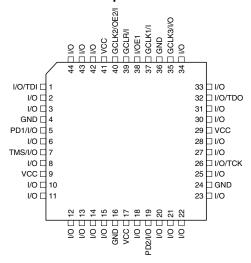


Welcome to **E-XFL.COM**

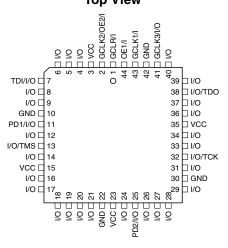
Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

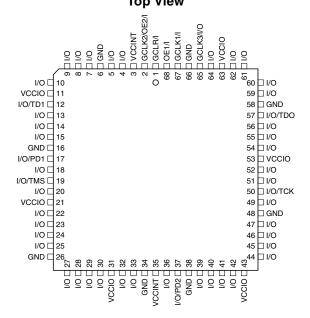
Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

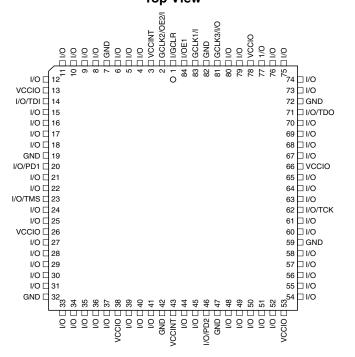
Applications of Embedded - CPLDs


Details	
Product Status	Obsolete
Programmable Type	In System Programmable (min 10K program/erase cycles)
Delay Time tpd(1) Max	20 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	-
Number of Macrocells	64
Number of Gates	-
Number of I/O	64
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atf1504asl-20jc84

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


44-lead TQFP Top View

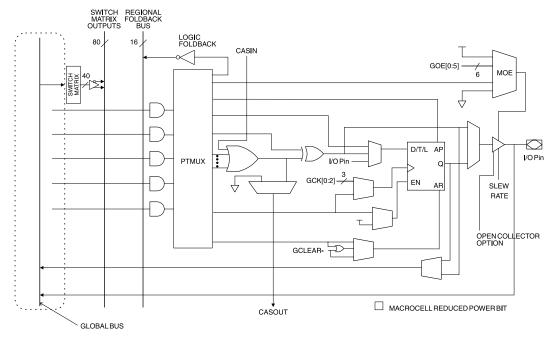

44-lead PLCC Top View

68-lead PLCC Top View

84-lead PLCC Top View

Block Diagram

Unused product terms are automatically disabled by the compiler to decrease power consumption. A security fuse, when programmed, protects the contents of the ATF1504AS. Two bytes (16 bits) of User Signature are accessible to the user for purposes such as storing project name, part number, revision or date. The User Signature is accessible regardless of the state of the security fuse.


The ATF1504AS device is an in-system programmable (ISP) device. It uses the industry-standard 4-pin JTAG interface (IEEE Std. 1149.1), and is fully-compliant with JTAG's Boundary-scan Description Language (BSDL). ISP allows the device to be programmed without removing it from the printed circuit board. In addition to simplifying the manufacturing flow, ISP also allows design modifications to be made in the field via software.

Foldback Bus

Each macrocell also generates a foldback product term. This signal goes to the regional bus and is available to four macrocells. The foldback is an inverse polarity of one of the macrocell's product terms. The sixteen foldback terms in each region allow generation of high fan-in sum terms (up to sixteen product terms) with a nominal additional delay.

Figure 1. ATF1504AS Macrocell

All pin transitions are ignored until the PD pin is brought low. When the power-down feature is enabled, the PD1 or PD2 pin cannot be used as a logic input or output. However, the pin's macrocell may still be used to generate buried foldback and cascade logic signals.

All power-down AC characteristic parameters are computed from external input or I/O pins, with Reduced Power Bit turned on. For macrocells in reduced-power mode (reduced-power bit turned on), the reduced-power adder, tRPA, must be added to the AC parameters, which include the data paths t_{IAD} , t_{IAC} , t_{IC} , t_{ACI} , t_{ACH} and t_{SEXP} .

The ATF1504AS macrocell also has an option whereby the power can be reduced on a per macrocell basis. By enabling this power-down option, macrocells that are not used in an application can be turned-down, thereby reducing the overall power consumption of the device.

Each output also has individual slew rate control. This may be used to reduce system noise by slowing down outputs that do not need to operate at maximum speed. Outputs default to slow switching, and may be specified as fast switching in the design file.

