

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MIPS32
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	233MHz
Co-Processors/DSP	-
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	416-BGA
Supplier Device Package	416-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/79rc32k438-233bb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Description Table

The following table lists the functions of the pins provided on the RC32438. Some of the functions listed may be multiplexed onto the same pin.

The active polarity of a signal is defined using a suffix. Signals ending with an "N" are defined as being active, or asserted, when at a logic zero (low) level. All other signals (including clocks, buses and select lines) will be interpreted as being active, or asserted when at a logic one (high) level.

Signal	Туре	Name/Description
System		·
CLK	I	Master Clock. This is the master clock input. The processor frequency is a multiple of this clock frequency. This clock is used as the system clock for all memory and peripheral bus operations.
EXTCLK	0	External Clock. This clock is used for all memory and peripheral bus operations.
COLDRSTN	Ι	Cold Reset. The assertion of this signal initiates a cold reset. This causes the processor state to be initialized, boot configuration to be loaded, and the internal PLL to lock onto the master clock (CLK).
RSTN	I/O	Reset. The assertion of this bidirectional signal initiates a warm reset. This signal is asserted by the RC32438 during a warm reset.
Memory and Peri	pheral Bus	·
BDIRN	0	External Buffer Direction. Memory and peripheral bus external data bus buffer direction control. If the RC32438 memory and peripheral bus is connected to the A side of a transceiver, such as an IDT74FCT245, then this pin may be directly connected to the direction control (e.g., BDIR) pin of the transceiver.
BGN	0	Bus Grant. This signal is asserted by the RC32438 to indicate that the RC32438 has relinquished ownership of the memory and peripheral bus.
BOEN	0	External Buffer Enable. This signal provides an output enable control for an external buffer on the memory and peripheral data bus.
BRN	I	Bus Request. This signal is asserted by an external device to request owner- ship of the memory and peripheral bus.
BWEN[1:0]	0	Byte Write Enables. These signals are memory and peripheral bus byte write enable signals. BWEN[0] corresponds to byte lane MDATA[7:0] BWEN[1] corresponds to byte lane MDATA[15:8]
CSN[5:0]	0	Chip Selects. These signals are used to select an external device on the memory and peripheral bus.
MADDR[21:0]	0	Address Bus. 22-bit memory and peripheral bus address bus. MADDR[25:22] are available as GPIO alternate functions
MDATA[15:0]	I/O	Data Bus. 16-bit memory and peripheral data bus. During a cold reset, these pins function as inputs that are used to load the boot configuration vector.
OEN	0	Output Enable. This signal is asserted when data should be driven on by an external device on the memory and peripheral bus.
RWN	0	Read Write. This signal indicates if the transaction on the memory and peripheral bus is a read transaction or a write transaction. A high level indicates a read from an external device. A low level indicates a write to an external device.

Table 1 Pin Description (Part 1 of 9)

Signal	Туре	Name/Description
PCIREQN[3:0]	I/O	PCI Bus Request. In PCI host mode with internal arbiter: These signals are inputs whose assertion indicates to the internal RC32438 arbiter that an agent desires ownership of the PCI bus. In PCI host mode with external arbiter: PCIREQN[0]: asserted by the RC32438 to request ownership of the PCI bus. PCIREQN[0]: asserted by the RC32438 to request ownership of the PCI bus. PCIREQN[3:1]: unused and driven high. In PCI satellite mode: PCIREQN[0]: this signal is asserted by the RC32438 to request use of the PCI bus. PCIREQN[0]: this signal is asserted by the RC32438 to request use of the PCI bus. PCIREQN[0]: this signal is asserted by the RC32438 to request use of the PCI bus. PCIREQN[0]: this signal is asserted by the RC32438 to request use of the PCI bus. PCIREQN[0]: this signal is asserted by the RC32438 to request use of the PCI bus. PCIREQN[0]: this signal is asserted by the RC32438 to request use of the PCI bus. PCIREQN[0]: this signal is asserted by the RC32438 to request use of the PCI bus. PCIREQN[1]: function changes to PCIIDSEL and is used as a chip select during configuration read and write transactions. PCIREQN[3:2]: unused and driven high. Note: When the GPIO register is programmed in the alte
PCIRSTN	I/O	PCI Reset . In host mode, this signal is asserted by the RC32438 to generate a PCI reset. In satellite mode, assertion of this signal initiates a warm reset.
PCISERRN	I/O	PCI System Error . This signal is driven by an agent to indicate an address par- ity error, data parity error during a special cycle command, or any other system error. Requires an external pull-up.
PCISTOPN	I/O	PCI Stop . Driven by the bus target to terminate the current bus transaction. For example, to indicate a retry.
PCITRDYN	I/O	PCI Target Ready . Driven by the bus target to indicate that the current data can complete.
General Purpose	Input/Output	
GPIO[0]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U0SOUT Alternate function: UART channel 0 serial output.
GPIO[1]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U0SINP Alternate function: UART channel 0 serial input.
GPIO[2]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U0RIN Alternate function: UART channel 0 ring indicator input.
GPIO[3]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U0DCDN Alternate function: UART channel 0 data carrier detect input.
GPIO[4]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U0DTRN Alternate function: UART channel 0 data terminal ready input.
GPIO[5]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U0DSRN Alternate function: UART channel 0 data set ready input.

