


Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MIPS32
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	200MHz
Co-Processors/DSP	-
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	416-BGA
Supplier Device Package	416-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/79rc32k438-200bb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signal	Туре	Name/Description
DDRVREF	I	DDR Voltage Reference. SSTL_2 DDR voltage reference generated by an external source.
DDRWEN	0	DDR Write Enable. DDR write enable is asserted during DDR write transactions.
PCI Bus		·
PCIAD[31:0]	I/O	PCI Multiplexed Address/Data Bus . Address is driven by a bus master during initial PCIFRAMEN assertion. Data is then driven by the bus master during writes or by the bus target during reads.
PCICBEN[3:0]	I/O	PCI Multiplexed Command/Byte Enable Bus . PCI command is driven by the bus master during the initial PCIFRAMEN assertion. Byte enable signals are driven by the bus master during subsequent data phase(s).
PCICLK	I	PCI Clock. Clock used for all PCI bus transactions.
PCIDEVSELN	I/O	PCI Device Select . This signal is driven by a bus target to indicate that the target has decoded the address as one of its own address spaces.
PCIFRAMEN	I/O	PCI Frame . Driven by a bus master. Assertion indicates the beginning of a bus transaction. Negation indicates the last data.
PCIGNTN[3:0]	1/0	PCI Bus Grant. In PCI host mode with internal arbiter: The assertion of these signals indicates to the agent that the internal RC32438 arbiter has granted the agent access to the PCI bus. In PCI host mode with external arbiter: PCIGNTN[0]: asserted by an external arbiter to indicate to the RC32438 that access to the PCI bus has been granted. PCIGNTN[3:1]: unused and driven high. In PCI satellite mode: PCIGNTN[0]: This signal is asserted by an external arbiter to indicate to the RC32438 that access to the PCI bus has been granted. PCIGNTN[0]: This signal is asserted by an external arbiter to indicate to the RC32438 that access to the PCI bus has been granted. PCIGNTN[1]: this signal takes on the alternate function of PCIEECS and is used as a PCI Serial EEPROM chip select PCIGNTN[3:2]: unused and driven high. Note: When the GPIO register is programmed in the alternate function mode for bits GPIO [26] and [28], these bits become PCIGNTN [4] and [5] respectively.
PCIIRDYN	I/O	PCI Initiator Ready . Driven by the bus master to indicate that the current datum can complete.
PCILOCKN	I/O	PCI Lock . This signal is asserted by an external bus master to indicate that an exclusive operation is occurring.
PCIPAR	I/O	PCI Parity . Even parity of the PCIAD[31:0] bus. Driven by the bus master during address and write Data phases. Driven by the bus target during the read data phase.
PCIPERRN	I/O	PCI Parity Error . If a parity error is detected, this signal is asserted by the receiving bus agent 2 clocks after the data is received.

Table 1 Pin Description (Part 3 of 9)

Signal	Туре	Name/Description
GPIO[6]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U0RTSN Alternate function: UART channel 0 request to send output.
GPIO[7]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U0CTSN Alternate function: UART channel 0 clear to send input.
GPIO[8]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U1SOUT Alternate function: UART channel 1 serial output.
GPI0[9]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U1SINP Alternate function: UART channel 1 serial input.
GPIO[10]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U1DTRN Alternate function: UART channel 1 data terminal ready output.
GPIO[11]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U1DSRN Alternate function: UART channel 1 data set ready input.
GPIO[12]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U1RTSN Alternate function: UART channel 1 request to send output.
GPIO[13]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U1CTSN Alternate function: UART channel 1 clear to send input.
GPIO[14]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: DMAREQN0 Alternate function: External DMA channel 0 request input.
GPIO[15]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: DMAREQN1 Alternate function: External DMA channel 1 request input.
GPIO[16]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: DMADONEN0 Alternate function: External DMA channel 0 done input.
GPIO[17]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: DMADONEN1 Alternate function: External DMA channel 1 done input.

Table 1 Pin Description (Part 5 of 9)

Signal	Туре	Name/Description
JTAG_TRST_N	I	JTAG Reset. This active low signal asynchronously resets the boundary scan logic, JTAG TAP Controller, and the EJTAG Debug TAP Controller. An external pull-up on the board is recommended to meet the JTAG specification in cases where the tester can access this signal. However, for systems running in func- tional mode, one of the following should occur: 1) actively drive this signal low with control logic 2) statically drive this signal low with an external pull-down on the board 3) clock JTAG_TCK while holding EJTAG_TMS and/or JTAG_TMS high.
Debug		
CPU	0	CPU Transaction. This signal is asserted during all CPU instruction fetches and data transfers to/from the DDR and devices on the memory and peripheral bus. The signal is negated during PCI and DMA transactions to/from the DDR and devices on the memory and peripheral bus.
INST	0	Instruction or Data. This signal is driven high during CPU instruction fetches on the memory and peripheral bus memory or DDR bus.

