E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f340s4t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 REGISTER & MEMORY MAP

As shown in Figure 5, the MCU is capable of addressing 64 Kbytes of memories and I/O registers.

The available memory locations consist of 128 bytes of register locations, up to 1 Kbytes of RAM, 256 bytes of Data EEPROM and up to 16 Kbytes

of user program memory. The RAM space includes up to 256 bytes for the stack from 0100h to 01FFh.

The highest address bytes contain the user reset and interrupt vectors.

Figure 5. Memory Map

5/

5 DATA EEPROM

5.1 INTRODUCTION

The Electrically Erasable Programmable Read Only Memory can be used as a non-volatile backup for storing data. Using the EEPROM requires a basic access protocol described in this chapter.

5.2 MAIN FEATURES

- Up to 32 Bytes programmed in the same cycle
- EEPROM mono-voltage (charge pump)
- Chained erase and programming cycles
- Internal control of the global programming cycle duration

Δ7/

- WAIT mode management
- Read-out protection

Figure 7. EEPROM Block Diagram

DATA EEPROM (Cont'd)

5.7 REGISTER DESCRIPTION

EEPROM CONTROL/STATUS REGISTER (EEC-

SR)

Read/Write Reset Value: 0000 0000 (00h)

 7
 0

 0
 0
 0
 0
 E2LAT
 E2PGM

Bits 7:2 = Reserved, forced by hardware to 0.

Bit 1 = E2LAT Latch Access Transfer

This bit is set by software. It is cleared by hardware at the end of the programming cycle. It can only be cleared by software if the E2PGM bit is cleared.

0: Read mode

1: Write mode

Bit 0 = **E2PGM** *Programming control and status*

This bit is set by software to begin the programming cycle. At the end of the programming cycle, this bit is cleared by hardware.

0: Programming finished or not yet started

1: Programming cycle is in progress

Note: if the E2PGM bit is cleared during the programming cycle, the memory data is not guaranteed

6 CENTRAL PROCESSING UNIT

6.1 INTRODUCTION

This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.

6.2 MAIN FEATURES

- Enable executing 63 basic instructions
- Fast 8-bit by 8-bit multiply
- 17 main addressing modes (with indirect addressing mode)
- Two 8-bit index registers
- 16-bit stack pointer
- Low power HALT and WAIT modes
- Priority maskable hardware interrupts
- Non-maskable software/hardware interrupts

6.3 CPU REGISTERS

The six CPU registers shown in Figure 1 are not present in the memory mapping and are accessed by specific instructions.

Accumulator (A)

The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.

Index Registers (X and Y)

These 8-bit registers are used to create effective addresses or as temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.)

The Y register is not affected by the interrupt automatic procedures.

Program Counter (PC)

The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).

Figure 11. CPU Registers

9 POWER SAVING MODES

9.1 INTRODUCTION

To give a large measure of flexibility to the application in terms of power consumption, five main power saving modes are implemented in the ST7 (see Figure 25):

- Slow
- Wait (and Slow-Wait)
- Active Halt
- Auto Wake up From Halt (AWUFH)
- Halt

After a RESET the normal operating mode is selected by default (RUN mode). This mode drives the device (CPU and embedded peripherals) by means of a master clock which is based on the main oscillator frequency divided or multiplied by 2 (f_{OSC2}).

From RUN mode, the different power saving modes may be selected by setting the relevant register bits or by calling the specific ST7 software instruction whose action depends on the oscillator status.

Figure 25. Power Saving Mode Transitions

9.2 SLOW MODE

This mode has two targets:

- To reduce power consumption by decreasing the internal clock in the device,
- To adapt the internal clock frequency (f_{CPU}) to the available supply voltage.

SLOW mode is controlled by three bits in the MCCSR register: the SMS bit which enables or disables Slow mode and two CPx bits which select the internal slow frequency (f_{CPU}).

In this mode, the master clock frequency (f_{OSC2}) can be divided by 2, 4, 8 or 16. The CPU and peripherals are clocked at this lower frequency (f_{CPU}).

Note: SLOW-WAIT mode is activated by entering WAIT mode while the device is in SLOW mode.

Figure 26. SLOW Mode Clock Transitions

I/O PORTS (Cont'd)

Table 12. I/O Port Configurations

Notes:

- 1. When the I/O port is in input configuration and the associated alternate function is enabled as an output, reading the DR register will read the alternate function output status.
- When the I/O port is in output configuration and the associated alternate function is enabled as an input, the alternate function reads the pin status given by the DR register content.