Table 1 Pin Description (Part 4 of 9)

Signal	Туре	Name/Description
GPIO[6]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U0RTSN Alternate function: UART channel 0 request to send output.
GPIO[7]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U0CTSN Alternate function: UART channel 0 clear to send input.
GPIO[8]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U1SOUT Alternate function: UART channel 1 serial output.
GPIO[9]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U1SINP Alternate function: UART channel 1 serial input.
GPIO[10]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U1DTRN Alternate function: UART channel 1 data terminal ready output.
GPI0[11]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U1DSRN Alternate function: UART channel 1 data set ready input.
GPI0[12]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U1RTSN Alternate function: UART channel 1 request to send output.
GPIO[13]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U1CTSN Alternate function: UART channel 1 clear to send input.
GPIO[14]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: DMAREQN0 Alternate function: External DMA channel 0 request input.
GPIO[15]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: DMAREQN1 Alternate function: External DMA channel 1 request input.
GPIO[16]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: DMADONEN0 Alternate function: External DMA channel 0 done input.
GPI0[17]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: DMADONEN1 Alternate function: External DMA channel 1 done input.

Table 1 Pin Description (Part 5 of 9)

Signal	Туре	Name/Description
GPIO[18]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: DMAFINN0 Alternate function: External DMA channel 0 finished output.
GPIO[19]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: DMAFINN1 Alternate function: External DMA channel 1 finished output.
GPIO[20]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin Alternate function pin name: MADDR[22] Alternate function: Memory and peripheral bus address output.
GPIO[21]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: MADDR[23] Alternate function: Memory and peripheral bus address output.
GPIO[22]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: MADDR[24] Alternate function: Memory and peripheral bus address output.
GPI0[23]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: MADDR[25] Alternate function: Memory and peripheral bus address output.
GPIO[24]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: PCIREQN[4] Alternate function: PCI Request 4 input or output.
GPIO[25]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: AFSPARE1 Alternate function: <i>reserved</i> .
GPIO[26]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: PCIGNTN[4] Alternate function: PCI Grant 4 output.
GPI0[27]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: PCIREQN[5] Alternate function: PCI Request 5 input or output.
GPIO[28]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: PCIGNTN[5] Alternate function: PCI Grant 5 output.
GPIO[29]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: Reserved Alternate function: Reserved.

Table 1 Pin Description (Part 6 of 9)