Design Software Support

ATF1504AS designs are supported by several industry-standard third-party tools. Automated fitters allow logic synthesis using a variety of high level description languages and formats.

Power-up Reset

The ATF1504AS is designed with a power-up reset, a feature critical for state machine initialization. At a point delayed slightly from V_{CC} crossing V_{RST} , all registers will be initialized, and the state of each output will depend on the polarity of its buffer. However, due to the asynchronous nature of reset and uncertainty of how V_{CC} actually rises in the system, the following conditions are required:

- 1. The V_{CC} rise must be monotonic,
- 2. After reset occurs, all input and feedback setup times must be met before driving the clock pin high, and,
- 3. The clock must remain stable during T_D.

The ATF1504AS has two options for the hysteresis about the reset level, V_{RST} , Small and Large. During the fitting process users may configure the device with the Power-up Reset hysteresis set to Large or Small. Atmel POF2JED users may select the Large option by including the flag "-power_reset" on the command line after "filename.POF". To allow the registers to be properly reinitialized with the Large hysteresis option selected, the following condition is added:

4. If V_{CC} falls below 2.0V, it must shut off completely before the device is turned on again.

When the Large hysteresis option is active, I_{CC} is reduced by several hundred microamps as well.

Security Fuse Usage

A single fuse is provided to prevent unauthorized copying of the ATF1504AS fuse patterns. Once programmed, fuse verify is inhibited. However, the 16-bit User Signature remains accessible.

DC and AC Operating Conditions

	Commercial	Industrial
Operating Temperature (Ambient)	0°C - 70°C	-40°C - 85°C
V _{CCINT} or V _{CCIO} (5V) Power Supply	5V ± 5%	5V ± 10%
V _{CCIO} (3.3V) Power Supply	3.0V - 3.6V	3.0V - 3.6V

DC Characteristics

Symbol	Parameter	Condition			Min	Тур	Max	Units
I _{IL}	Input or I/O Low Leakage Current	V _{IN} = V _{CC}				-2	-10	μΑ
I _{IH}	Input or I/O High Leakage Current					2	10	
I _{OZ}	Tri-state Output Off-state Current	$V_O = V_{CC}$ or G	ND		-40		40	μΑ
			Std Mode	Com.		105		mA
1	Power Supply Current,	V _{CC} = Max	Sta Mode	Ind.		130		mA
I _{CC1}	Standby	$V_{IN} = 0, V_{CC}$	"L" Mode	Com.		10		μΑ
			Livioue	Ind.		10		μΑ
I _{CC2}	Power Supply Current, Power-down Mode	$V_{CC} = Max$ $V_{IN} = 0, V_{CC}$	"PD" Mode			1	10	mA
ı (2)	Current in Reduced-power	V _{CC} = Max	Std Power	Com		85		ma
I _{CC3} ⁽²⁾	Mode	$V_{IN} = 0$, VCC	Sid Power	Ind		105		
V	Supply Voltage	5.0V Device C	utout	Com.	4.75		5.25	V
V _{CCIO}	Supply Voltage	5.0V Device C	ruipui	Ind.	4.5		5.5	V
V _{CCIO}	Supply Voltage	3.3V Device C	utput		3.0		3.6	V
V _{IL}	Input Low Voltage				-0.3		0.8	V
V _{IH}	Input High Voltage				2.0		V _{CCIO} + 0.3	V
	Output Low Voltage (TTL)	$V_{IN} = V_{IH} \text{ or } V_{II}$	L	Com.			0.45	V
V	Output Low Voltage (TTL)	V _{CCIO} = MIN, I	$V_{CCIO} = MIN, I_{OL} = 12 \text{ mA}$					
V_{OL}	Output Low Voltage (CMOC)	$V_{IN} = V_{IH} \text{ or } V_{II}$	$V_{IN} = V_{IH} \text{ or } V_{II}$ Com.				.2	V
	Output Low Voltage (CMOS)	$V_{CC} = MIN, I_{OL}$	Ind.			.2	V	
V _{OH}	Output High Voltage (TTL)	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CCIO} = \text{MIN, } I_{OH} = -4.0 \text{ mA}$			2.4			V

Notes: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec.