I/O PORTS (Cont'd)

57

Table 14. I/O port register map and reset values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0	
Rese of all I/O p	t Value ort registers	0	0	0	0	0	0	0	0	
0000h	PADR									
0001h	PADDR	MSB							LSB	
0002h	PAOR									
0003h	PBDR									
0004h	PBDDR	MSB							LSB	
0005h	PBOR									
0006h	PCDR	MSB								
0007h	PCDDR								LSB	
0008h	PCOR									
0009h	PDDR									
000Ah	PDDDR	MSB							LSB	
000Bh	PDOR									
000Ch	PEDR									
000Dh	PEDDR	MSB							LSB	
000Eh	PEOR									
000Fh	PFDR									
0010h	PFDDR	MSB							LSB	
0011h	PFOR									

WINDOW WATCHDOG (Cont'd)

Figure 40. Window Watchdog Timing Diagram

11.1.6 Low Power Modes

Mode	Description		
SLOW	No effect on	Watchdog: Th	e downcounter continues to decrement at normal speed.
WAIT	No effect on	Watchdog: Th	e downcounter continues to decrement.
	OIE bit in MCCSR register	WDGHALT bit in Option Byte	
HALT			No Watchdog reset is generated. The MCU enters Halt mode. The Watch- dog counter is decremented once and then stops counting and is no longer able to generate a watchdog reset until the MCU receives an external inter- rupt or a reset.
	0 0	0	If an interrupt is received (refer to interrupt table mapping to see interrupts which can occur in halt mode), the Watchdog restarts counting after 256 or 4096 CPU clocks. If a reset is generated, the Watchdog is disabled (reset state) unless Hardware Watchdog is selected by option byte. For application recommendations see Section 0.1.8 below.
	0	1	A reset is generated instead of entering halt mode.
ACTIVE HALT	1	x	No reset is generated. The MCU enters Active Halt mode. The Watchdog counter is not decremented. It stop counting. When the MCU receives an oscillator interrupt or external interrupt, the Watchdog restarts counting immediately. When the MCU receives a reset the Watchdog restarts counting after 256 or 4096 CPU clocks.

11.1.7 Hardware Watchdog Option

If Hardware Watchdog is selected by option byte, the watchdog is always active and the WDGA bit in the WDGCR is not used. Refer to the Option Byte description.

11.1.8 Using Halt Mode with the WDG (WDGHALT option)

The following recommendation applies if Halt mode is used when the watchdog is enabled.

 Before executing the HALT instruction, refresh the WDG counter, to avoid an unexpected WDG reset immediately after waking up the microcontroller.

WINDOW WATCHDOG(Cont'd)

Table 15. Watchdog Timer Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
2A	WDGCR Beset Value	WDGA 0	T6 1	T5 1	T4 1	T3 1	T2 1	T1 1	T0 1
30	WDGWR Reset Value	- 0	W6 1	W5 1	W4 1	W3 1	W2 1	W1	W0

MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK (Cont'd)

11.2.5 Low Power Modes

Mode	Description
WAIT	No effect on MCC/RTC peripheral. MCC/RTC interrupt cause the device to exit from WAIT mode.
ACTIVE- HALT	No effect on MCC/RTC counter (OIE bit is set), the registers are frozen. MCC/RTC interrupt cause the device to exit from ACTIVE-HALT mode.
HALT	MCC/RTC counter and registers are frozen. MCC/RTC operation resumes when the MCU is woken up by an interrupt with "exit from HALT" capability.

11.2.6 Interrupts

The MCC/RTC interrupt event generates an interrupt if the OIE bit of the MCCSR register is set and the interrupt mask in the CC register is not active (RIM instruction).

Interrupt Event	Event Flag	Enable Control Bit	Exit from Wait	Exit from Halt
Time base overflow event	OIF	OIE	Yes	No ¹⁾

Note:

The MCC/RTC interrupt wakes up the MCU from ACTIVE-HALT mode, not from HALT mode.

11.2.7 Register Description MCC CONTROL/STATUS REGISTER (MCCSR) Read/Write

Reset Value: 0000 0000 (00h)

	,	
1		

0

MCO	CP1	CP0	SMS	TB1	TB0	OIE	OIF

Bit 7 = **MCO** *Main clock out selection*

This bit enables the MCO alternate function on the PF0 I/O port. It is set and cleared by software.