Signal	Туре	Name/Description
GPIO[30]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: PCIMUINTN Alternate function: PCI Messaging unit interrupt output.
GPIO[31]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin.
SPI Interface		
SCK	I/O	Serial Clock . This signal is used as the serial clock output in SPI mode and in PCI satellite mode with suspended CPU execution during PCI serial EEPROM loading. This pin may be configured as a GPIO pin.
SDI	I/O	Serial Data Input . This signal is used to shift in serial data in SPI mode and in PCI satellite mode with suspended CPU execution during PCI serial EEPROM loading. This pin may be configured as a GPIO pin.
SDO	I/O	Serial Data Output . This signal is used shift out serial data in SPI mode and in PCI satellite mode with suspended CPU execution during PCI serial EEPROM loading. This pin may be configured as a GPIO pin.
I ² C Bus Interface		
SCL	I/O	I ² C Clock. I ² C-bus clock.
SDA	I/O	I ² C Data Bus. I ² C-bus data bus.
Ethernet Interface	s	
MIIOCL	I	Ethernet 0 MII Collision Detected. This signal is asserted by the ethernet PHY when a collision is detected.
MIIOCRS	Ι	Ethernet 0 MII Carrier Sense. This signal is asserted by the ethernet PHY when either the transmit or receive medium is not idle.
MIIORXCLK	I	Ethernet 0 MII Receive Clock. This clock is a continuous clock that provides a timing reference for the reception of data.
MII0RXD[3:0]	Ι	Ethernet 0 MII Receive Data. This nibble wide data bus contains the data received by the ethernet PHY.
MIIORXDV	I	Ethernet 0 MII Receive Data Valid. The assertion of this signal indicates that valid receive data is in the MII receive data bus.
MIIORXER	Ι	Ethernet 0 MII Receive Error. The assertion of this signal indicates that an error was detected somewhere in the ethernet frame currently being sent in the MII receive data bus.
MII0TXCLK	Ι	Ethernet 0 MII Transmit Clock. This clock is a continuous clock that provides a timing reference for the transfer of transmit data.
MII0TXD[3:0]	0	Ethernet 0 MII Transmit Data. This nibble wide data bus contains the data to be transmitted.
MII0TXENP	0	Ethernet 0 MII Transmit Enable. The assertion of this signal indicates that data is present on the MII for transmission.
MIIOTXER	0	Ethernet 0 MII Transmit Coding Error. When this signal is asserted together with MIITXENP, the ethernet PHY will transmit symbols which are not valid data or delimiters.
MII1CL	Ι	Ethernet 1 MII Collision Detected. This signal is asserted by the ethernet PHY when a collision is detected.

 Table 1 Pin Description (Part 7 of 9)

Function	Pin Name	Туре	Buffer	I/О Туре	Internal Resistor	Notes ¹
DDR Bus	DDRADDR[13:0]	0	SSTL_2	SSTL_2		
	DDRBA[1:0]	0	SSTL_2	SSTL_2		
	DDRCASN	0	SSTL_2	SSTL_2		
	DDRCKE	0	SSTL_2 / LVCMOS	SSTL_2		
	DDRCKN[1:0]	0	SSTL_2	SSTL_2		
	DDRCKP[1:0]	0	SSTL_2	SSTL_2		
	DDRCSN[1:0]	0	SSTL_2	SSTL_2		
	DDRDATA[31:0]	I/O	SSTL_2	SSTL_2		
	DDRDM[7:0]	0	SSTL_2	SSTL_2		
	DDRDQS[3:0]	I/O	SSTL_2	SSTL_2		
	DDROEN[3:0]	0	SSTL_2	SSTL_2		
	DDRRASN	0	SSTL_2	SSTL_2		
	DDRVREF	I	Analog	SSTL_2		
	DDRWEN	0	SSTL_2	SSTL_2		
PCI Bus Interface ³	PCIAD[31:0]	I/O	PCI	PCI		
	PCICBEN[3:0]	I/O	PCI	PCI		
	PCICLK	I	PCI	PCI		
	PCIDEVSELN	I/O	PCI	PCI		pull-up on board
	PCIFRAMEN	I/O	PCI	PCI		pull-up on board
	PCIGNTN[3:0]	I/O	PCI	PCI		pull-up on board
	PCIIRDYN	I/O	PCI	PCI		pull-up on board
	PCILOCKN	I/O	PCI	PCI		
	PCIPAR	I/O	PCI	PCI		
	PCIPERRN	I/O	PCI	PCI		
	PCIREQN[3:0]	I/O	PCI	PCI		pull-up on board
	PCIRSTN	I/O	PCI	PCI		pull-down on board
	PCISERRN	I/O	PCI	Open Collec- tor; PCI		pull-up on board
	PCISTOPN	I/O	PCI	PCI		pull-up on board
	PCITRDYN	I/O	PCI	PCI		pull-up on board
General Purpose	GPIO[23:0]	I/O	LVTTL	Low Drive	pull-up	
I/O	GPIO[24]	I/O	PCI			pull-up on board
	GPIO[25]	I/O	LVTTL	Low Drive	pull-up	
	GPIO[30:26] ⁴	I/O	PCI			pull-up on board
	GPIO[31]	I/O	LVTTL	Low Drive	pull-up	

