

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MIPS32
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	233MHz
Co-Processors/DSP	·
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	·
Ethernet	10/100Mbps (2)
SATA	
USB	·
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	416-BGA
Supplier Device Package	416-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/79rc32k438-233bbg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DMA Controller

- 10 DMA channels: two channels for PCI (PCI to Memory and Memory to PCI), two for each Ethernet interface, two channels for memory to memory operations, two channels for external operations
- Provides flexible descriptor based operation
- Supports unaligned transfers (i.e., source or destination address may be on any byte boundary) with arbitrary byte length.

Two Ethernet Interfaces

- 10 and 100 Mb/s ISO/IEC 8802-3:1996 compliant
- Two IEEE 802.3u compatible Media Independent Interfaces (MII) with serial management interface
- MII supports IEEE 802.3u auto-negotiation speed selection
- Supports 64 entry hash table based multicast address filtering
- 512 byte transmit and receive FIFOs
- Supports flow control functions outlined in IEEE Std. 802.3x-1997

Universal Asynchronous Receiver Transmitter (UART)

- Compatible with the 16550 and 16450 UARTs
- Two completely separate serial channels
- Modem control functions (CTS, RTS, DSR, DTR, RI, DCD)
- 16-byte transmit and receive buffers
- Programmable baud rate generator derived from the system clock
- Fully programmable serial characteristics:
 - 5, 6, 7, or 8 bit characters
 - Even, odd or no parity bit generation and detection
 - 1, 1-1/2 or 2 stop bit generation
 - Line break generation and detection
- False start bit detection
- Internal loopback mode

I²C-Bus

- Supports standard 100 Kbps mode as well as 400 Kbps fast mode
- Supports 7-bit and 10-bit addressing
- Supports four modes: master transmitter, master receiver, slave transmitter, slave receiver
- Additional General Purpose Peripherals
- Two 16550-compatible serial ports
- Interrupt controller
- System integrity functions
- General purpose I/O controller
- Serial peripheral interface (SPI)
- On-chip Memory
- 4KB of high speed SRAM organized as 1K x 32 bits
- Supports burst and non-burst byte, halfword, triple-byte, and word CPU, PCI, and DMA accesses
- Debug Support
- Rev. 2.6 compliant EJTAG Interface

Device Overview

The RC32438 is a member of the IDT[™] Interprise[™] family of PCI integrated communications processors. It incorporates a high performance CPU core and a number of on-chip peripherals. The integrated processor is designed to transfer information from I/O modules to main

memory with minimal CPU intervention using a highly sophisticated direct memory access (DMA) engine. All data transfers through the RC32438 are achieved by writing data from an on-chip I/O peripheral to main memory and then out to another I/O module.

CPU Execution Core

The 32-bit CPU core is 100% compatible with the MIPS32 instruction set architecture (ISA).

Specifically, this device features the 4Kc CPU core developed by MIPS Technologies Inc. (www.mips.com). This core issues a single instruction per cycle, includes a five stage pipeline, and is optimized for applications that require integer arithmetic. The CPU core includes 16 KB instruction and 16 KB data caches. Both caches are 4-way set associative and can be locked on a per line basis, which allows the programmer control over this precious on-chip memory resource. The core also features a memory management unit (MMU). The CPU core also incorporates an enhanced joint test access group (EJTAG) interface that is used to interface to in-circuit emulator tools, providing access to internal registers and enabling the part to be controlled externally, simplifying the system debug process. The use of this core allows IDT's customers to leverage the broad range of software and development tools available for the MIPS architecture, including operating systems, compilers, and in-circuit emulators.

Double Data Rate Memory Controller

The RC32438 incorporates a high performance double data rate (DDR) memory controller which supports both x16 and x32 memory configurations up to 2GB. This module provides all of the signals required to interface to both memory modules and discrete devices, including two chip selects, differential clocking outputs and data strobes.

Memory and I/O Controller

The RC32438 uses a dedicated local memory/IO controller including a de-multiplexed 16-bit data and 26-bit address bus. It includes all of the signals required to interface directly to as many as six Intel or Motorolastyle external peripherals, and the interface can be configured to support both 8-bit and 16-bit peripherals.

DMA Controller

The DMA controller consists of 10 independent DMA channels, all of which operate in exactly the same manner. The DMA controller off-loads the CPU core from moving data among the on-chip interfaces, external peripherals, and memory. The controller supports scatter/gather DMA with no alignment restrictions, appropriate for communications and graphics systems.