- 0: MCO alternate function disabled (I/O pin free for general-purpose I/O)
- 1: MCO alternate function enabled (f_{CPU} on I/O port)

Note: To reduce power consumption, the MCO function is not active in ACTIVE-HALT mode.

Bits 6:5 = CP[1:0] CPU clock prescaler

These bits select the CPU clock prescaler which is applied in the different slow modes. Their action is conditioned by the setting of the SMS bit. These two bits are set and cleared by software

f _{CPU} in SLOW mode	CP1	CP0
f _{OSC2} / 2	0	0
f _{OSC2} / 4	0	1
f _{OSC2} / 8	1	0
f _{OSC2} / 16	1	1

Bit 4 = **SMS** *Slow mode select*

This bit is set and cleared by software. 0: Normal mode. $f_{CPU} = f_{OSC2}$ 1: Slow mode. f_{CPU} is given by CP1, CP0 See Section 9.2 "SLOW MODE" on page 44 and Section 11.1 "WINDOW WATCHDOG (WWDG)" on page 58 for more details.

Bits 3:2 = **TB[1:0]** *Time base control*

These bits select the programmable divider time base. They are set and cleared by software.

Counter	Time	TB1	TBO	
Prescaler	f _{OSC2} =4MHz	f _{OSC2} =8MHz	101	150
16000	4ms	2ms	0	0
32000	8ms	4ms	0	1
80000	20ms	10ms	1	0
200000	50ms	25ms	1	1

A modification of the time base is taken into account at the end of the current period (previously set) to avoid an unwanted time shift. This allows to use this time base as a real time clock.

Bit 1 = **OIE** Oscillator interrupt enable

This bit set and cleared by software.

0: Oscillator interrupt disabled

1: Oscillator interrupt enabled

This interrupt can be used to exit from ACTIVE-HALT mode.

When this bit is set, calling the ST7 software HALT instruction enters the ACTIVE-HALT power saving mode.

SERIAL PERIPHERAL INTERFACE (Cont'd)

11.4.3.2 Slave Select Management

As an alternative to using the \overline{SS} pin to control the Slave Select signal, the application can choose to manage the Slave Select signal by software. This is configured by the SSM bit in the SPICSR register (see Figure 4).

In software management, the external \overline{SS} pin is free for other application uses and the internal \overline{SS} signal level is driven by writing to the SSI bit in the SPICSR register.

In Master mode:

- SS internal must be held high continuously

In Slave Mode:

There are two cases depending on the data/clock timing relationship (see Figure 3):

- If CPHA = 1 (data latched on second clock edge):
 - $-\overline{SS}$ internal must be held low during the entire transmission. This implies that in single slave applications the SS pin either can be tied to V_{SS}, or made free for standard I/O by managing the SS function by software (SSM = 1 and SSI = 0 in the in the SPICSR register)

If CPHA = 0 (data latched on first clock edge):

 $-\overline{SS}$ internal must be held low during byte transmission and pulled high between each byte to allow the slave to write to the shift register. If SS is not pulled high, a Write Collision error will occur when the slave writes to the shift register (see Section 0.1.5.3).

Figure 56. Hardware/Software Slave Select Management

I²C BUS INTERFACE (Cont'd)

11.6.5 Low Power Modes

Mode	Description
WAIT	No effect on I^2C interface. I^2C interrupts cause the device to exit from WAIT mode.
HALT	I ² C registers are frozen. In HALT mode, the I ² C interface is inactive and does not acknowledge data on the bus. The I ² C interface resumes operation when the MCU is woken up by an interrupt with "exit from HALT mode" capability.

11.6.6 Interrupts

57/

Figure 67. Event Flags and Interrupt Generation

Interrupt Event	Event Flag	Enable Control Bit	Exit from Wait	Exit from Halt
10-bit Address Sent Event (Master mode)	ADD10		Yes	No
End of Byte Transfer Event	BTF		Yes	No
Address Matched Event (Slave mode)	ADSL		Yes	No
Start Bit Generation Event (Master mode)	SB		Yes	No
Acknowledge Failure Event	AF		Yes	No
Stop Detection Event (Slave mode)	STOPF		Yes	No
Arbitration Lost Event (Multimaster configuration)	ARLO		Yes	No
Bus Error Event	BERR		Yes	No

Note: The l^2C interrupt events are connected to the same interrupt vector (see Interrupts chapter). They generate an interrupt if the corresponding Enable Control Bit is set and the I-bit in the CC register is reset (RIM instruction).