Table 1 Pin Description (Part 9 of 9)

Pin Characteristics

Note: Some input pads of the RC32438 do not contain internal pull-ups or pull-downs. Unused inputs should be tied off to appropriate levels. This is especially critical for unused control signal inputs (such as BRN) which, if left floating, could adversely affect the RC32438's operation. Also, any input pin left floating can cause a slight increase in power consumption.

Function	Pin Name	Туре	Buffer	l/O Type	Internal Resistor	Notes ¹
Memory and	BDIRN	0	LVTTL	High Drive		
Peripheral Bus	BGN	0	LVTTL	Low Drive		
	BOEN	0	LVTTL	High Drive		
	BRN	I	LVTTL	STI ²	pull-up	
	BWEN[1:0]	0	LVTTL	High Drive		
	CSN[5:0]	0	LVTTL	High Drive		
	MADDR[21:0]	0	LVTTL	High Drive		
	MDATA[15:0]	I/O	LVTTL	High Drive		
	OEN	0	LVTTL	High Drive		
	RWN	0	LVTTL	High Drive		
	WAITACKN	I	LVTTL	STI	pull-up	

 Table 2 Pin Characteristics (Part 1 of 4)

Function	Pin Name	Туре	Buffer	I/О Туре	Internal Resistor	Notes ¹
Serial Interface	erface SCK I/O LV		LVTTL	Low Drive	pull-up	pull-up on board
	SDI	I/O	LVTTL	Low Drive	pull-up	pull-up on board
	SDO	I/O	LVTTL	Low Drive	pull-up	pull-up on board
I ² C-Bus Interface	SCL	I/O	LVTTL	Low Drive/STI		pull-up on board ⁵
	SDA	I/O	LVTTL	Low Drive/STI		pull-up on board ⁵
Ethernet Interfaces	MIIOCL	I	LVTTL	STI	pull-down	
	MIIOCRS	I	LVTTL	STI	pull-down	
	MIIORXCLK	I	LVTTL	STI	pull-up	
	MII0RXD[3:0]	I	LVTTL	STI	pull-up	
	MII0RXDV	I	LVTTL	STI	pull-down	
	MIIORXER	I	LVTTL	STI	pull-down	
	MII0TXCLK	I	LVTTL	STI	pull-up	
	MII0TXD[3:0]	0	LVTTL	Low Drive		
	MII0TXENP	0	LVTTL	Low Drive		
	MII0TXER	0	LVTTL	Low Drive		
	MII1CL	I	LVTTL	STI	pull-down	
	MII1CRS	I	LVTTL	STI	pull-down	
	MII1RXCLK	I	LVTTL	STI	pull-up	
	MII1RXD[3:0]	I	LVTTL	STI	pull-up	
	MII1RXDV	I	LVTTL	STI	pull-down	
	MII1RXER	I	LVTTL	STI	pull-down	
	MII1TXCLK	I	LVTTL	STI	pull-up	
	MII1TXD[3:0]	0	LVTTL	Low Drive		
	MII1TXENP	0	LVTTL	Low Drive		
	MII1TXER	0	LVTTL	Low Drive		
	MIIMDC	0	LVTTL	Low Drive		
	MIIMDIO	I/O	LVTTL	Low Drive	pull-up	
EJTAG / ICE	JTAG_TRST_N	I	LVTTL	STI	pull-up	
	JTAG_TCK	I	LVTTL	STI	pull-up	
	JTAG_TDI	I	LVTTL	STI	pull-up	
	JTAG_TDO	0	LVTTL	Low Drive		
	JTAG_TMS	I	LVTTL	STI	pull-up	
	EJTAG_TMS	I	LVTTL	STI	pull-up	
Debug	CPU	0	LVTTL	Low Drive		
	INST	0	LVTTL	Low Drive		

Table 2 Pin Characteristics (Part 3 of 4)

Function	Pin Name	Туре	Buffer	I/O Type	Internal Resistor	Notes ¹
Miscellaneous	CLK	l	LVTTL	STI		
	EXTCLK	0	LVTTL	High Drive		
	COLDRSTN	I	LVTTL	STI		
	RSTN	I/O	LVTTL	Low Drive / STI	pull-up	pull-up on board

Table 2 Pin Characteristics (Part 4 of 4)

^{1.} External pull-up required in most system applications. Some applications may require additional pull-ups not identified in this table.

- ^{2.} Schmidt Trigger Input (STI).
- ^{3.} The PCI pins have internal pull-ups but they are too weak to guarantee system validity. Therefore, board pull-ups are mandatory where indicated. GPIO alternate function pins for PCI must also have board pull-ups.
- ^{4.} PCIMUINTN is an alternate function of GPIO[30]. When configured as an alternate function, this pin is tri-stated when not asserted (i.e., it acts as an open collector output).
- ^{5.} Use a 2.2K pull-up resistor for I2C pins.

Boot Configuration Vector

The boot configuration vector is read by the RC32438 during a cold reset. The vector defines essential RC32438 parameters that are required once the cold reset completes.