PCI Interface

The PCI interface on the RC32438 is compatible with version 2.2 of the PCI specification. An on-chip arbiter supports up to six external bus masters, supporting both fixed priority and rotating priority arbitration schemes. The part can support both satellite and host PCI configurations, enabling the RC32438 to act as a slave controller for a PCI add-in

Signal	Туре	Name/Description
PCIREQN[3:0]	I/O	PCI Bus Request. In PCI host mode with internal arbiter: These signals are inputs whose assertion indicates to the internal RC32438 arbiter that an agent desires ownership of the PCI bus. In PCI host mode with external arbiter: PCIREQN[0]: asserted by the RC32438 to request ownership of the PCI bus. PCIREQN[0]: asserted by the RC32438 to request ownership of the PCI bus. PCIREQN[3:1]: unused and driven high. In PCI satellite mode: PCIREQN[0]: this signal is asserted by the RC32438 to request use of the PCI bus. PCIREQN[0]: this signal is asserted by the RC32438 to request use of the PCI bus. PCIREQN[0]: this signal is asserted by the RC32438 to request use of the PCI bus. PCIREQN[0]: this signal is asserted by the RC32438 to request use of the PCI bus. PCIREQN[0]: this signal is asserted by the RC32438 to request use of the PCI bus. PCIREQN[0]: this signal is asserted by the RC32438 to request use of the PCI bus. PCIREQN[0]: this signal is asserted by the RC32438 to request use of the PCI bus. PCIREQN[1]: function changes to PCIIDSEL and is used as a chip select during configuration read and write transactions. PCIREQN[3:2]: unused and driven high. Note: When the GPIO register is programmed in the alte
PCIRSTN	I/O	PCI Reset . In host mode, this signal is asserted by the RC32438 to generate a PCI reset. In satellite mode, assertion of this signal initiates a warm reset.
PCISERRN	I/O	PCI System Error . This signal is driven by an agent to indicate an address par- ity error, data parity error during a special cycle command, or any other system error. Requires an external pull-up.
PCISTOPN	I/O	PCI Stop . Driven by the bus target to terminate the current bus transaction. For example, to indicate a retry.
PCITRDYN	I/O	PCI Target Ready . Driven by the bus target to indicate that the current data can complete.
General Purpose	Input/Output	
GPIO[0]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U0SOUT Alternate function: UART channel 0 serial output.
GPIO[1]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U0SINP Alternate function: UART channel 0 serial input.
GPIO[2]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U0RIN Alternate function: UART channel 0 ring indicator input.
GPIO[3]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U0DCDN Alternate function: UART channel 0 data carrier detect input.
GPIO[4]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U0DTRN Alternate function: UART channel 0 data terminal ready input.
GPIO[5]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: U0DSRN Alternate function: UART channel 0 data set ready input.

Table 1 Pin Description (Part 4 of 9)

Signal	Туре	Name/Description
MII1CRS	I	Ethernet 1 MII Carrier Sense. This signal is asserted by the ethernet PHY when either the transmit or receive medium is not idle.
MII1RXCLK	I	Ethernet 1 MII Receive Clock. This clock is a continuous clock that provides a timing reference for the reception of data.
MII1RXD[3:0]	I	Ethernet 1 MII Receive Data. This nibble wide data bus contains the data received by the ethernet PHY.
MII1RXDV	I	Ethernet 1 MII Receive Data Valid. The assertion of this signal indicates that valid receive data is in the MII receive data bus.
MII1RXER	I	Ethernet 1 MII Receive Error. The assertion of this signal indicates that an error was detected somewhere in the ethernet frame currently being sent in the MII receive data bus.
MII1TXCLK	I	Ethernet 1 MII Transmit Clock. This clock is a continuous clock that provides a timing reference for the transfer of transmit data.
MII1TXD[3:0]	0	Ethernet 1 MII Transmit Data. This nibble wide data bus contains the data to be transmitted.
MII1TXENP	0	Ethernet 1 MII Transmit Enable. The assertion of this signal indicates that data is present on the MII for transmission.
MII1TXER	0	Ethernet 1 MII Transmit Coding Error. When this signal is asserted together with MIITXENP, the ethernet PHY will transmit symbols which are not valid data or delimiters.
MIIMDC	0	MII Management Data Clock. This signal is used as a timing reference for transmission of data on the management interface.
MIIMDIO	I/O	MII Management Data. This bidirectional signal is used to transfer data between the station management entity and the ethernet PHY.
JTAG / EJTAG		
EJTAG_TMS	I	EJTAG Mode . The value on this signal controls the test mode select of the EJTAG Controller. When using the JTAG boundary scan, this pin should be left disconnected (since there is an internal pull-up) or driven high.
JTAG_TCK	I	JTAG Clock . This is an input test clock used to clock the shifting of data into or out of the boundary scan logic, JTAG Controller, or the EJTAG Controller. JTAG_TCK is independent of the system and the processor clock with a nominal 50% duty cycle.
JTAG_TDI	I	JTAG Data Input . This is the serial data input to the boundary scan logic, JTAG Controller, or the EJTAG Controller.
JTAG_TDO	0	JTAG Data Output . This is the serial data shifted out from the boundary scan logic, JTAG Controller, or the EJTAG Controller. When no data is being shifted out, this signal is tri-stated.
JTAG_TMS	I	JTAG Mode . The value on this signal controls the test mode select of the boundary scan logic or JTAG Controller. When using the EJTAG debug interface, this pin should be left disconnected (since there is an internal pull-up) or driven high.