I²C BUS INTERFACE (Cont'd)

57

Table 24. I²C Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0058h	I2CCR Reset Value	0	0	PE 0	ENGC 0	START 0	ACK 0	STOP 0	ITE 0
0059h	I2CSR1 Reset Value	EVF 0	ADD10 0	TRA 0	BUSY 0	BTF 0	ADSL 0	M/SL 0	SB 0
005Ah	I2CSR2 Reset Value	0	0	0	AF 0	STOPF 0	ARLO 0	BERR 0	GCAL 0
005Bh	I2CCCR Reset Value	FM/SM 0	CC6 0	CC5 0	CC4 0	CC3 0	CC2 0	CC1 0	CC0 0
005Ch	I2COAR1 Reset Value	ADD7 0	ADD6 0	ADD5 0	ADD4 0	ADD3 0	ADD2 0	ADD1 0	ADD0 0
005Dh	I2COAR2 Reset Value	FR1 0	FR0 1	0	0	0	ADD9 0	ADD8 0	0
005Eh	I2CDR Reset Value	MSB 0	0	0	0	0	0	0	LSB 0

I²C3S INTERFACE (Cont'd)

11.7.5.4 Rollover Handling

The RAM buffer of each slave is divided into pages whose length is defined according to PL1:0 bits in I2C3SCR1. Rollover takes place in these pages as described below.

In the case of Page Write, if the number of data bytes transmitted is more than the page length, the current address will roll over to the first byte of the current page and the previous data will be overwritten. This page size is configured using PL[1:0] bit in the I2C3SCR1 register.

In case of Sequential Read, if the current address register value reaches the memory address limit the address will roll over to the first address of the reserved area for the respective slave.

There is no status flag to indicate the roll over.

Note:

The reserved areas for slaves 1 and 2 have a limit of 256 bytes. The area for slave 3 is 128 bytes. The MSB of the address is hardwired, the addressing master therefore needs to send only an 8 bit address. The page boundaries are defined based on page size configuration using PL[1:0] bit in the I2C3SCR1 register. If an 8-byte page size is selected, the upper 5 bits of the RAM address are fixed and the lower 3 bits are incremented. For example, if the page write starts at register address 0x0C, the write will follow the sequence 0x0C, 0x0D, 0x0E, 0x0F, 0x08, 0x09, 0x0A, 0x0B. If a 16-byte page size is selected, the upper 4 bits of the RAM address are fixed and the lower 4 bits are incremented. For example if the page write starts at register address 0x0C, the write will follow the sequence 0x0C, 0x0D, 0x0E, 0x0F, 0x0B, 0x09, 0x0A, 0x0B.

11.7.5.5 Error Conditions

- BERR: Detection of a Stop or a Start condition during a byte transfer. In this case, the BERR bit is set by hardware with an interrupt if ITER is set. During a stop condition, the interface discards the data, releases the lines and waits for another Start condition. However, a BERR on a Start condition will result in the interface discarding the data and waiting for the next slave address on the bus.
- NACK: Detection of a non-acknowledge bit not followed by a Stop condition. In this case, NACK bit is set by hardware with an interrupt if ITER is set.

Figure 72. Transfer Sequencing

Legend: S=Start, P=Stop, A=Acknowledge, NA=Non-acknowledge,

WF = WF event, WFx bit is set (with interrupt if ITWEx=1, after Stop or Restart conditions), cleared by reading the I2C3SSR register while no communication is ongoing.

RF = RF event, RFx is set (with interrupt if ITREx=1, after Stop or Restart conditions), cleared by reading the I2C3SSR register while no communication is ongoing.

BusyW = BusyW flag in the I2C3CR2 register set, cleared by software writing 0.

Note: The I2C3S supports a repeated start (S_r) in place of a stop condition (P).

0.1.4I²C3S INTERFACE (Cont'd)

11.7.6 Low Power Modes

Mode	Description
WAIT	No effect on I ² C interface. I2C interrupts causes the device to exit from WAIT mode.
HALT	I ² C registers are frozen. In HALT mode, the I ² C interface is inactive and does not acknowledge data on the bus. The I ² C interface resumes operation when the MCU is woken up by an interrupt with "exit from HALT mode" capability.
ACTIVE HALT	I ² C registers are frozen. In ACTIVE HALT mode, the I ² C interface is inactive and does not acknowledge data on the bus. The I ² C interface resumes operation when the MCU is woken up by an interrupt with "exit from ACTIVE HALT mode" capability.