Pin Capacitance

	Тур	Max	Units	Conditions
C _{IN}	8	10	pF	V _{IN} = 0V; f = 1.0 MHz
C _{I/O}	8	10	pF	V _{OUT} = 0V; f = 1.0 MHz

Note: Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested. The OGI pin (high-voltage pin during programming) has a maximum capacitance of 12 pF.

 $^{2. \ \} When \ macrocell \ reduced-power \ feature \ is \ enabled.$

Absolute Maximum Ratings*

Temperature Under Bias -40°C to +85°C

Storage Temperature -65°C to +150°C

Voltage on Any Pin with
Respect to Ground -2.0V to +7.0V⁽¹⁾

Voltage on Input Pins
with Respect to Ground
During Programming -2.0V to +14.0V⁽¹⁾

Programming Voltage with
Respect to Ground -2.0V to +14.0V⁽¹⁾

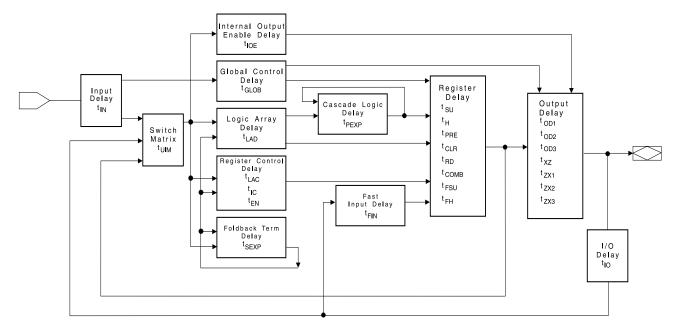
*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

Minimum voltage is -0.6V DC, which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC} + 0.75V DC, which may overshoot to 7.0V for pulses of less than 20 ns.

AC Characteristics

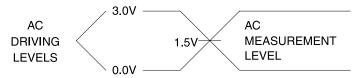

		-7	7	-	10	-1	15	-2	20	-2	25	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units
t _{PD1}	Input or Feedback to Non-registered Output		7.5		10	3	15		20		25	ns
t _{PD2}	I/O Input or Feedback to Non-registered Feedback		7		9	3	12		16		25	ns
t _{SU}	Global Clock Setup Time	6		7		11		16		20		ns
t _H	Global Clock Hold Time	0		0		0		0		0		ns
t _{FSU}	Global Clock Setup Time of Fast Input	3		3		3		3		5		ns
t _{FH}	Global Clock Hold Time of Fast Input	0.5		0.5		1.0		1.5		2		ns
t _{COP}	Global Clock to Output Delay		4.5		5		8		10		13	ns
t _{CH}	Global Clock High Time	3		4		5		6		7		ns
t _{CL}	Global Clock Low Time	3		4		5		6		7		ns
t _{ASU}	Array Clock Setup Time	3		3		4		4		5		ns
t _{AH}	Array Clock Hold Time	2		3		4		5		6		ns
t _{ACOP}	Array Clock Output Delay		7.5		10		15		20		25	ns
t _{ACH}	Array Clock High Time	3		4		6		8		10		ns
t _{ACL}	Array Clock Low Time	3		4		6		8		10		ns
t _{CNT}	Minimum Clock Global Period		8		10		13		17		22	ns
f _{CNT}	Maximum Internal Global Clock Frequency	125		100		76.9		66		50		MHz
t _{ACNT}	Minimum Array Clock Period		8		10		13		17		22	ns
f _{ACNT}	Maximum Internal Array Clock Frequency	125		100		76.9		66		50		MHz

AC Characteristics (Continued)

		-7	7		10	_	15	-2	20	-25		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units
f _{MAX}	Maximum Clock Frequency	166.7		125		100		83.3		60		MHz
t _{IN}	Input Pad and Buffer Delay		0.5		0.5		2		2		2	ns
t _{IO}	I/O Input Pad and Buffer Delay		0.5		0.5		2		2		2	ns
t _{FIN}	Fast Input Delay		1		1		2		2		2	ns
t _{SEXP}	Foldback Term Delay		4		5		8		10		12	ns
t _{PEXP}	Cascade Logic Delay		0.8		0.8		1		1		1.2	ns
t _{LAD}	Logic Array Delay		3		5		6		7		8	ns
t _{LAC}	Logic Control Delay		3		5		6		7		8	ns
t _{IOE}	Internal Output Enable Delay		2		2		3		3		4	ns
t _{OD1}	Output Buffer and Pad Delay (Slow slew rate = OFF; V _{CCIO} = 5V; C _L = 35 pF)		2		1.5		4		5		6	ns
t _{OD2}	Output Buffer and Pad Delay (Slow slew rate = OFF; V _{CCIO} = 3.3V; C _L = 35 pF)		2.5		2.0		5		6		7	ns
t _{OD3}	Output Buffer and Pad Delay (Slow slew rate = ON; $V_{CCIO} = 5V$ or 3.3V; $C_L = 35$ pF)		5		5.5		8		10		10	ns

Note: See ordering information for valid part numbers.