 Table 2 Pin Characteristics (Part 2 of 4)

Figure 5 Warm Reset AC Timing Waveform

Signal	Sumb all	Referenc	200MHz		233MHz		266MHz		300MHz		11:4	Conditions	Timing
	Symbol	e Edge	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions	Reference
Memory Bus - DDR Access													
DDRDATA[31:0]	Tskew_7g ²	DDRDQSx	0.0	0.9	0.0	0.9	0.0	0.9	0.0	0.8	ns		See Figures 6
	Tdo_7k ³		1.5	3.3	1.1	2.9	0.9	2.7	0.7	2.4	ns		and (.
DDRDM[7:0]	Tdo_7I	DDRDQSx	1.5	3.3	1.1	2.9	0.9	2.7	0.7	2.4	ns		
DDRDQS[3:0]	Tac	DDRCKPx	-0.75	0.75	-0.75	0.75	-0.75	0.75	-0.75	0.75	ns		
DDRADDR[13:0], DDRBA[1:0], DDRCASN, DDRCKE, DDRCSN[1:0], DDROEN[3:0], DDRRASN, DDRWEN	Tdo_7m ⁴	DDRCKPx	1.1	4.5	1.1	4.5	1.1	4.5	1.1	4.5	ns		

Table 7 DDR SDRAM Timing Characteristics

^{1.} In the DDR data sheet: Tskew_7g = t_{DQSQ}: Tdo_7k = t_{DH}, t_{DS}: Tdo_7l = t_{DH}, t_{DS}: Tac = t_{AC}: Tdo_7m = t_{IH}, t_{IS}.

^{2.} Meets DDR timing requirements for DDR 266 SDRAMs with 400 ps remaining margin to compensate for PCB propagation mismatches, which is adequate to guarantee functional timing, provided the RC32438 DDR layout guidelines are followed.

^{3.} Setup times are calculated as applicable clock period - Tdo max. For example, if the DDR is running at 266MHz, it uses a 133MHz input clock. The period for a 133MHz clock is 7.5ns. If the Tdo max value is 4.5ns, the T_{IS} parameter is 7.5ns minus 4.5ns = 3ns. The DDR spec for this parameter is 1ns, so there is 2ns of slack left over for board propagation. Calculations for T_{DS} are similar, but since this parameter is taken relative to the DDRDQS signals, which are referenced on both edges, the effective period with a 133MHz input clock is only 3.75ns. So, if the max Tdo is 2.7ns, we have 3.75ns minus 2.7ns = 1.05ns for T_{DS}. The DDR data sheet specs a value of 0.5ns for 266MHz, so this leaves 0.55ns slack for board propagation delays.

			1	1					, 	
DDRCKPx		ļī lieta kara kara kara kara kara kara kara ka		ļ						
DDRCKNx										
1		→ Tdo_7¦m		1	1	1	1 I		I I	1 1 1 1
DDRCSNx				1	1	1	1		i I	1 I 1 I
		Tdo_7m								
DDRADDR[13:0]						· · · ·	1			
DDRCMD ¹	NOP									OP
						· · · · · ·				· · · ·
DDRCRE		→ Tdo 7m				1		I	I	i i
DDRBA[1:0]		BNKx	В	NKx					X	
		1 I 1 I	→ Tdo_	Źm	1	I I	1 1	1	i I	1 I 1 I
DDROEN[3:0]		1 I I I		1	1	ı T	1		ı I	1 I
DDRDQSx			1	<u> </u>		ļ				
				Tdo_7l	└ <mark>→</mark> │Т	do_7l				
DDRDM[7:0]		FF	1					FF		
						1				
					1	 				
DDRDQSX			1	· ·						1
				i I		i I				i i
	1	1 I 1 I	1				1		1	
	1	1 I 1 I	1	¦ Ido_/k		₊ /к	1	1	i i	1 I 1 I
DDRDATA[31:0] ²		1 I i i	1)3			<u>, </u>
	ontains I	DDRRASN, DDRC	ASN and [DDRWEN						
² DDRDATA (see Chapte	is either r 7. DDF	32-bits or 16-bits w R Controller, in the	ide deper RC3243	nding on th 88 User R	ne DBW c eference	ontrol bit Manual	in DDRC F).	Register		
	, 201					mandal				