11.7.7 Interrupt Generation

Figure 80. Event Flags and Interrupt Generation

10-BIT A/D CONVERTER (Cont'd)

57

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0070h	ADCCSR Reset Value	EOC 0	SPEED 0	ADON 0	0	CH3 0	CH2 0	CH1 0	CH0 0
0071h	ADCDRH Reset Value	D9 0	D8 0	D7 0	D6 0	D5 0	D4 0	D3 0	D2 0
0072h	ADCDRL Reset Value	0	0	0	0	0	0	D1 0	D0 0

Table 26. ADC Register Map and Reset Values

Mnemo	Description	Function/Example	Dst	Src	Н	Ι	Ν	Z	С
JRULE	Jump if $(C + Z = 1)$	Unsigned <=							
LD	Load	dst <= src	reg, M	M, reg			Ν	Ζ	
MUL	Multiply	X,A = X * A	A, X, Y	X, Y, A	0				0
NEG	Negate (2's compl)	neg \$10	reg, M				Ν	Ζ	С
NOP	No Operation								
OR	OR operation	A = A + M	А	М			Ν	Ζ	
POP	Pop from the Stack	pop reg	reg	М					
		pop CC	СС	М	Н	Ι	Ν	Z	С
PUSH	Push onto the Stack	push Y	М	reg, CC					
RCF	Reset carry flag	C = 0							0
RET	Subroutine Return								
RIM	Enable Interrupts	I = 0				0			
RLC	Rotate left true C	C <= Dst <= C	reg, M				Ν	Z	С
RRC	Rotate right true C	C => Dst => C	reg, M				Ν	Ζ	С
RSP	Reset Stack Pointer	S = Max allowed							
SBC	Subtract with Carry	A = A - M - C	А	М			Ν	Ζ	С
SCF	Set carry flag	C = 1							1
SIM	Disable Interrupts	l = 1				1			
SLA	Shift left Arithmetic	C <= Dst <= 0	reg, M				Ν	Ζ	С
SLL	Shift left Logic	C <= Dst <= 0	reg, M				Ν	Ζ	С
SRL	Shift right Logic	0 => Dst => C	reg, M				0	Ζ	С
SRA	Shift right Arithmetic	Dst7 => Dst => C	reg, M				Ν	Ζ	С
SUB	Subtraction	A = A - M	А	М			Ν	Ζ	С
SWAP	SWAP nibbles	Dst[74] <=> Dst[30]	reg, M				Ν	Ζ	
TNZ	Test for Neg & Zero	tnz lbl1					Ν	Ζ	
TRAP	S/W trap	S/W interrupt				1			
WFI	Wait for Interrupt					0			
XOR	Exclusive OR	A = A XOR M	А	М			Ν	Ζ	

INSTRUCTION GROUPS (Cont'd)

57

13.2 ABSOLUTE MAXIMUM RATINGS

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these condi-

13.2.1 Voltage Characteristics

tions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit	
V _{DD} - V _{SS}	V _{DD} - V _{SS} Supply voltage		V	
V _{IN}	Input voltage on any pin ^{1) & 2)}	$V_{\rm SS}\mbox{-}0.3$ to $V_{\rm DD}\mbox{+}0.3$	v	
V _{ESD} (HBM)	Electrostatic discharge voltage (Human Body Model)	I) see Section 13.9.3 on page 1		

13.2.2 Current Characteristics

Symbol	Ratings	Maximum value	Unit
I _{VDD}	Total current into V _{DD} power lines (source) 3)	75	
I _{VSS}	Total current out of V_{SS} ground lines (sink) ³⁾	150	
	Output current sunk by any standard I/O and control pin	20	
I _{IO}	Output current sunk by any high sink I/O pin	40	
	Output current source by any I/Os and control pin	- 25	
	Injected current on ISPSEL pin	± 5	mA
	Injected current on RESET pin	± 5	
I _{INJ(PIN)} ^{2) & 4)}	Injected current on OSC1 and OSC2 pins	± 5	
	Injected current on PB0 pin ⁵⁾	+5	
	Injected current on any other pin 6)	± 5	
$\Sigma I_{\rm INJ(PIN)}^{2)}$	Total injected current (sum of all I/O and control pins) ⁶⁾	± 20	

13.2.3 Thermal Characteristics

Symbol	Ratings	Value	Unit	
T _{STG}	Storage temperature range	-65 to +150	°C	
Т _Ј	Maximum junction temperature (see Table on page 180)			