Timing Model



AC Characteristics (Continued)

			7	_	10		15	-2	20	-2	25	
Symbol	Parameter	Min	Max	Units								
t _{ZX1}	Output Buffer Enable Delay (Slow slew rate = OFF; V _{CCIO} = 5.0V; C _L = 35 pF)		4.0		5.0		7		9		10	ns
t _{ZX2}	Output Buffer Enable Delay (Slow slew rate = OFF; V _{CCIO} = 3.3V; C _L = 35 pF)		4.5		5.5		7		9		10	ns
t _{ZX3}	Output Buffer Enable Delay (Slow slew rate = ON; V _{CCIO} = 5.0V/3.3V; C _L = 35 pF)		9		9		10		11		12	ns
t _{XZ}	Output Buffer Disable Delay (C _L = 5 pF)		4		5		6		7		8	ns
t _{SU}	Register Setup Time	3		3		4		5		6		ns
t _H	Register Hold Time	2		3		4		5		6		ns
t _{FSU}	Register Setup Time of Fast Input	3		3		2		2		3		ns
t _{FH}	Register Hold Time of Fast Input	0.5		0.5		2		2		2.5		ns
t _{RD}	Register Delay		1		2		1		2		2	ns
t _{COMB}	Combinatorial Delay		1		2		1		2		2	ns
t _{IC}	Array Clock Delay		3		5		6		7		8	ns
$t_{\sf EN}$	Register Enable Time		3		5		6		7		8	ns
t _{GLOB}	Global Control Delay		1		1		1		1		1	ns
t _{PRE}	Register Preset Time		2		3		4		5		6	ns
t _{CLR}	Register Clear Time		2		3		4		5		6	ns
t _{UIM}	Switch Matrix Delay		1		1		2		2		2	ns
t _{RPA}	Reduced-power Adder ⁽²⁾		10		11		13		14		15	ns

Notes: 1. See ordering information for valid part numbers.

Input Test Waveforms and Measurement Levels

 t_R , $t_F = 1.5$ ns typical

^{2.} The t_{RPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{TIC} , t_{ACL} , and t_{SEXP} parameters for macrocells running in the reduced-power mode.

Output AC Test Loads

$$R1 = 464$$
 Ω OUTPUT PIN $R2 = 250$ Ω CL = 35 pF

Note: *Numbers in parenthesis refer to 3.0V operating conditions (preliminary).

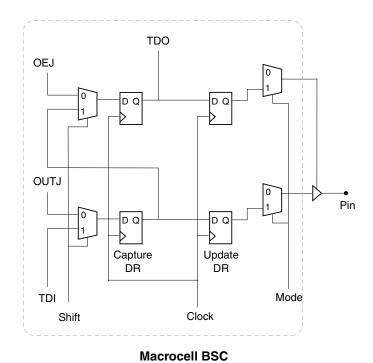
Power-down Mode

The ATF1504AS includes an optional pin-controlled power-down feature. When this mode is enabled, the PD pin acts as the power-down pin. When the PD pin is high, the device supply current is reduced to less than 10 mA. During power-down, all output data and internal logic states are latched internally and held. Therefore, all registered and combinatorial output data remain valid. Any outputs that were in a high-Z state at the onset will remain at high-Z. During power-down, all input signals except the power-down pin are blocked. Input and I/O hold latches remain active to ensure that pins do not float to indeterminate levels, further reducing system power. The power-down mode feature is enabled in the logic design file or as a fitted or translated s/w option. Designs using the power-down pin may not use the PD pin as a logic array input. However, all other PD pin macrocell resources may still be used, including the buried feedback and foldback product term array inputs.