Figure 7 DDR SDRAM Timing Waveform — Write Access

Signal	Symbol	Reference Edge	200MHz		233MHz		266MHz		300MHz		Unit	Conditions	Timing
			Min	Max	Min	Max	Min	Max	Min	Max	Omt	Conditions	Reference
Memory and Peripheral Bus ¹													
MADDR[21:0]	Tdo_8a	EXTCLK rising	0.0	5.0	0.0	5.0	0.0	5.0	0.0	5.0	ns		and 9.
	Tdz_8a ²		0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.1	ns		
	Tzd_8a ²		0.5	2.3	0.5	2.3	0.5	2.3	0.5	2.3	ns		
MADDR[25:22]	Tdo_8b	EXTCLK rising	0.0	6.5	0.0	6.5	0.0	6.5	0.0	6.5	ns		
	Tdz_8b ²		0.7	1.5	0.7	1.5	0.7	1.5	0.7	1.5	ns		
	Tzd_8b ²		1.2	3.3	1.2	3.3	1.2	3.3	1.2	3.3	ns		

Table 8 Memory and Peripheral Bus AC Timing Characteristics (Part 1 of 3)

Figure 13 PCI AC Timing Waveform

Figure 14 PCI AC Timing Waveform — PCI Reset in Host Mode

Figure 15 PCI AC Timing Waveform — PCI Reset in Satellite Mode

		Reference Edge	200	200MHz		233MHz		266MHz		300MHz		Conditions	Timing
Signal	Symbol		Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
I ² C ¹													
SCL	Frequency	none	0	100	0	100	0	100	0	100	kHz	100 KHz	See Figure 16.
	Thigh_12a, Tlow_12a		4.0		4.0	_	4.0	_	4.0	_	μs		
	Trise_12a		_	1000		1000		1000	_	1000	ns		
	Tfall_12a		_	300	-	300	-	300	-	300	ns		
SDA	Tsu_12b	SCL rising	250	-	250	—	250	—	250	—	ns		
	Thld_12b		0	3.45	0	3.45	0	3.45	0	3.45	μs		
	Trise_12b		_	1000		1000		1000	_	1000	ns		
	Tfall_12b		_	300	-	300	_	300	-	300	ns		
Start or repeated start	Tsu_12c	SDA falling	4.7	-	4.7	—	4.7	—	4.7	_	μs		
condition	Thld_12c		4.0	-	4.0	—	4.0	—	4.0	_	μs		
Stop condition	Tsu_12d	SDA rising	4.0	-	4.0	—	4.0	—	4.0	—	μs		
Bus free time between a stop and start condi- tion	Tdelay_12e		4.7	_	4.7	_	4.7	—	4.7	_	μs		
SCL	Frequency	none	0	400	0	400	0	400	0	400	kHz	400 KHz	
	Thigh_12a, Tlow_12a		0.6		0.6		0.6		0.6	Ι	μs		
	Trise_12a		_	300	_	300	_	300		300	ns		
	Tfall_12a		_	300	_	300	_	300	-	300	ns		
SDA	Tsu_12b	SCL rising	100	—	100	—	100	—	100	_	ns		
	Thld_12b		0	0.9	0	0.9	0	0.9	0	0.9	μs		
	Trise_12b		_	300	_	300	—	300		300	ns		
	Tfall_12ba		_	300		300		300	-	300	ns		
Start or repeated start	Tsu_12c	SDA falling	0.6	—	0.6	—	0.6	—	0.6	_	μs		
condition	Thld_12c		0.6	—	0.6	—	0.6	—	0.6	_	μs		
Stop condition	Tsu_12d	SDA rising	0.6	—	0.6	—	0.6	—	0.6	-	μs		
Bus free time between a stop and start condi- tion	Tdelay_12e		1.3	Ι	1.3	—	1.3	—	1.3	—	μs		

Table 11 I²C AC Timing Characteristics

 $^{1.}$ For more information, see the I $^{2}\mbox{C-Bus}$ specification by Philips Semiconductor.