Table 1 Pin Description (Part 8 of 9)

Signal	Name/Description
MDATA[7]	Boot Device Width . This field specifies the width of the boot device (i.e., Device 0). 0x0 - 8-bit boot device width 0x1 - 16-bit boot device width
MDATA[8]	Reset Mode . This bit specifies the length of time the RSTN signal is driven. 0x0 - Normal reset: RSTN driven for minimum of 4096 clock cycles 0x1 - reserved
MDATA[11:9]	 PCI Mode. This bit controls the operating mode of the PCI bus interface. The initial value of the EN bit in the PCIC register is determined by the PCI mode. 0x0 - Disabled (EN initial value is zero) 0x1 - PCI satellite mode with PCI target not ready (EN initial value is one) 0x2 - PCI satellite mode with suspended CPU execution (EN initial value is one) 0x3 - PCI host mode with external arbiter (EN initial value is zero) 0x4 - PCI host mode with internal arbiter using fixed priority arbitration algorithm (EN initial value is zero) 0x5 - PCI host mode with internal arbiter using round robin arbitration algorithm (EN initial value is zero) 0x6 - reserved 0x7 - reserved
MDATA[12]	Disable Watchdog Timer . When this bit is set, the watchdog timer is disabled follow- ing a cold reset. 0x0 - Watchdog timer enabled 0x1 - Watchdog timer disabled
MDATA[15:13]	Reserved. These pins must be driven low during boot configuration.

Table 3 Boot Configuration Encoding (Part 2 of 2)

Logic Diagram — RC32438

Figure 1 Logic Diagram

AC Timing Characteristics

Values given below are based on systems running at recommended operating temperatures and supply voltages, shown in Tables 15 and 16.

		Reference	200MHz		233MHz		266	MHz	300	MHz			Timing
Signal	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
Reset	•		•		•		•		•				<u> </u>
COLDRSTN ¹	Tpw_6a ²	none	OSC + 0.5	_	ms	Cold reset	See Figures 4 and 5.						
	Trise_6a	none	—	5.0	—	5.0	—	5.0	—	5.0	ns	Cold reset	
RSTN ³ (input)	Tpw_6b ²	none	2(CLK)	—	2(CLK)	—	2(CLK)	—	2(CLK)	—	ns	Warm reset	
RSTN ³ (output)	Tdo_6c	COLDRSTN falling	-	15.0	-	15.0	-	15.0	-	15.0	ns	Cold reset	
MDATA[15:0] (boot vector)	Thld_6d	COLDRSTN rising	3.0	—	3.0	_	3.0	_	3.0	_	ns	Cold reset	
	Tdz_6d ²	COLDRSTN falling	-	30.0	-	30.0	-	30.0	-	30.0	ns	Cold reset	
	Tdz_6d ²	RSTN falling	-	5(CLK)	-	5(CLK)	-	5(CLK)	-	5(CLK)	ns	Warm reset	
	Tzd_6d ²	RSTN rising	2(CLK)	—	2(CLK)	—	2(CLK)	—	2(CLK)	—	ns	Warm reset	1

Table 6 Reset and System AC Timing Characteristics

 $^{1.}$ The COLDRSTN minimum pulse width is the oscillator stabilization time (OSC) plus 0.5 ms with V_{cc} stable.

^{2.} The values for this symbol were determined by calculation, not by testing.

^{3.} RSTN is a bidirectional signal. It is treated as an asynchronous input.

- 5. RSTN negated by the RC32438.
- 6. CPU begins executing by taking MIPS reset exception, and the RC32438 starts sampling RSTN as a warm reset input.