Notes:

1. Directly connecting the RESET and I/O pins to V_{DD} or V_{SS} could damage the device if an unintentional internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: 4.7k Ω for RESET, 10k Ω for I/Os). Unused I/O pins must be tied in the same way to V_{DD} or V_{SS} according to their reset configuration. **2.** I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by $V_{IN} < V_{SS}$. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected

3. All power (V_{DD}) and ground (V_{SS}) lines must always be connected to the external supply.

4. Negative injection disturbs the analog performance of the device. In particular, it induces leakage currents throughout the device including the analog inputs. To avoid undesirable effects on the analog functions, care must be taken:

- Analog input pins must have a negative injection less than 0.8 mA (assuming that the impedance of the analog voltage is lower than the specified limits)

- Pure digital pins must have a negative injection less than 1.6mA. In addition, it is recommended to inject the current as far as possible from the analog input pins.

5. No negative current injection allowed on PB0 pin.

6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterisation with $\Sigma I_{INJ(PIN)}$ maximum current injection on four I/O port pins of the device.

13.4 PLL CHARACTERISTICS

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{PLLIN}	PLL Input frequency ²	V _{DD} = 2.7 to 3.65V PLL option x4 selected	0.95	1	1.05		
		V _{DD} = 3.3 to 5.5V PLL option x8 selected	0.90	1	1.10	IVITIZ	
V	PLL operating range	PLL option x4 selected ¹⁾	2.7		3.65	V	
VDD(PLL)	FLL operating range	PLL option x8 selected	3.3		5.5	v	
t _{w(JIT)}	PLL jitter period	f _{RC} = 1MHz		8		kHz	
JIT _{PLL}	PLL iittor (Af /f)	VDD = 3.0V		3.0		0/	
		VDD = 5.0V		1.6		- 70	
I _{DD(PLL)}	PLL current consumption	T _A =25°C		600		μA	

Note:

1. To obtain a x4 multiplication ratio in the range 3.3 to 5.5V, the DIV2EN option bit must enabled.

2. Guaranteed by design.

13.4.1 Internal RC Oscillator and PLL

The ST7 internal clock can be supplied by an internal RC oscillator and PLL (selectable by option byte).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DD(RC)}	Internal RC Oscillator operating voltage	Refer to operating range	2.7		5.5	
V _{DD(x4PLL)}	x4 PLL operating voltage	of V _{DD} with T _{A,} Section 13.3.1 on page 154	2.7		5.5	V
V _{DD(x8PLL)}	x8 PLL operating voltage		3.3		5.5	
t _{STARTUP}	PLL Startup time			60		PLL input clock (f _{PLL}) cycles

13.5 INTERNAL RC OSCILLATOR CHARACTERISTICS

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{RC}	Internal RC oscillator fre-	RCCR = FF (reset value), T _A =25°C,V _{DD} =5V		625		┟ 니 ㅋ
	quency ¹⁾	RCCR = RCCR0 ^{2)} ,T _A =25°C,V _{DD} =5V		1000		KI IZ
		T _A =25°C,V _{DD} =5V	-1		+1	%
	Accuracy of Internal RC oscillator with RCCR=RCCR0 ²⁾	T _A =25°C, V _{DD} =4.5 to 5.5V ³⁾	-1		+1	%
ACC _{RC}		T _A =25 to +85°C,V _{DD} =5V ³⁾	-3		+3	%
		T _A =25 to +85°C,V _{DD} =4.5 to 5.5V ³⁾	-3.5		+3.5	%
		T _A =-40 to +25°C,V _{DD} =4.5 to 5.5V ³⁾	-3		+7	%
I _{DD(RC)}	RC oscillator current con- sumption	T _A =25°C,V _{DD} =5V		600 ³⁾		μA
t _{su(RC)}	RC oscillator setup time	T _A =25°C,V _{DD} =5V			10 ²⁾	μS

Notes:

1. If the RC oscillator clock is selected, to improve clock stability and frequency accuracy, it is recommended to place a decoupling capacitor, typically 100nF, between the V_{DD} and V_{SS} pins as close as possible to the ST7 device. 2. See "Internal RC Oscillator" on page 30

3. Expected results. Data based on characterization, not tested in production

PACKAGE CHARACTERISTICS (Cont'd)

<u>ل</u>حک

Figure 119. 48-Pin Low profile Quad Flat Package