Signal	Symbol	Reference Edge	200MHz		233MHz		266MHz		300MHz		11	Conditions	Timing
Signal	Symbol		Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions	Reference
SPI ¹													
SCK	Tper_15a	None		1920		1920		1920	_	1920	ns	33 MHz PCI	See Figures 18,
	Tper_15a		_	960	_	960	_	960	—	960	ns	66 MHz PCI	19, 20 and 21.
	Tper_15a		100	166667	100	166667	100	166667	100	166667	ns	SPI	
	Thigh_15a, Tlow_15a	-	930	990	930	990	930	990	930	990	ns	33 MHz PCI	
	Thigh_15a, Tlow_15a		465	495	465	495	465	495	465	495	ns	66 MHz PCI	
	Thigh_15a, Tlow_15a		40	83353	40	83353	40	83353	40	83353	ns	SPI	
SDI	Tsu_15b	SCK rising or	60	—	60	-	60	—	60	—	ns	SPI or PCI	
	Thld_15b	falling	60	_	60	-	60	—	60	—	ns		
SDO	Tdo_15c	SCK rising or falling	0	60	0	60	0	60	0	60	ns	SPI or PCI	
PCIEECS ²	Tdo_15d	SCK rising or falling	0	60	0	60	0	60	0	60	ns	PCI	
SCK, SDI, SDO ³	Tpw_15e	None	2(ICLK)	—	2(ICLK)) —	2(ICLK)	—	2(ICLK)	—	ns	Bit I/O	

Table 13 SPI AC Timing Characteristics

^{1.} In SPI mode, the SCK period and sampling edge are programmable. In PCI mode, the SCK period is fixed and the sampling edge is rising.

^{2.} PCIEECS is the PCI serial EEPROM chip select. It is an alternate function of PCIGNTN[1].

^{3.} In Bit I/O mode, SCK, SDI, and SDO must meet the setup and hold times if they are synchronous or the minimum pulse width if they are asynchronous.

Figure 18 SPI AC Timing Waveform — PCI Configurations Load

Figure 19 SPI AC Timing Waveform — Clock Polarity 0, Clock Phase 0

Figure 20 SPI AC Timing Waveform — Clock Polarity 0, Clock Phase 1

Figure 21 SPI AC Timing Waveform — Bit I/O Mode

Using the EJTAG Probe

In Figure 23, the pull-up resistors for JTAG_TDO and RST*, the pull-down resistor for JTAG_TRST_N, and the series resistor for JTAG_TDO must be adjusted to the specific design. However, the recommended pull-up/down resistor is 1.0 k Ω because a low value reduces crosstalk on the cable to the connector, allowing higher JTAG_TCK frequencies. A typical value for the series resistor is 33 Ω . Recommended resistor values have ± 5% tolerance.

If a probe is used, the pull-up resistor on JTAG_TDO must ensure that the JTAG_TDO level is high when no probe is connected and the JTAG_TDO output is tri-stated. This requirement allows reliable connection of the probe if it is hooked-up when the power is already on (hot plug). The pull-up resistor value of around 47 k Ω should be sufficient. Optional diodes to protect against overshoot and undershoot voltage can be added on the signals of the chip with EJTAG.

If a probe is used, the RST* signal must have a pull-up resistor because it is controlled by an open-collector (OC) driver in the probe, and thus is actively pulled low only. The pull-up resistor is responsible for the high value when not driven by the probe of 25pF. The input on the target system reset circuit must be able to accept the rise time when the pull-up resistor charges the capacitance to a high logical level. Vcc I/O must connect to a voltage reference that drops rapidly to below 0.5V when the target system loses power, even with a capacitive load of 25pF. The probe can thus detect the lost power condition.

For additional information on EJTAG, refer to Chapter 20 of the RC32438 User Reference Manual.

Voltage Sense Signal Timing

Figure 24 Voltage Sense Signal Timing

The target system must ensure that T_{rise} is obeyed after the system reaches 0.5V (T_{active}), so the probe can use this value to determine when the target has powered-up. The probe is allowed to measure the T_{rise} time from a higher value than T_{active} (but lower than Vcc I/O minimum) because the stable indication in this case comes later than the time when target power is guaranteed to be stable. If JTAG_TRST_N is asserted by a pulse at power-up, this reset must be completed after T_{rise} . If JTAG_TRST_N is asserted by a pull-down resistor, the probe will control JTAG_TRST_N. At power-down, no power is indicated to the probe when Vcc I/O drops under the T_{active} value, which the probe uses to stop driving the input signals, except for the probe RST*.