Figure 4 Cold Reset AC Timing Waveform

Figure 11 DMAREQN AC Timing Waveform

Circus I	Symbol	Reference	200MHz		233	MHz	266MHz		300	MHz		0	Timing
Signal		Edge	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
Ethernet ¹									11				
MIIMDC	Tper_9a	None	40.0	—	33.3	—	30.0	—	30.0	_	ns		See Figure 12.
	Thigh_9a, Tlow_9a		16.0	_	13.0	_	12.0	_	12.0	_	ns		
MIIMDIO	Tsu_9b	MIIMDC rising	10.0	—	10.0	—	10.0		10.0	—	ns		
	Thld_9b		0.0	—	0.0	—	0.0		0.0	—	ns		
	Tdo_9b ²		10	300	10	300	10	300	10	300	ns		
MIIxRXCLK, MIIxTXCLK ³	Tper_9c	None	399.96	400.4	399.96	400.4	399.96	400.4	399.96	400.4	ns	10 Mbps	
	Thigh_9c, Tlow_9c		140	260	140	260	140	260	140	260	ns		
	Trise_9c, Tfall_9c		_	3.0	_	3.0	_	3.0	—	3.0	ns		
MIIxRXCLK,	Tper_9d	None	39.9	40.0	39.9	40.0	39.9	40.0	39.9	40.0	ns	100 Mbps	
MIIXTXCLK	Thigh_9d, Tlow_9d		14.0	26.0	14.0	26.0	14.0	26.0	14.0	26.0	ns		
	Trise_9d, Tfall_9d		_	2.0	_	2.0	_	2.0	—	2.0	ns		
MIIxRXD[3:0],	Tsu_9e	MIIxRXCLK	10.0	_	10.0	_	10.0	_	10.0	_	ns		
MIIxRXDV, MIIxRXER	Thld_9e	rising	10.0	_	10.0	_	10.0		10.0	—	ns		
MIIxTXD[3:0], MIIxTXENP, MIIxTXER	Tdo_9f	MIIxTXCLK rising	0.0	25.0	0.0	25.0	0.0	25.0	0.0	25.0	ns		

Table 9 Ethernet AC Timing Characteristics

 $^{1.}$ There are two MII interfaces and the timing is the same for each. "X" represents interface 0 or 1.

^{2.} The values for this symbol were determined by calculation, not by testing.

Figure 13 PCI AC Timing Waveform

Figure 14 PCI AC Timing Waveform — PCI Reset in Host Mode

Figure 15 PCI AC Timing Waveform — PCI Reset in Satellite Mode

		Reference	200MHz		233MHz		266MHz		300MHz			•	Timing
Signal	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
I ² C ¹													
SCL	Frequency	none	0	100	0	100	0	100	0	100	kHz	100 KHz	See Figure 16.
	Thigh_12a, Tlow_12a		4.0		4.0	_	4.0	_	4.0	_	μs		
	Trise_12a		_	1000		1000		1000	_	1000	ns		
	Tfall_12a		_	300	-	300	-	300	-	300	ns		
SDA	Tsu_12b	SCL rising	250	-	250	—	250	—	250	—	ns		
	Thld_12b		0	3.45	0	3.45	0	3.45	0	3.45	μs		
	Trise_12b		_	1000		1000		1000	_	1000	ns		
	Tfall_12b		_	300	-	300	_	300	-	300	ns		
Start or repeated start	Tsu_12c	SDA falling	4.7	-	4.7	—	4.7	—	4.7	_	μs		
condition	Thld_12c		4.0	-	4.0	—	4.0	—	4.0	_	μs		
Stop condition	Tsu_12d	SDA rising	4.0	-	4.0	—	4.0	—	4.0	—	μs		
Bus free time between a stop and start condi- tion	Tdelay_12e		4.7	_	4.7	_	4.7	—	4.7	_	μs		
SCL	Frequency	none	0	400	0	400	0	400	0	400	kHz	400 KHz	
	Thigh_12a, Tlow_12a		0.6		0.6		0.6		0.6	Ι	μs		
	Trise_12a		_	300	_	300	_	300		300	ns		
	Tfall_12a		_	300	_	300	_	300	-	300	ns		
SDA	Tsu_12b	SCL rising	100	—	100	—	100	—	100	_	ns		
	Thld_12b		0	0.9	0	0.9	0	0.9	0	0.9	μs		
	Trise_12b		_	300	_	300	—	300		300	ns		
	Tfall_12ba		—	300		300		300	-	300	ns		
Start or repeated start	Tsu_12c	SDA falling	0.6	—	0.6	—	0.6	—	0.6	_	μs		
condition	Thld_12c		0.6	—	0.6	—	0.6	—	0.6	_	μs		
Stop condition	Tsu_12d	SDA rising	0.6	—	0.6	—	0.6	—	0.6	-	μs		
Bus free time between a stop and start condi- tion	Tdelay_12e		1.3	Ι	1.3	—	1.3	—	1.3	—	μs		

Table 11 I²C AC Timing Characteristics

 $^{1.}$ For more information, see the I $^{2}\mbox{C-Bus}$ specification by Philips Semiconductor.

Using the EJTAG Probe

In Figure 23, the pull-up resistors for JTAG_TDO and RST*, the pull-down resistor for JTAG_TRST_N, and the series resistor for JTAG_TDO must be adjusted to the specific design. However, the recommended pull-up/down resistor is 1.0 k Ω because a low value reduces crosstalk on the cable to the connector, allowing higher JTAG_TCK frequencies. A typical value for the series resistor is 33 Ω . Recommended resistor values have ± 5% tolerance.

