SRC]=10b	50 pF	—	8.0	ns
		CPHA = 1 ⁸	PCR[SRC]=01b	50 pF	_	18.0	ns
			SOUT data hold time (af	er SCK edge)			
10	t _{HO}	SOUT data hold time	PCR[SRC]=11b	25 pF	-9.0		ns
		after SCK	PCR[SRC]=10b	50 pF	-10.0	—	ns
		CPHA = 1 ⁸	PCR[SRC]=01b	50 pF	-21.0		ns

1. TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1.

2. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.

3. When a characteristic involves two signals, the pad drive and load conditions apply to each signal's pad, unless specified otherwise.

- 4. All timing values for output signals in this table are measured to 50% of the output voltage.
- 5. Pad drive is defined as the PCR[SRC] field setting in the SIU. Timing is guaranteed to same drive capabilities for all signals; mixing of pad drives may reduce operating speeds and may cause incorrect operation.

6. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This timing value is due to pad delays and signal propagation delays.

- 7. t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
- 8. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

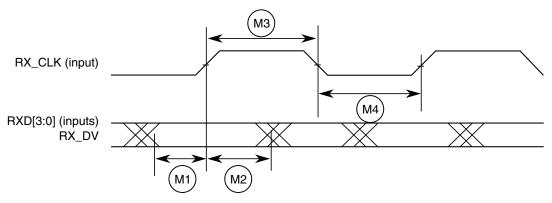


Figure 41. MII receive signal timing diagram

3.13.10.2 MII transmit signal timing (TXD[3:0], TX_EN, and TX_CLK)

The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the TX_CLK frequency.

The transmit outputs (TXD[3:0], TX_EN) can be programmed to transition from either the rising or falling edge of TX_CLK, and the timing is the same in either case. This options allows the use of noncompliant MII PHYs.

Refer to the *MPC5777C Microcontroller Reference Manual's* Fast Ethernet Controller (FEC) chapter for details of this option and how to enable it.

Symbol	Characteristic	Value ²		Unit
Symbol	Characteristic	Min	Max	Unit
M5	TX_CLK to TXD[3:0], TX_EN invalid	4.5	—	ns
M6	TX_CLK to TXD[3:0], TX_EN valid	_	25	ns
M7	TX_CLK pulse width high	35%	65%	TX_CLK period
M8	TX_CLK pulse width low	35%	65%	TX_CLK period

Table 49. MII transmit signal timing¹

1. All timing specifications valid to the pad input levels defined in I/O pad specifications.

 Output parameters are valid for C_L = 25 pF, where C_L is the external load to the device. The internal package capacitance is accounted for, and does not need to be subtracted from the 25 pF value.