The encoding of the boot configuration vector is described in Table 3, and the vector input is illustrated in Figure 4. The value of the boot configuration vector read in by the RC32438 during a cold reset may be determined by reading the Boot Configuration Vector (BCV) Register.

Signal	Name/Description
MDATA[3:0]	CPU Pipeline Clock Multiplier. This field specifies the value by which the PLL multiplies the master clock input (CLK) to obtain the processor clock frequency (PCLK). For master clock input frequency constraints, refer to Table 3.1 in the RC32438 User Manual. 0x0 - PLL Bypass 0x1 - Multiply by 3 0x2 - Multiply by 4 0x3 - Multiply by 8 0x5 - reserved 0x6 - reserved 0x7 - reserved 0x8 - reserved 0x8 - reserved 0x7 - reserved
MDATA[5:4]	External Clock Divider. This field specifies the value by which the IPBus clock (ICLK), which is always 1/2 PCLK, is divided in order to generate the external clock output on the EXTCLK pin. 0x0 - Divide by 1 0x1 - Divide by 2 0x2 - Divide by 4 0x3 - reserved
MDATA[6]	Endian. This bit specifies the endianness. 0x0 - little endian 0x1 - big endian

Table 3 Boot Configuration Encoding (Part 1 of 2)

Logic Diagram — RC32438

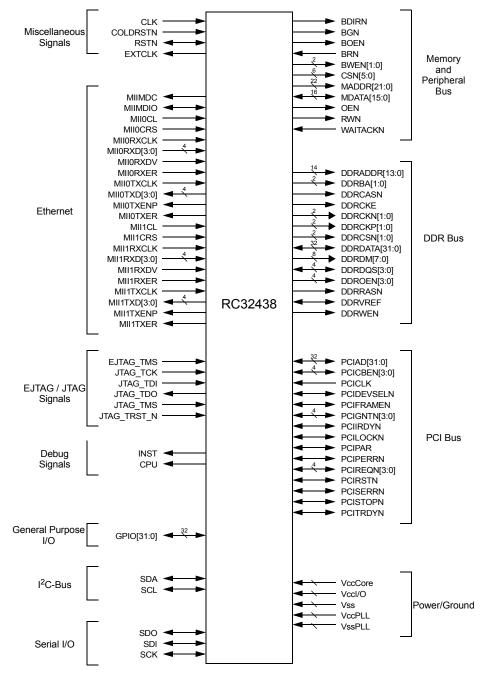


Figure 1 Logic Diagram

AC Timing Characteristics

Values given below are based on systems running at recommended operating temperatures and supply voltages, shown in Tables 15 and 16.

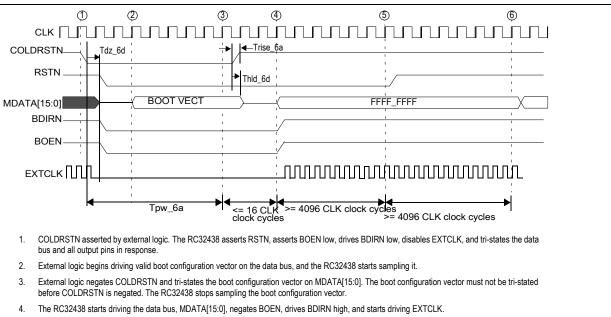

O and	Complete L	Reference	200MHz		233MHz		266	266MHz		MHz		0	Timing
Signal	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
Reset													•
COLDRSTN ¹	Tpw_6a ²	none	OSC + 0.5	—	OSC + 0.5	_	OSC + 0.5	—	OSC + 0.5	_	ms	Cold reset	See Figures 4 and 5.
	Trise_6a	none	—	5.0	-	5.0	—	5.0	—	5.0	ns	Cold reset	
RSTN ³ (input)	Tpw_6b ²	none	2(CLK)	_	2(CLK)	—	2(CLK)	_	2(CLK)	—	ns	Warm reset	
RSTN ³ (output)	Tdo_6c	COLDRSTN falling	_	15.0	_	15.0	—	15.0	—	15.0	ns	Cold reset	•
MDATA[15:0] (boot vector)	Thld_6d	COLDRSTN rising	3.0	_	3.0	—	3.0	_	3.0	_	ns	Cold reset	•
	Tdz_6d ²	COLDRSTN falling	—	30.0	—	30.0	—	30.0	—	30.0	ns	Cold reset	•
	Tdz_6d ²	RSTN falling	_	5(CLK)	-	5(CLK)	_	5(CLK)	_	5(CLK)	ns	Warm reset	
	Tzd_6d ²	RSTN rising	2(CLK)	_	2(CLK)	—	2(CLK)	_	2(CLK)	—	ns	Warm reset	

Table 6 Reset and System AC Timing Characteristics

 $^{1.}$ The COLDRSTN minimum pulse width is the oscillator stabilization time (OSC) plus 0.5 ms with V_{cc} stable.

^{2.} The values for this symbol were determined by calculation, not by testing.

^{3.} RSTN is a bidirectional signal. It is treated as an asynchronous input.