If a probe is used, the pull-up resistor on JTAG_TDO must ensure that the JTAG_TDO level is high when no probe is connected and the JTAG_TDO output is tri-stated. This requirement allows reliable connection of the probe if it is hooked-up when the power is already on (hot plug). The pull-up resistor value of around 47 k Ω should be sufficient. Optional diodes to protect against overshoot and undershoot voltage can be added on the signals of the chip with EJTAG.

If a probe is used, the RST* signal must have a pull-up resistor because it is controlled by an open-collector (OC) driver in the probe, and thus is actively pulled low only. The pull-up resistor is responsible for the high value when not driven by the probe of 25pF. The input on the target system reset circuit must be able to accept the rise time when the pull-up resistor charges the capacitance to a high logical level. Vcc I/O must connect to a voltage reference that drops rapidly to below 0.5V when the target system loses power, even with a capacitive load of 25pF. The probe can thus detect the lost power condition.

For additional information on EJTAG, refer to Chapter 20 of the RC32438 User Reference Manual.

Voltage Sense Signal Timing

Figure 24 Voltage Sense Signal Timing

The target system must ensure that T_{rise} is obeyed after the system reaches 0.5V (T_{active}), so the probe can use this value to determine when the target has powered-up. The probe is allowed to measure the T_{rise} time from a higher value than T_{active} (but lower than Vcc I/O minimum) because the stable indication in this case comes later than the time when target power is guaranteed to be stable. If JTAG_TRST_N is asserted by a pulse at power-up, this reset must be completed after T_{rise} . If JTAG_TRST_N is asserted by a pull-down resistor, the probe will control JTAG_TRST_N. At power-down, no power is indicated to the probe when Vcc I/O drops under the T_{active} value, which the probe uses to stop driving the input signals, except for the probe RST*.

Phase-Locked Loop (PLL)

The phase-locked loop (PLL) multiplies the external oscillator input (pin CLK) according to the parameter provided by the boot configuration vector to create the processor clock (PCLK). Inherently, PLL circuits are only capable of generating clock frequencies within a limited range.

PLL Filters

It is recommended that the system designer provide a filter network of passive components for the PLL analog and digital power supplies.

The PLL circuit power and PLL circuit ground should be isolated from power and ground with a filter circuit such as the one shown in Figure 25.

Because the optimum values for the filter components depend upon the application and the system noise environment, these values should be considered as starting points for further experimentation within your specific application.

Absolute Maximum Ratings

Symbol	Parameter	Min ¹	Max ¹	Unit
V _{cc} I/O	I/O supply except for SSTL_2 ²	-0.6	4.0	V
V _{cc} SI/O	I/O supply for SSTL_2 ²	-0.6	3.0	V
V _{CC} Core	Core Supply Voltage	-0.6	2.0	V
V _{CC} PLL	PLL supply	-0.6	2.0	V
VinI/O	I/O Input Voltage except for SSTL_2	-0.6	V _{cc} I/O+ 0.5	V
VinSI/O	I/O Input Voltage for SSTL_2	-0.6	V _{cc} SI/O+ 0.5	V
T _a Industrial	Ambient Operating Temperature	-40	+85	°C
T _a Commercial	Ambient Operating Temperature	0	+70	°C
Τ _s	Storage Temperature	-40	+125	°C

Table 19 Absolute Maximum Ratings

^{1.} Functional and tested operating conditions are given in Table 15. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

 $^{2.}\ \mbox{SSTL}\ \mbox{2 I/Os}$ are used to connect to DDR SDRAM.

Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt
B9	MDATA[11]		G3	MII0TXCLK		V3	GPIO[05]	1	AD25	DDROEN[02]	
B10	MDATA[03]		G4	V _{ss}		V4	V _{ss}		AD26	DDROEN[01]	
B11	MDATA[08]		G23	V _{ss}		V23	V _{ss}		AE1	N/C	
B12	MDATA[02]		G24	DDRCKP[00]		V24	DDRADDR[08]		AE2	GPIO[13]	1
B13	GPIO[23]	1	G25	DDRDATA[16]		V25	DDRRASN		AE3	GPIO[18]	1
B14	MADDR[20]		G26	DDRDATA[13]		V26	DDRCASN		AE4	GPIO[24]	1
B15	GPIO[20]	1	H1	MII1CRS		W1	GPIO[04]	1	AE5	GPIO[26]	1
B16	MADDR[17]		H2	MII1CL		W2	SCK		AE6	PCIAD[31]	
B17	MADDR[14]		H3	MII1RXCLK		W3	CLK		AE7	PCIAD[28]	
B18	MADDR[12]		H4	V _{ss}		W4	V _{ss}		AE8	PCIAD[25]	
B19	MADDR[09]		H23	V _{ss}		W23	V _{ss}		AE9	GPIO[30]	1
B20	MADDR[06]		H24	DDRCKN[00]		W24	DDRADDR[07]		AE10	PCIAD[22]	
B21	MADDR[03]		H25	DDRDATA[18]		W25	DDRADDR[06]		AE11	PCIAD[19]	
B22	MADDR[00]		H26	DDRVREF		W26	DDRBA[01]		AE12	PCIAD[16]	
B23	DDRDATA[01]		J1	MII1RXD[01]		Y1	GPIO[06]	1	AE13	PCIRSTN	
B24	DDRDQS[00]		J2	MII1RXD[00]		Y2	V _{cc} PLL		AE14	PCIREQN[02]	
B25	DDRDM[00]		J3	MII1RXD[03]		Y3	GPIO[08]	1	AE15	PCIFRAMEN	
B26	DDRDATA[06]		J4	V _{ss}		Y4	V _{ss}		AE16	PCIDEVSELN	
C1	MII0RXD[00]		J23	V _{ss}		Y23	V _{ss}		AE17	PCILOCKN	
C2	MII0RXCLK		J24	DDRDATA[17]		Y24	DDRCKN[01]		AE18	PCICBEN[01]	
C3	EXTCLK		J25	DDRDATA[21]		Y25	DDRBA[00]		AE19	PCIAD[13]	
C4	COLDRSTN		J26	DDRDATA[19]		Y26	DDRADDR[05]		AE20	PCIAD[10]	
C5	OEN		K1	MII1RXDV		AA1	V _{ss} PLL		AE21	PCICBEN[00]	
C6	CSN[03]		K2	MII1RXD[02]		AA2	GPIO[07]	1	AE22	PCIAD[05]	
C7	CSN[00]		K3	MII1TXCLK		AA3	V _{cc} PLL		AE23	PCIAD[02]	
C8	BRN		K4	V _{cc} Core		AA4	V _{ss}		AE24	PCIGNTN[01]	
C9	BDIRN		K23	V _{ss}		AA23	V _{ss}		AE25	DDRDM[07]	
C10	MDATA[12]		K24	DDRDATA[20]		AA24	DDRCKP[01]		AE26	DDRDM[04]	
C11	MDATA[09]		K25	DDRDQS[02]		AA25	DDRADDR[03]		AF1	GPIO[16]	1
C12	MDATA[01]		K26	DDRCKE		AA26	DDRADDR[04]		AF2	GPIO[17]	1
C13	MDATA[05]		L1	MII1TXD[00]		AB1	GPIO[09]	1	AF3	GPIO[19]	1
C14	MDATA[04]		L2	MII1RXER		AB2	GPIO[14]	1	AF4	SCL	
C15	MDATA[00]		L3	MII1TXD[03]		AB3	GPIO[11]	1	AF5	GPIO[28]	1
C16	GPIO[21]	1	L4	V _{cc} Core		AB4	V _{ss}		AF6	PCIAD[29]	
C17	MADDR[18]		L23	V _{cc} Core		AB23	V _{ss}		AF7	PCIAD[27]	
C18	MADDR[15]		L24	DDRDM[02]		AB24	V _{cc} SI/O		AF8	PCIAD[24]	
C19	MADDR[11]		L25	DDRDATA[24]		AB25	DDRADDR[01]		AF9	PCIAD[23]	

Table 20 RC32438 416-pin Signal Pin-Out (Part 2 of 3)

RC32438 Ground Pins

V _{ss} PLL							
D4	L10	P13	U15	AA1, AC1			
D5	L11	P14	U16				
D6	L12	P15	U17				
D10	L13	P16	U23				
D11	L14	P17	V4				
D12	L15	R3	V23				
D16	L16	R10	W4				
D17	L17	R11	W23				
D18	M10	R12	Y4				
D19	M11	R13	Y23				
E4	M12	R14	AA4				
F4	M13	R15	R15 AA23				
G4	M14	R16	R16 AB4				
G23	M15	R17	AB23				
H4	M16	T10	AC4				
H23	M17	T11	AC5				
J4	N10	T12	AC6				
J23	N11	T13	AC10				
K10	N12	T14	AC11				
K11	N13	T15	AC12				
K12	N14	T16	AC16				
K13	N15	T17	AC17	1			
K14	N16	U10	U10 AC18				
K15	N17	U11	AC19	1			
K16	P10	U12					
K17	P11	U13	U13				
K23	P12	U14					