Phase-Locked Loop (PLL)

The phase-locked loop (PLL) multiplies the external oscillator input (pin CLK) according to the parameter provided by the boot configuration vector to create the processor clock (PCLK). Inherently, PLL circuits are only capable of generating clock frequencies within a limited range.

PLL Filters

It is recommended that the system designer provide a filter network of passive components for the PLL analog and digital power supplies.

The PLL circuit power and PLL circuit ground should be isolated from power and ground with a filter circuit such as the one shown in Figure 25.

Because the optimum values for the filter components depend upon the application and the system noise environment, these values should be considered as starting points for further experimentation within your specific application.

Power-on Sequence

Three power-on sequences are given below. Sequence #1 is recommended because it will prevent I/O conflicts and will also allow the input signals to propagate when the I/O powers are brought up.

Note: The ESD diodes may be damaged if one of the voltages is applied and one of the other voltages is at a ground level.

A. Recommended Sequence

- t2 > 0 whenever possible (V_{cc}Core)
- t1 t2 can be 0 ($V_{cc}SI/O$ followed by $V_{cc}I/O$)

B. Reverse Voltage Sequence

If sequence A is not feasible, then Sequence B can be used:

t1 <50ms and t2 <50ms to prevent damage.

C. Simultaneous Power-up

Vccl/O, VccSI/O, and VccCore can be powered up simultaneously.

Power Consumption

Parameter		200MHz		233MHz		266MHz		300MHz		Unit	Conditions	
		Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.		Conditions	
I _{cc} I/O		130	150	180	200	220	250	260	300	mA	C _L = 35 pF	
I _{cc} SI/O		100	120	150	170	200	220	250	270	mA	I ambient = 25°C Max, values use the maximum volt-	
I _{cc} Core, I _{cc} PLL	Normal mode	460	500	510	550	610	650	680	730	mA	ages listed in Table 15. Typical values use the typical voltages listed in that table.	
Power Dissipation	Normal mode	1.2	1.6	1.6	1.9	2.0	2.4	2.4	2.7	W		

Table 17 RC32438 Power Consumption

DC Electrical Characteristics

Values based on systems running at recommended supply voltages, as shown in Table 15.

Note: See Table 2, Pin Characteristics, for a complete I/O listing.	

I/О Туре	Para- meter	Min.	Typical	Max.	Unit	Conditions
LOW Drive	I _{OL}	_	14.0	—	mA	V _{OL} = 0.4V
Output	I _{ОН}	—	-12.0	—	mA	V _{OH} = 1.5V
HIGH Drive	I _{OL}	—	24.0	—	mA	V _{OL} = 0.4V
Output	I _{OH}	—	-42.0	—	mA	V _{OH} = 1.5V
Schmitt Trigger	V _{IL}	-0.3	_	0.8	V	_
Input (STI)	V _{IH}	2.0	_	V _{cc} I/O + 0.5	V	_
SSTL_2 (for DDR	I _{OL}	7.6	—	—	mA	V _{OL} = 0.5V
SURAIVI)	I _{OH}	-7.6	—	—	mA	V _{OH} = 1.76V
	V _{IL}	-0.3	—	0.5(V _{cc} SI/O) - 0.18	V	
	V _{IH}	0.5(V _{cc} SI/O) + 0.18	_	$V_{cc}SI/O + 0.3$	V	

 Table 18 DC Electrical Characteristics (Part 1 of 2)

Absolute Maximum Ratings

Symbol	Parameter	Min ¹	Max ¹	Unit
V _{cc} I/O	I/O supply except for SSTL_2 ²	-0.6	4.0	V
V _{CC} SI/O	I/O supply for SSTL_2 ²	-0.6	3.0	V
V _{CC} Core	Core Supply Voltage	-0.6	2.0	V
V _{CC} PLL	PLL supply	-0.6	2.0	V
VinI/O	I/O Input Voltage except for SSTL_2	-0.6	V _{cc} I/O+ 0.5	V
VinSI/O	I/O Input Voltage for SSTL_2	-0.6	V _{cc} SI/O+ 0.5	V
T _a Industrial	Ambient Operating Temperature	-40	+85	°C
T _a Commercial	Ambient Operating Temperature	0	+70	°C
Τ _s	Storage Temperature	-40	+125	°C

Table 19 Absolute Maximum Ratings

^{1.} Functional and tested operating conditions are given in Table 15. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

 $^{2.}\ \mbox{SSTL}\ \mbox{2 I/Os}$ are used to connect to DDR SDRAM.