- 5. RSTN negated by the RC32438.
- 6. CPU begins executing by taking MIPS reset exception, and the RC32438 starts sampling RSTN as a warm reset input.

Figure 4 Cold Reset AC Timing Waveform

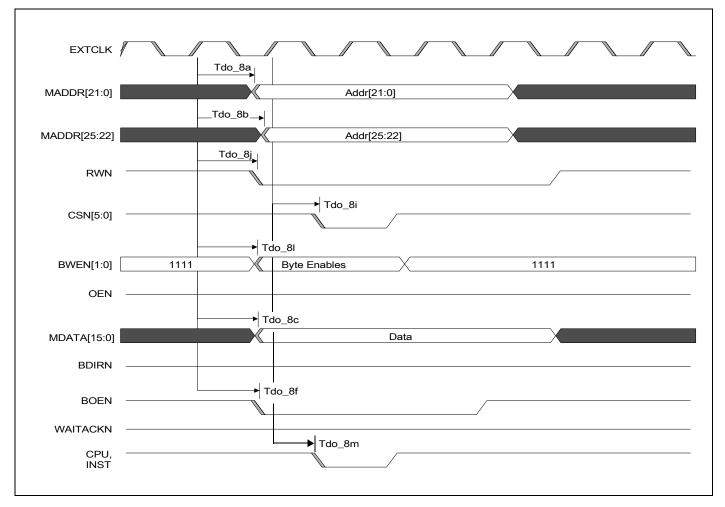


Figure 9 Memory and Peripheral Bus AC Timing Waveform — Write Access

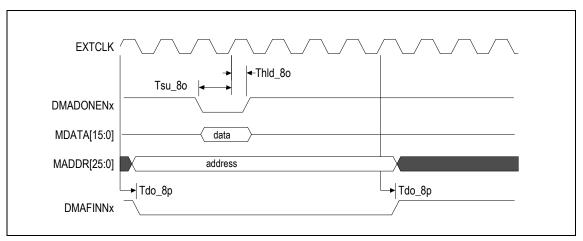


Figure 10 DMADONEN and DMAFINN AC Timing Waveform

		Reference	200	MHz	233	MHz	266	MHz	300	MHz			Timing
Signal Sym	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Unit Conditions	Diagram Reference
PCI ¹		1			11		1					1	I
PCICLK ²	Tper_10a	none	15.0	30.0	15.0	30.0	15.0	30.0	15.0	30.0	ns	66 MHz PCI	See Figure 13.
	Thigh_10a, Tlow_10a		6.0	_	6.0	_	6.0		6.0	_	ns		
	Tslew_10a		1.5	4.0	1.5	4.0	1.5	4.0	1.5	4.0	V/ns		
PCIAD[31:0],	Tsu_10b	PCICLK rising	3.0	_	3.0	_	3.0		3.0	_	ns		
PCIBEN[3:0], PCIDEVSELN,	Thld_10b		0	—	0	—	0		0	_	ns		See Figure 13
PCIFRAMEN,PCIIR-	Tdo_10b		2.0	6.0	2.0	6.0	2.0	6.0	2.0	6.0	ns		(cont.)
DYN, PCILOCKN, PCIPAR, PCI-	Tdz_10b ³		—	14.0	—	14.0	_	14.0	-	14.0	ns		
PERRN, PCIS- TOPN, PCITRDY	Tzd_10b ³		2.0	_	2.0	_	2.0		2.0	_	ns		
PCIGNTN[3:0],	Tsu_10c	PCICLK rising	5.0	_	5.0	_	5.0	_	5.0	_	ns		
PCIREQN[3:0]	Thld_10c		0	_	0	_	0	_	0	—	ns		
	Tdo_10c		2.0	6.0	2.0	6.0	2.0	6.0	2.0	6.0	ns		
PCIRSTN (output) ⁴	Tpw_10d ³	None	4000 (CLK)	_	4000 (CLK)	_	4000 (CLK)	-	4000 (CLK)	-	ns		See Figures 15 and 16
PCIRSTN (input) ^{4,5}	Tpw_10e ³	None	2(CLK)	—	2(CLK)	—	2(CLK)		2(CLK)	_	ns		
	Tdz_10e ³	PCIRSTN falling	6(CLK)	_	6(CLK)	_	6(CLK)		6(CLK)	_	ns		
PCISERRN ⁶	Tsu_10f	PCICLK rising	3.0	_	3.0	_	3.0		3.0	_	ns		See Figure 13
	Thld_10f	1	0	_	0	_	0	_	0	_	ns		
	Tdo_10f		2.0	6.0	2.0	6.0	2.0	6.0	2.0	6.0	ns		
PCIMUINTN ⁶	Tdo_10g	PCICLK rising	4.7	11.1	4.7	11.1	4.7	11.1	4.7	11.1	ns		

Table 10 PCI AC Timing Characteristics

^{1.} This PCI interface conforms to the PCI Local Bus Specification, Rev 2.2.