Table 22 RC32438 Ground Pins

RC32438 Alternate Signal Functions

Pin	GPIO	Alternate	Pin	GPIO	Alternate	Pin	GPIO	Alternate
A14	GPIO[22]	MADDR[24]	Y1	GPIO[06]	UORTSN	AE2	GPIO[13]	U1CTSN
B13	GPIO[23]	MADDR[25]	Y3	GPIO[08]	U1SOUT	AE3	GPIO[18]	DMAFINN[0]
B15	GPIO[20]	MADDR[22]	AA2	GPIO[07]	U0CTSN	AE4	GPIO[24]	PCIREQN[4]
C16	GPIO[21]	MADDR[23]	AB1	GPIO[09]	U1SINP	AE5	GPIO[26]	PCIGNTN[4]
N3	GPIO[01]	U0SINP	AB2	GPIO[14]	DMAREQN[0]	AE9	GPIO[30]	PCIMUINTN
P1	GPIO[00]	U0SOUT	AB3	GPIO[11]	U1DSRN	AF1	GPIO[16]	DMADONE[0]
P3	GPIO[02]	U0RIN	AC2	GPIO[10]	U1DTRN	AF2	GPIO[17]	DMADONE[1]
T2	GPIO[03]	U0DCDN	AC3	GPIO[12]	U1RTSN	AF3	GPIO[19]	DMAFINN[1]
V3	GPIO[05]	U0DSRN	AD3	GPIO[15]	DMAREQN[1]	AF5	GPIO[28]	PCIGNTN[5]
W1	GPIO[04]	U0DTRN	AD5	GPIO[27]	PCIREQN[5]			

Table 23 RC32438 Alternate Signal Functions

RC32438 Signals Listed Alphabetically

The following table lists the RC32438 pins in alphabetical order.

Signal Name	l/O Type	Location	Signal Category
BDIRN	0	C9	Memory and Peripheral Bus
BGN	0	В7	Memory and Peripheral Bus
BOEN	0	A7	Memory and Peripheral Bus
BRN	I	C8	Memory and Peripheral Bus
BWEN[00]	0	B6	Memory and Peripheral Bus
BWEN[01]	0	A6	Memory and Peripheral Bus
CLK	I	W3	System
COLDRSTN	I	C4	System
CPU	0	Т3	Debug
CSN[00]	0	C7	Memory and Peripheral Bus
CSN[01]	0	B5	
CSN[02]	0	A5	
CSN[03]	0	C6	
CSN[04]	0	B4	
CSN[05]	0	A4	

Table 24 RC32438 Alphabetical Signal List (Part 1 of 9)

Signal Name	I/O Type	Location	Signal Category
DDRDATA[11]	I/O	D25	DDR Bus
DDRDATA[12]	I/O	E25	
DDRDATA[13]	I/O	G26	
DDRDATA[14]	I/O	F26	
DDRDATA[15]	I/O	F25	
DDRDATA[16]	I/O	G25	
DDRDATA[17]	I/O	J24	
DDRDATA[18]	I/O	H25	
DDRDATA[19]	I/O	J26	
DDRDATA[20]	I/O	K24	
DDRDATA[21]	I/O	J25	
DDRDATA[22]	I/O	L26	
DDRDATA[23]	I/O	M24	
DDRDATA[24]	I/O	L25	
DDRDATA[25]	I/O	M26	
DDRDATA[26]	I/O	N24	
DDRDATA[27]	I/O	M25	
DDRDATA[28]	I/O	N25	
DDRDATA[29]	I/O	R24	
DDRDATA[30]	I/O	P26	
DDRDATA[31]	I/O	P25	
DDRDM[00]	0	B25	
DDRDM[01]	0	E26	
DDRDM[02]	0	L24	
DDRDM[03]	0	P24	
DDRDM[04]	0	AE26	
DDRDM[05]	0	AD24	
DDRDM[06]	0	AF25	
DDRDM[07]	0	AE25	
DDRDQS[00]	I/O	B24	
DDRDQS[01]	I/O	F24	
DDRDQS[02]	I/O	K25	
DDRDQS[03]	I/O	N26	
DDROEN[00]	0	AC25	
DDROEN[01]	0	AD26	

Table 24 RC32438 Alphabetical Signal List (Part 3 of 9)

Signal Name	I/О Туре	Location	Signal Category
DDROEN[02]	0	AD25	DDR Bus
DDROEN[03]	0	AF26	
DDRRASN	0	V25	
DDRVREF	I	H26	
DDRWEN	0	U25	
EJTAG_TMS	I	R2	EJTAG/ICE
EXTCLK	0	C3	System
GPIO[00]	I/O	P1	General Purpose Input/Output
GPIO[01]	I/O	N3	
GPIO[02]	I/O	P3	
GPIO[03]	I/O	T2	
GPIO[04]	I/O	W1	
GPIO[05]	I/O	V3	
GPIO[06]	I/O	Y1	
GPIO[07]	I/O	AA2	
GPIO[08]	I/O	Y3	
GPIO[09]	I/O	AB1	
GPIO[10]	I/O	AC2	
GPIO[11]	I/O	AB3	
GPIO[12]	I/O	AC3	
GPIO[13]	I/O	AE2	
GPIO[14]	I/O	AB2	
GPIO[15]	I/O	AD3	
GPIO[16]	I/O	AF1	
GPIO[17]	I/O	AF2	
GPIO[18]	I/O	AE3	
GPIO[19]	I/O	AF3	
GPIO[20]	I/O	B15	
GPIO[21]	I/O	C16	
GPIO[22]	I/O	A14	
GPIO[23]	I/O	B13	
GPIO[24]	I/O	AE4	
GPIO[25]	I/O	A2	
GPIO[26]	I/O	AE5	
GPIO[27]	I/O	AD5	