Power Down AC Characteristics(1)(2)

			7		10	-	15	-2	20	-25		
Symbol	Parameter	Min	Max	Units								
t _{IVDH}	Valid I, I/O before PD High	7		10		15		20		25		ns
t _{GVDH}	Valid OE ⁽²⁾ before PD High	7		10		15		20		25		ns
t _{CVDH}	Valid Clock ⁽²⁾ before PD High	7		10		15		20		25		ns
t _{DHIX}	I, I/O Don't Care after PD High		12		15		25		30		35	ns
t _{DHGX}	OE ⁽²⁾ Don't Care after PD High		12		15		25		30		35	ns
t _{DHCX}	Clock ⁽²⁾ Don't Care after PD High		12		15		25		30		35	ns
t _{DLIV}	PD Low to Valid I, I/O		1		1		1		1		1	μs
t _{DLGV}	PD Low to Valid OE (Pin or Term)		1		1		1		1		1	μs
t _{DLCV}	PD Low to Valid Clock (Pin or Term)		1		1		1		1		1	μs
t _{DLOV}	PD Low to Valid Output		1		1		1		1		1	μs

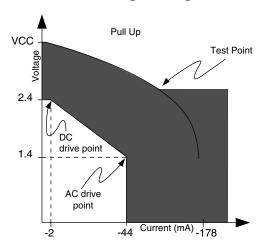
Notes: 1. For slow slew outputs, add t_{SSO} .

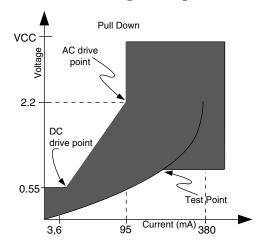

2. Pin or product term.

3. Includes t_{RPA} due to reduced power bit enabled.

BSC Configuration for Macrocell

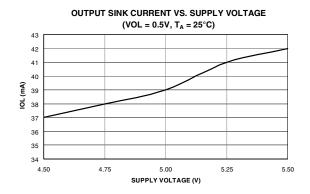
Pin BSC TDO Pin DQ Capture DR TDI Clock Shift

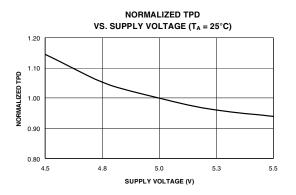


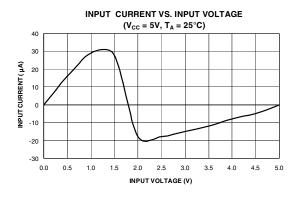

PCI Compliance

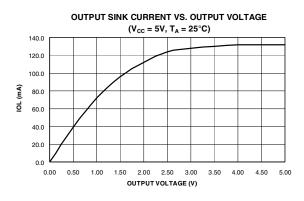
The ATF1504AS also supports the growing need in the industry to support the new Peripheral Component Interconnect (PCI) interface standard in PCI-based designs and specifications. The PCI interface calls for high current drivers, which are much larger than the traditional TTL drivers. In general, PLDs and FPGAs parallel outputs to support the high current load required by the PCI interface. The ATF1504AS allows this without contributing to system noise while delivering low output-to-output skew. Having a programmable high drive option is also possible without increasing output delay or pin capacitance. The PCI electrical characteristics appear on the next page.

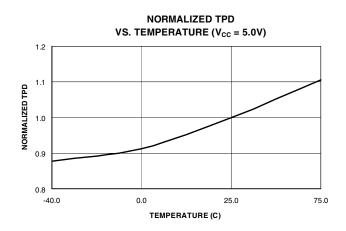
PCI Voltage-to-current Curves for +5V Signaling in Pull-up Mode