^{2.} PCICLK must be equal to or less than two times ICLK (PCICLK <= 2(ICLK)) with a maximum PCICLK of 66MHz.

 $^{3.}$ The values for this symbol were determined by calculation, not by testing.

 $^{\rm 4.}\,\rm PCIRSTN$ is an output in host mode and an input in satellite mode.

^{5.} To meet the PCI delay specification from reset asserted to outputs floating, the PCI reset should be logically combined with the COLDRSTN input, instead of input on PCIRSTN.

^{6.} PCISERRN and PCIMUINTN use open collector I/O types.

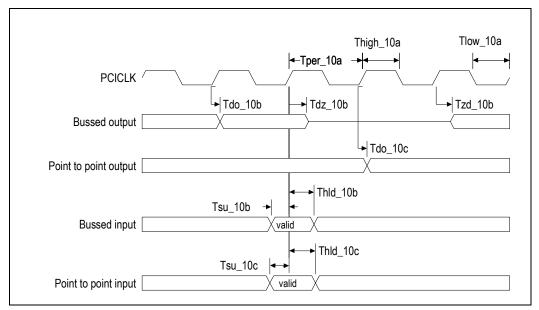


Figure 13 PCI AC Timing Waveform

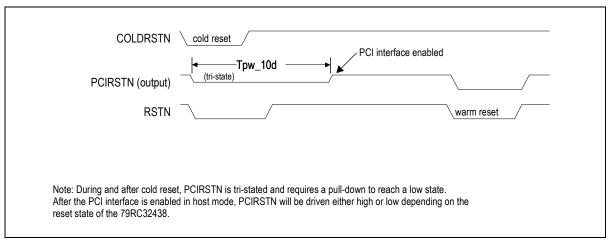


Figure 14 PCI AC Timing Waveform — PCI Reset in Host Mode

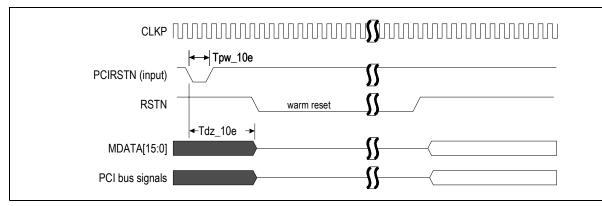


Figure 15 PCI AC Timing Waveform — PCI Reset in Satellite Mode

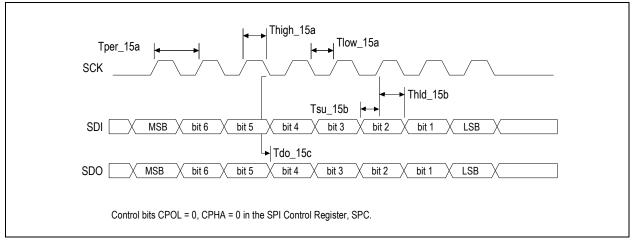


Figure 19 SPI AC Timing Waveform — Clock Polarity 0, Clock Phase 0

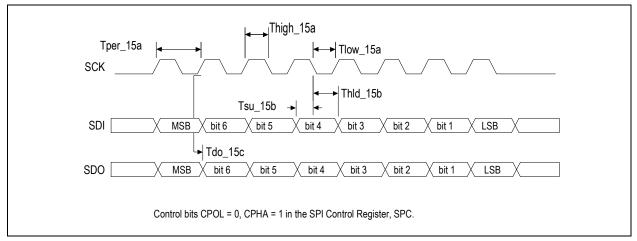


Figure 20 SPI AC Timing Waveform — Clock Polarity 0, Clock Phase 1

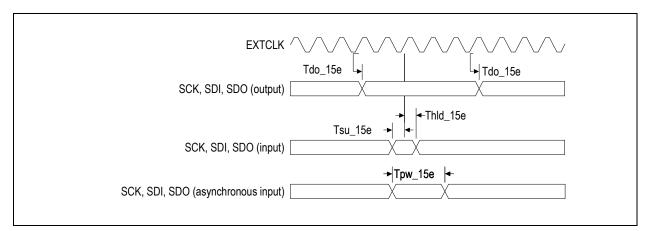


Figure 21 SPI AC Timing Waveform — Bit I/O Mode

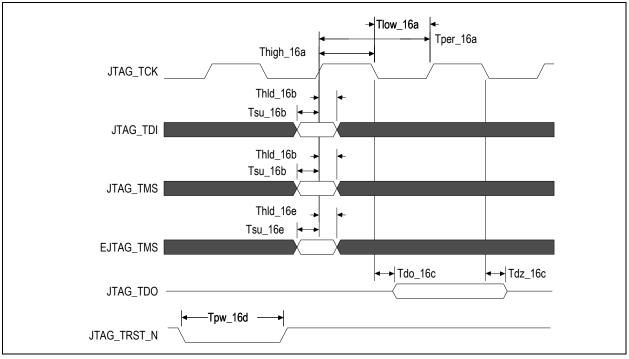


Figure 22 JTAG AC Timing Waveform

The IEEE 1149.1 specification requires that the JTAG and EJTAG TAP controllers be reset at power-up whether or not the interfaces are used for a boundary scan or a probe. Reset can occur through a pull-down resistor on JTAG_TRST_N if the probe is not connected. However, on-chip pull-up resistors are implemented on the RC32438 due to an IEEE 1149.1 requirement. Having on-chip pull-up and external pull-down resistors for the JTAG_TRST_N signal requires special care in the design to ensure that a valid logical level is provided to JTAG_TRST_N, such as using a small external pull-down resistor to ensure this level overrides the on-chip pull-up. An alternative is to use an active power-up reset circuit for JTAG_TRST_N, which drives JTAG_TRST_N low only at power-up and then holds JTAG_TRST_N high afterwards with a pull-up resistor.