Table 24 RC32438 Alphabetical Signal List (Part 4 of 9)

Signal Name	I/О Туре	Location	Signal Category
MII1RXD[02]	I	K2	Ethernet Interfaces
MII1RXD[03]	I	J3	
MII1RXDV	I	K1	
MII1RXER	I	L2	
MII1TXCLK	I	K3	
MII1TXD[00]	0	L1	
MII1TXD[01]	0	M2	
MII1TXD[02]	0	M1	
MII1TXD[03]	0	L3	
MII1TXENP	0	N2	
MII1TXER	0	N1	
MIIMDC	0	M3	
MIIMDIO	I/O	P2	
OEN	0	C5	Memory and Peripheral Bus
PCIAD[00]	I/O	AD22	PCI Bus
PCIAD[01]	I/O	AF23	
PCIAD[02]	I/O	AE23	
PCIAD[03]	I/O	AF22	
PCIAD[04]	I/O	AD23	
PCIAD[05]	I/O	AE22	
PCIAD[06]	I/O	AD20	
PCIAD[07]	I/O	AF21	
PCIAD[08]	I/O	AD19	
PCIAD[09]	I/O	AF20	
PCIAD[10]	I/O	AE20	
PCIAD[11]	I/O	AD18	
PCIAD[12]	I/O	AF19	
PCIAD[13]	I/O	AE19	
PCIAD[14]	I/O	AF18	
PCIAD[15]	I/O	AD17	
PCIAD[16]	I/O	AE12	
PCIAD[17]	I/O	AF11	1
PCIAD[18]	I/O	AD10	
PCIAD[19]	I/O	AE11	
PCIAD[20]	I/O	AF10	1

Table 24 RC32438 Alphabetical Signal List (Part 7 of 9)

Signal Name	I/О Туре	Location	Signal Category
PCIAD[21]	I/O	AD9	PCI Bus
PCIAD[22]	I/O	AE10	
PCIAD[23]	I/O	AF9	
PCIAD[24]	I/O	AF8	
PCIAD[25]	I/O	AE8	
PCIAD[26]	I/O	AD7	
PCIAD[27]	I/O	AF7	
PCIAD[28]	I/O	AE7	-
PCIAD[29]	I/O	AF6	
PCIAD[30]	I/O	AD6	
PCIAD[31]	I/O	AE6	-
PCICBEN[00]	I/O	AE21	
PCICBEN[01]	I/O	AE18	
PCICBEN[02]	I/O	AF14	-
PCICBEN[03]	I/O	AD8	
PCICLK	I	AD12	
PCIDEVSELN	I/O	AE16	
PCIFRAMEN	I/O	AE15	
PCIGNTN[00]	I/O	AD13	
PCIGNTN[01]	I/O	AE24	
PCIGNTN[02]	I/O	AF24	-
PCIGNTN[03]	I/O	AD21	
PCIIRDYN	I/O	AD14	
PCILOCKN	I/O	AE17	-
PCIPAR	I/O	AF17	
PCIPERRN	I/O	AD16	
PCIREQN[00]	I/O	AF13	
PCIREQN[01]	I/O	AD11	-
PCIREQN[02]	I/O	AE14	-
PCIREQN[03]	I/O	AF12	-
PCIRSTN	I/O	AE13	
PCISERRN	I/O	AF16	
PCISTOPN	I/O	AD15	1
PCITRDYN	I/O	AF15	1
RSTN	I/O	A23	System
RWN	0	В3	Memory and Peripheral Bus

Table 24 RC32438 Alphabetical Signal List (Part 8 of 9)

Signal Name	l/O Type	Location	Signal Category
SCK	I/O	W2	SPI Interface
SCL	I/O	AF4	l ² C
SDA	I/O	AD4	
SDI	I/O	V2	SPI Interface
SDO	I/O	V1	
Vcc CORE		D13, D14, D15, K4, L4, L23, M4, M23, N4, N23, P23, AC13, AC14, AC15	
Vcc I/O, Vcc SI/O		See Table 21 for a l	isting of power pins.
Vcc PLL			
Vss	See Table 22 for a listing of ground pins.		
Vss PLL			
WAITACKN	I	B2	Memory and Peripheral Bus

Table 24 RC32438 Alphabetical Signal List (Part 9 of 9)

Ordering Information

Valid Combinations

79RC32K438 -200BB, 233BB, 266BB, 300BB	416-pin BGA package, Commercial Temperature
79RC32K438 -200BBI, 233BBI	416-pin BGA package. Industrial Temperature

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: email: rischelp@idt.com phone: 408-284-8208