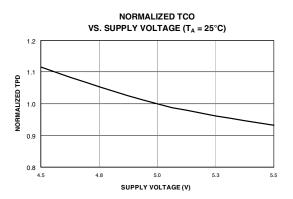

PCI Voltage-to-current Curves for +5V Signaling in Pull-down Mode

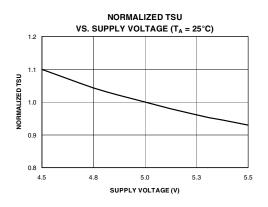


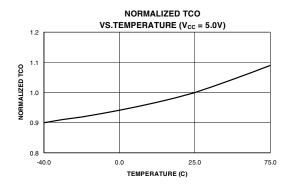

ATF1504AS I/O Pinouts

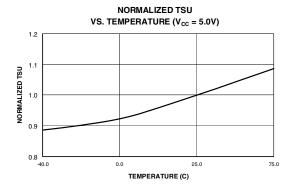

МС	PLC	44- lead PLCC	44- lead TQFP	68- lead PLCC	84- lead PLCC	100- lead PQFP	100- lead TQFP	мс	PLC	44- lead PLCC	44- lead TQFP	68- lead PLCC	84- lead PLCC	100- lead PQFP	100- lead TQFP
1	Α	12	6	18	22	16	14	33	С	24	18	36	44	42	40
2	Α	-	-	-	21	15	13	34	С	-	_	-	45	43	41
3	A/ PD1	11	5	17	20	14	12	35	C/ PD2	25	19	37	46	44	42
4	Α	9	3	15	18	12	10	36	С	26	20	39	48	46	44
5	Α	8	2	14	17	11	9	37	С	27	21	40	49	47	45
6	Α	_	_	13	16	10	8	38	С	_	_	41	50	48	46
7	Α	-	_	_	15	8	6	39	С	_	_	_	51	49	47
8/ TDI	Α	7	1	12	14	6	4	40	С	28	22	42	52	50	48
9	Α	_	_	10	12	4	100	41	С	29	23	44	54	54	52
10	Α	_	_	_	11	3	99	42	С	_	_	_	55	56	54
11	Α	6	44	9	10	100	98	43	С	_	_	45	56	58	56
12	Α	_	_	8	9	99	97	44	С	_	_	46	57	59	57
13	Α	_	_	7	8	98	96	45	С	_	_	47	58	60	58
14	Α	5	43	5	6	96	94	46	С	31	25	49	60	62	60
15	Α	_	_	_	5	95	93	47	С	_	_	_	61	63	61
16	Α	4	42	4	4	94	92	48/ TCK	С	32	26	50	62	64	62
17	В	21	15	33	41	39	37	49	D	33	27	51	63	65	63
18	В	_	_	_	40	38	36	50	D	_	_	-	64	66	64
19	В	20	14	32	39	37	35	51	D	34	28	52	65	67	65
20	В	19	13	30	37	35	33	52	D	36	30	54	67	69	67
21	В	18	12	29	36	34	32	53	D	37	31	55	68	70	68
22	В	_	_	28	35	33	31	54	D	_	_	56	69	71	69
23	В	_	_	_	34	32	30	55	D	_	_	_	70	73	71
24	В	17	11	27	33	31	29	56/ TDO	D	38	32	57	71	75	73
25	В	16	10	25	31	27	25	57	D	39	33	59	73	77	75
26	В	1	-	_	30	25	23	58	D	_	_	_	74	78	76
27	В	_	_	24	29	23	21	59	D	_	_	60	75	81	79
28	В	1	-	23	28	22	20	60	D	-	-	61	76	82	80
29	В	-	-	22	27	21	19	61	D	-	-	62	77	83	81
30	В	14	8	20	25	19	17	62	D	40	34	64	79	85	83
31	В	1	-	-	24	18	16	63	D	-	-	-	80	86	84
32/ TMS	В	13	7	19	23	17	15	64	D/ GCLK3	41	35	65	81	87	85