Figure 23 shows the electrical connection of the EJTAG probe target system connector.

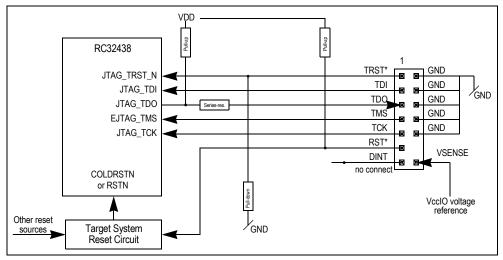


Figure 23 Target System Electrical EJTAG Connection

Using the EJTAG Probe

In Figure 23, the pull-up resistors for JTAG_TDO and RST*, the pull-down resistor for JTAG_TRST_N, and the series resistor for JTAG_TDO must be adjusted to the specific design. However, the recommended pull-up/down resistor is 1.0 k Ω because a low value reduces crosstalk on the cable to the connector, allowing higher JTAG_TCK frequencies. A typical value for the series resistor is 33 Ω . Recommended resistor values have ± 5% tolerance.

If a probe is used, the pull-up resistor on JTAG_TDO must ensure that the JTAG_TDO level is high when no probe is connected and the JTAG_TDO output is tri-stated. This requirement allows reliable connection of the probe if it is hooked-up when the power is already on (hot plug). The pull-up resistor value of around 47 k Ω should be sufficient. Optional diodes to protect against overshoot and undershoot voltage can be added on the signals of the chip with EJTAG.

If a probe is used, the RST* signal must have a pull-up resistor because it is controlled by an open-collector (OC) driver in the probe, and thus is actively pulled low only. The pull-up resistor is responsible for the high value when not driven by the probe of 25pF. The input on the target system reset circuit must be able to accept the rise time when the pull-up resistor charges the capacitance to a high logical level. Vcc I/O must connect to a voltage reference that drops rapidly to below 0.5V when the target system loses power, even with a capacitive load of 25pF. The probe can thus detect the lost power condition.

For additional information on EJTAG, refer to Chapter 20 of the RC32438 User Reference Manual.

Voltage Sense Signal Timing

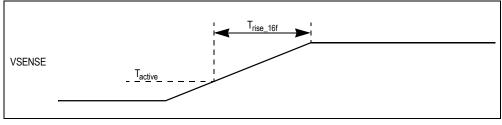


Figure 24 Voltage Sense Signal Timing

The target system must ensure that T_{rise} is obeyed after the system reaches 0.5V (T_{active}), so the probe can use this value to determine when the target has powered-up. The probe is allowed to measure the T_{rise} time from a higher value than T_{active} (but lower than Vcc I/O minimum) because the stable indication in this case comes later than the time when target power is guaranteed to be stable. If JTAG_TRST_N is asserted by a pulse at power-up, this reset must be completed after T_{rise} . If JTAG_TRST_N is asserted by a pull-down resistor, the probe will control JTAG_TRST_N. At power-down, no power is indicated to the probe when Vcc I/O drops under the T_{active} value, which the probe uses to stop driving the input signals, except for the probe RST*.

Phase-Locked Loop (PLL)

The phase-locked loop (PLL) multiplies the external oscillator input (pin CLK) according to the parameter provided by the boot configuration vector to create the processor clock (PCLK). Inherently, PLL circuits are only capable of generating clock frequencies within a limited range.

PLL Filters

It is recommended that the system designer provide a filter network of passive components for the PLL analog and digital power supplies.

The PLL circuit power and PLL circuit ground should be isolated from power and ground with a filter circuit such as the one shown in Figure 25.

Because the optimum values for the filter components depend upon the application and the system noise environment, these values should be considered as starting points for further experimentation within your specific application.