RC32438 Alternate Signal Functions

Pin	GPIO	Alternate	Pin	GPIO	Alternate	Pin	GPIO	Alternate
A14	GPIO[22]	MADDR[24]	Y1	GPIO[06]	UORTSN	AE2	GPIO[13]	U1CTSN
B13	GPIO[23]	MADDR[25]	Y3	GPIO[08]	U1SOUT	AE3	GPIO[18]	DMAFINN[0]
B15	GPIO[20]	MADDR[22]	AA2	GPIO[07]	U0CTSN	AE4	GPIO[24]	PCIREQN[4]
C16	GPIO[21]	MADDR[23]	AB1	GPIO[09]	U1SINP	AE5	GPIO[26]	PCIGNTN[4]
N3	GPIO[01]	U0SINP	AB2	GPIO[14]	DMAREQN[0]	AE9	GPIO[30]	PCIMUINTN
P1	GPIO[00]	U0SOUT	AB3	GPIO[11]	U1DSRN	AF1	GPIO[16]	DMADONE[0]
P3	GPIO[02]	U0RIN	AC2	GPIO[10]	U1DTRN	AF2	GPIO[17]	DMADONE[1]
T2	GPIO[03]	U0DCDN	AC3	GPIO[12]	U1RTSN	AF3	GPIO[19]	DMAFINN[1]
V3	GPIO[05]	U0DSRN	AD3	GPIO[15]	DMAREQN[1]	AF5	GPIO[28]	PCIGNTN[5]
W1	GPIO[04]	U0DTRN	AD5	GPIO[27]	PCIREQN[5]			

Table 23 RC32438 Alternate Signal Functions

RC32438 Signals Listed Alphabetically

The following table lists the RC32438 pins in alphabetical order.

Signal Name	l/O Type	Location	Signal Category
BDIRN	0	C9	Memory and Peripheral Bus
BGN	0	В7	Memory and Peripheral Bus
BOEN	0	A7	Memory and Peripheral Bus
BRN	I	C8	Memory and Peripheral Bus
BWEN[00]	0	B6	Memory and Peripheral Bus
BWEN[01]	0	A6	Memory and Peripheral Bus
CLK	I	W3	System
COLDRSTN	I	C4	System
CPU	0	Т3	Debug
CSN[00]	0	C7	Memory and Peripheral Bus
CSN[01]	0	B5	
CSN[02]	0	A5	
CSN[03]	0	C6	
CSN[04]	0	B4	
CSN[05]	0	A4	

Table 24 RC32438 Alphabetical Signal List (Part 1 of 9)

Signal Name	l/O Type	Location	Signal Category	
SCK	I/O	W2	SPI Interface	
SCL	I/O	AF4	l ² C	
SDA	I/O	AD4		
SDI	I/O	V2	SPI Interface	
SDO	I/O	V1		
Vcc CORE		D13, D14, D15, K4, L4, L23, M4, M23, N4, N23, P23, AC13, AC14, AC15		
Vcc I/O, Vcc SI/O		See Table 21 for a l	isting of power pins.	
Vcc PLL				
Vss		See Table 22 for a li	sting of ground pins.	
Vss PLL				
WAITACKN	I	B2	Memory and Peripheral Bus	

Table 24 RC32438 Alphabetical Signal List (Part 9 of 9)

RC32438 Pinout — Top View

	22 23 24 25 26			
	\square \square \square			
	\square \square \square			
P 🖸 🖸 🗖 🗖 🗖 🗖 🗖 🗖 🗖 🗖	\square \square \square			
R 🗌 🔲 📕 👘 🗍 🛄 🛄 🛄 🛄 🛄	\boxtimes \Box \Box \Box			
т 🗆 🗆 🗖 🗖 🗖 🗖 🗖 🗖 🗖 🗖 🗖	$\boxtimes \Box \Box \Box$			
\vee \Box \Box \Box				
W [] [] [] []				
AA VSPLT				
AB 🗌 🔲 🔲				
$AC_{VSSPLL}\square$				
$AD \ \Box \ $				
AF				
Vss (Ground)				
Vcc SI/O (Power)				

Vcc I/O (Power)

Vcc Core (Power)