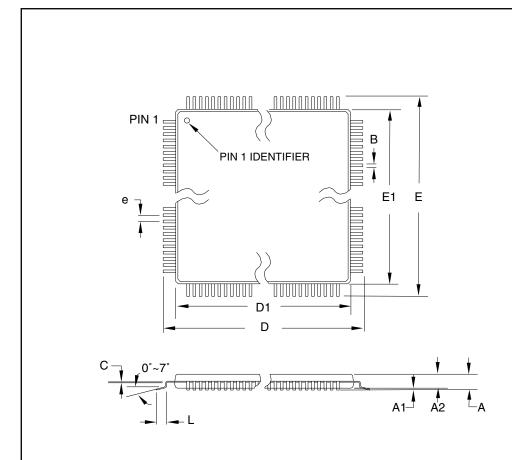
ATF1504AS Ordering Information

t _{PD}	t _{co1}	f _{MAX}			
(ns)	(ns)	(MHz)	Ordering Code	Package	Operation Range
7.5	4.5	166.7	ATF1504AS-7 AC44	44A	Commercial
			ATF1504AS-7 JC44	44J	(0°C to 70°C)
			ATF1504AS-7 JC68	68J	
			ATF1504AS-7 JC84	84J	
			ATF1504AS-7 QC100	100Q1	
			ATF1504AS-7 AC100	100A	
10	5	125	ATF1504AS-10 AC44	44A	Commercial
			ATF1504AS-10 JC44	44J	(0°C to 70°C)
			ATF1504AS-10 JC68	68J	
			ATF1504AS-10 JC84	84J	
			ATF1504AS-10 QC100	100Q1	
			ATF1504AS-10 AC100	100A	
10	5	125	ATF1504AS-10 AI44	44A	Industrial
			ATF1504AS-10 JI44	44J	(-40°C to +85°C)
			ATF1504AS-10 JI68	68J	
			ATF1504AS-10 JI84	84J	
			ATF1504AS-10 QI100	100Q1	
			ATF1504AS-10 AI100	100A	
15	8	100	ATF1504AS-15 AC44	44A	Commercial
			ATF1504AS-15 JC44	44J	(0°C to 70°C)
			ATF1504AS-15 JC68	68J	
			ATF1504AS-15 JC84	84J	
			ATF1504AS-15 QC100	100Q1	
			ATF1500AS-15 AC100	100A	
15	8	100	ATF1504AS-15 AI44	44A	Industrial
			ATF1504AS-15 JI44	44J	(-40°C to +85°C)
			ATF1504AS-15 JI68	68J	
			ATF1504AS-15 JI84	84J	
			ATF1504AS-15 QI100	100Q1	
			ATF1504AS-15 AI100	100A	

Using "C" Product for Industrial

To use commercial product for Industrial temperature ranges, down-grade one speed grade from the "I" to the "C" device (7 ns "C" = 10 ns "I") and de-rate power by 30%.

ATF1504ASL Ordering Information


t _{PD}	t _{CO1}	f _{MAX} (MHz)	Ordering Code	Package	Operation Range
(ns)	(ns)	` '			
20	12	83.3	ATF1504ASL-20 AC44	44A	Commercial
			ATF1504ASL-20 JC44	44J	(0°C to 70°C)
			ATF1504ASL-20 JC68	68J	
			ATF1504ASL-20 JC84	84J	
			ATF1504ASL-20 QC100	100Q1	
			ATF1504ASL-20 AC100	100A	
25	15	70	ATF1504ASL-25 AI44	44A	Industrial
			ATF1504ASL-25 JI84	44J	(-40°C to +85°C)
			ATF1504ASL-25 JI68	68J	
			ATF1504ASL-25 JI84	84J	
			ATF1504ASL-25 QI100	100Q1	
			ATF1504ASL-25 AI100	100A	

Using "C" Product for Industrial

To use commercial product for Industrial temperature ranges, down-grade one speed grade from the "I" to the "C" device (7 ns "C" = 10 ns "I") and de-rate power by 30%.

Packaging Information

44A - TQFP

COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE Α 1.20 _ Α1 0.05 0.15 Α2 0.95 1.00 1.05 12.25 D 11.75 12.00 10.00 10.10 D1 9.90 Note 2 Ε 11.75 12.00 12.25 E1 9.90 10.00 10.10 Note 2 _ В 0.30 0.45 С 0.09 0.20 L 0.45 0.75 0.80 TYP е

Notes:

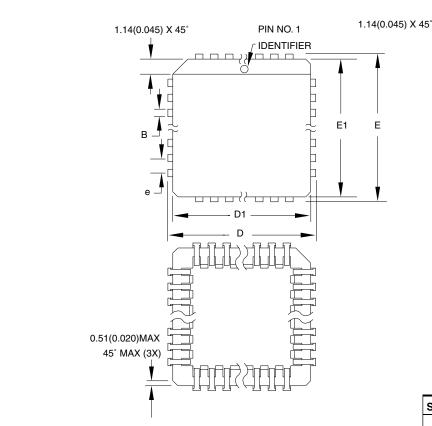
- 1. This package conforms to JEDEC reference MS-026, Variation ACB.
- 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Lead coplanarity is 0.10 mm maximum.