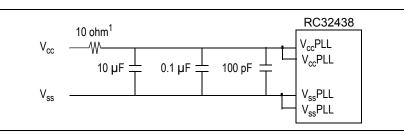


Figure 25 PLL Filter Circuit for Noisy Environments

Recommended Operating Supply Voltages

Symbol	Parameter	Clock Speed	Minimum	Typical	Maximum	Unit
V _{ss}	Common ground	All speeds	0	0	0	V
V _{ss} PLL	PLL ground					
V _{cc} I/O	I/O supply except for SSTL_2 ¹		3.0	3.3	3.6	V
V _{cc} SI/O	I/O supply for SSTL_2 ¹		2.3	2.5	2.7	V
V _{cc} PLL	PLL supply	200MHz, 233MHz	1.1	1.2	1.3	V
		266MHz, 300MHz	1.2	1.3	1.4	V
V _{cc} Core	Internal logic supply	200MHz, 233MHz	1.1	1.2	1.3	V
		266MHz, 300MHz	1.2	1.3	1.4	V
DDRVREF ²	SSTL_2 input reference voltage	All speeds	0.5(VccSI/O)	0.5(VccSI/O)	0.5(VccSI/O)	V
V _{TT} ³	SSTL_2 termination voltage		DDRVREF - 0.04	DDRVREF	DDRVREF + 0.04	V

Table 15 RC32438 Operating Voltages

^{1.} SSTL_2 I/Os are used to connect to DDR SDRAM.

RAM.

^{2.} Peak-to-peak AC noise on DDRVREF may not exceed ± 2% DDRVREF (DC).

 $^{3.}$ V_{TT} of the SSTL_2 transmitting device must track DDRVREF of the receiving device.

Recommended Operating Temperatures

Grade	Temperature
Commercial	0°C to +70°C Ambient
Industrial	-40°C to +85°C Ambient

Table 16 RC32438 Operating Temperatures

Capacitive Load Deration

Refer to the 79RC32438 IBIS Model on the IDT web site (www.idt.com).

Absolute Maximum Ratings

Symbol	Parameter Min ¹		Max ¹	Unit	
V _{cc} I/O	I/O supply except for SSTL_2 ²	-0.6	4.0	V	
V _{cc} SI/O	I/O supply for SSTL_2 ²	-0.6	3.0	V	
V _{cc} Core	Core Supply Voltage	-0.6	2.0	V	
V _{cc} PLL	PLL supply	-0.6	2.0	V	
Vinl/O	I/O Input Voltage except for SSTL_2	-0.6	V _{cc} I/O+ 0.5	V	
VinSI/O	I/O Input Voltage for SSTL_2	-0.6	V _{cc} SI/O+ 0.5	V	
T _a Industrial	Ambient Operating Temperature	-40	+85	°C	
T _a Commercial	Ambient Operating Temperature	0	+70	°C	
T _s	Storage Temperature	-40	+125	°C	

Table 19 Absolute Maximum Ratings

^{1.} Functional and tested operating conditions are given in Table 15. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

 $^{2.}\ \mbox{SSTL}\ \mbox{2}\ \mbox{I/Os}$ are used to connect to DDR SDRAM.

RC32438 Alternate Signal Functions

Pin	GPIO	Alternate	Pin	GPIO	Alternate	Pin	GPIO	Alternate
A14	GPIO[22]	MADDR[24]	Y1	GPIO[06]	UORTSN	AE2	GPIO[13]	U1CTSN
B13	GPIO[23]	MADDR[25]	Y3	GPIO[08]	U1SOUT	AE3	GPIO[18]	DMAFINN[0]
B15	GPIO[20]	MADDR[22]	AA2	GPIO[07]	U0CTSN	AE4	GPIO[24]	PCIREQN[4]
C16	GPIO[21]	MADDR[23]	AB1	GPIO[09]	U1SINP	AE5	GPIO[26]	PCIGNTN[4]
N3	GPIO[01]	U0SINP	AB2	GPIO[14]	DMAREQN[0]	AE9	GPIO[30]	PCIMUINTN
P1	GPIO[00]	U0SOUT	AB3	GPIO[11]	U1DSRN	AF1	GPIO[16]	DMADONE[0]
P3	GPIO[02]	U0RIN	AC2	GPIO[10]	U1DTRN	AF2	GPIO[17]	DMADONE[1]
T2	GPIO[03]	U0DCDN	AC3	GPIO[12]	U1RTSN	AF3	GPIO[19]	DMAFINN[1]
V3	GPIO[05]	U0DSRN	AD3	GPIO[15]	DMAREQN[1]	AF5	GPIO[28]	PCIGNTN[5]
W1	GPIO[04]	U0DTRN	AD5	GPIO[27]	PCIREQN[5]			

Table 23 RC32438 Alternate Signal Functions

RC32438 Signals Listed Alphabetically

The following table lists the RC32438 pins in alphabetical order.

Signal Name	l/O Type	Location	Signal Category
BDIRN	0	C9	Memory and Peripheral Bus
BGN	0	B7	Memory and Peripheral Bus
BOEN	0	A7	Memory and Peripheral Bus
BRN	I	C8	Memory and Peripheral Bus
BWEN[00]	0	B6	Memory and Peripheral Bus
BWEN[01]	0	A6	Memory and Peripheral Bus
CLK	I	W3	System
COLDRSTN	I	C4	System
CPU	0	Т3	Debug
CSN[00]	0	C7	Memory and Peripheral Bus
CSN[01]	0	B5	
CSN[02]	0	A5	
CSN[03]	0	C6	
CSN[04]	0	B4	1
CSN[05]	0	A4	1

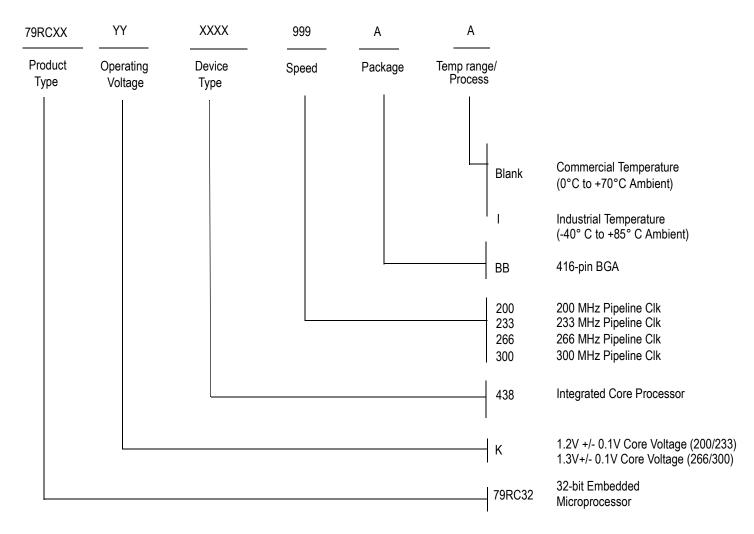
Table 24 RC32438 Alphabetical Signal List (Part 1 of 9)

Signal Name	I/O Type	Location	Signal Category
DDROEN[02]	0	AD25	DDR Bus
DDROEN[03]	0	AF26	-
DDRRASN	0	V25	
DDRVREF	I	H26	
DDRWEN	0	U25	
EJTAG_TMS	I	R2	EJTAG/ICE
EXTCLK	0	C3	System
GPIO[00]	I/O	P1	General Purpose Input/Output
GPIO[01]	I/O	N3	
GPIO[02]	I/O	P3	-
GPIO[03]	I/O	T2	
GPIO[04]	I/O	W1	-
GPIO[05]	I/O	V3	
GPIO[06]	I/O	Y1	
GPIO[07]	I/O	AA2	-
GPIO[08]	I/O	Y3	-
GPIO[09]	I/O	AB1	
GPIO[10]	I/O	AC2	
GPIO[11]	I/O	AB3	
GPIO[12]	I/O	AC3	
GPIO[13]	I/O	AE2	-
GPIO[14]	I/O	AB2	
GPIO[15]	I/O	AD3	
GPIO[16]	I/O	AF1	
GPIO[17]	I/O	AF2	
GPIO[18]	I/O	AE3	
GPIO[19]	I/O	AF3	
GPIO[20]	I/O	B15	
GPIO[21]	I/O	C16]
GPIO[22]	I/O	A14]
GPIO[23]	I/O	B13]
GPIO[24]	I/O	AE4]
GPIO[25]	I/O	A2]
GPIO[26]	I/O	AE5]
GPIO[27]	I/O	AD5]

Table 24 RC32438 Alphabetical Signal List (Part 4 of 9)

Signal Name	l/O Type	Location	Signal Category
SCK	I/O	W2	SPI Interface
SCL	I/O	AF4	l ² C
SDA	I/O	AD4	
SDI	I/O	V2	SPI Interface
SDO	I/O	V1	
Vcc CORE		D13, D14, D15, K4, L4, L23, M4, M23, N4, N23, P23, AC13, AC14, AC15	
Vcc I/O, Vcc SI/O		See Table 21 for a li	sting of power pins.
Vcc PLL			
Vss	See Table 22 for a listing of ground pins.		
Vss PLL			
WAITACKN	I	B2	Memory and Peripheral Bus

Table 24 RC32438 Alphabetical Signal List (Part 9 of 9)


RC32438 Pinout — Top View

	22 23 24 25 26
	\square \square \square
	\square \square \square
P 🖸 🖸 🗖 🗖 🗖 🗖 🗖 🗖 🗖 🗖	\square \square \square
R 🗌 🔲 📕 👘 🗍 🛄 🛄 🛄 🛄 🛄	\boxtimes \Box \Box \Box
т 🗆 🗆 🗖 🗖 🗖 🗖 🗖 🗖 🗖 🗖 🗖	$\boxtimes \Box \Box \Box$
\vee \Box \Box \Box	
W [] [] [] []	
AB 🗌 🔲 🔲	
$AC_{VSSPLL} \square \square$	
$AD \ \Box \ $	
Vss (Ground)	
Vcc SI/O (Power)	

Vcc I/O (Power)

Vcc Core (Power)

Ordering Information

Valid Combinations

79RC32K438 -200BB, 233BB, 266BB, 300BB	416-pin BGA package, Commercial Temperature
79RC32K438 -200BBI, 233BBI	416-pin BGA package. Industrial Temperature

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: email: rischelp@idt.com phone: 408-284-8208