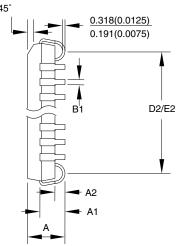
10/5/2001

4			
4	11	1 – 1	ı
_/	Ш		L
	шц		(P)

2325 Orchard Parkway San Jose, CA 95131

TITLE


44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)


DRAWING NO.	REV.
44A	В

44J - PLCC

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	4.191	_	4.572	
A1	2.286	_	3.048	
A2	0.508	_	_	
D	17.399	_	17.653	
D1	16.510	-	16.662	Note 2
Е	17.399	_	17.653	
E1	16.510	_	16.662	Note 2
D2/E2	14.986	_	16.002	
В	0.660	_	0.813	
B1	0.330	_	0.533	
е		1.270 TYF)	

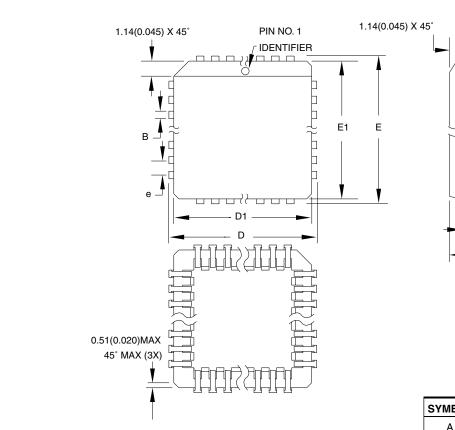
Notes:

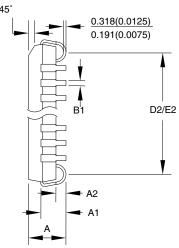
- 1. This package conforms to JEDEC reference MS-018, Variation AC.
- 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is .010"(0.254 mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line.
- 3. Lead coplanarity is 0.004" (0.102 mm) maximum.

10/04/01

2325 Orchard Parkway San Jose, CA 95131

TITLE


44J, 44-lead, Plastic J-leaded Chip Carrier (PLCC)


DRAWING NO. REV. 44J

В

84J - PLCC

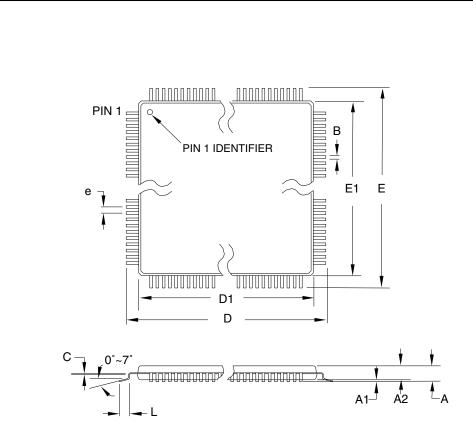
COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	4.191	_	4.572	
A1	2.286	_	3.048	
A2	0.508	_	_	
D	30.099	-	30.353	
D1	29.210	-	29.413	Note 2
E	30.099	-	30.353	
E1	29.210	_	29.413	Note 2
D2/E2	27.686	-	28.702	
В	0.660	_	0.813	
B1	0.330	-	0.533	
е	1.270 TYP			

Notes:

- 1. This package conforms to JEDEC reference MS-018, Variation AF.
- Dimensions D1 and E1 do not include mold protrusion.
 Allowable protrusion is .010"(0.254 mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line.
- 3. Lead coplanarity is 0.004" (0.102 mm) maximum.


10/04/01

4mer	2325 Orchard San Jose, CA	Parkway
AIIIEL	San Jose, CA	95131

TITLE	DRAWING NO.	REV.
84J, 84-lead, Plastic J-leaded Chip Carrier (PLCC)	84J	В

100A - TQFP

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	1.20	
A1	0.05	_	0.15	
A2	0.95	1.00	1.05	
D	15.75	16.00	16.25	
D1	13.90	14.00	14.10	Note 2
E	15.75	16.00	16.25	
E1	13.90	14.00	14.10	Note 2
В	0.17	_	0.27	
С	0.09	_	0.20	
L	0.45	_	0.75	
е		0.50 TYP		

10/5/2001

Notes:

- 1. This package conforms to JEDEC reference MS-026, Variation AED.
- 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Lead coplanarity is 0.08 mm maximum.

		TITLE
AIMEL	2325 Orchard Parkway San Jose, CA 95131	100A , 100-lead, 14
©	San Jose, CA 95131	0.5 mm Lead Pitch,

1004 100 lead 14 v 14 mm Dady Cine 1 0 mm Dady Thickness
100A , 100-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,
0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

DRAWING NO.	REV.
100A	С