

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	MIPS32
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	266MHz
Co-Processors/DSP	-
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (2)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	416-BGA
Supplier Device Package	416-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/79rc32k438-266bbg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

card application, or as the primary PCI controller in the system. The PCI interface can be operated synchronously or asynchronously to the other I/O interfaces on the RC32438 device.

Ethernet Interface

The RC32438 has two Ethernet Channels supporting 10Mbps and 100Mbps speeds to provide a standard media independent interface (MII) off-chip, allowing a wide range of external devices to be connected efficiently.

UART Interface

The RC32438 contains two completely separate serial channels (UARTs) that are compatible with the industry standard 16550 UART.

System Integrity Functions

The RC32438 contains a programmable watchdog timer that generates NMI when the counter expires and an address space monitor that reports errors in response to accesses to undecoded address regions.

General Purpose I/O Controller

The RC32438 contains 32 general purpose input/output pins. Each pin may be used as an active high or active low level interrupt or non-maskable interrupt input, and each signal may be used as a bit input or output port.

I²C Interface

The standard I2C interface allows the RC32438 to connect to a number of standard external peripherals for a more complete system solution. The RC32438 supports both master and slave operations.

Debug Support

The RC32438 supports the industry standard Rev. 2.6 EJTAG interface.

Thermal Considerations

The RC32438 consumes less than 2.7 W peak power. It is guaranteed in a ambient temperature range of 0° to $+70^{\circ}$ C for commercial temperature devices and -40° to $+85^{\circ}$ for industrial temperature devices.

Revision History

November 7, 2002: Initial publication. Preliminary Information.

November 15, 2002: Added footnotes to Tables 5, 9, and 10.

December 12, 2002: Added Clock Speed parameter to PLL and Core supply in Table 16.

December 19, 2002: Release version.

January 13, 2003: Changed Thermal Considerations to read less than 2.7W instead of 2.5W, added values to CLK parameter in Table 5, and revised EJTAG description.

February 4, 2003: Revised description for EJTAG/JTAG pins in Table 1. Changed DDRDM[7:0] from input/output to output only in Tables 1 and 2 and Logic Diagram. Added new section, Voltage Sense Signal Timing, as part of EJTAG description.

March 4, 2003: In Table 2, removed "pull-up" from PCI pin category and from GPIO [24] and GPIO[30-26]. In Table 20, changed max. values for VccSI/O, VccCore, and VccPLL.

July 9, 2003: In Table 7: changed values for DDRDATA, DDRDM, and DDRADDR—WEN signals, and deleted old footnote #3 and changed values in new footnote #3. In Table 8, changed Tdo values. Changed Figure 7. Changed values in Table 18, Power Consumption. Removed IPBus Monitor feature which included changes to Tables 1, 2, 21, 24, and 25. Deleted Table 13 which resulted in a re-ordering of subsequent tables.

March 8, 2004: Added 300MHz speed grade.

May 25, 2004: In Table 9, signals MIIxRXCLK and MIIxTXCLK, the Min and Max values for Thigh/Tlow_9c were changed to 140 and 260 respectively and the Min and Max values for Thigh/Tlow_9d were changed to 14.0 and 26.0 respectively.

Pin Description Table

The following table lists the functions of the pins provided on the RC32438. Some of the functions listed may be multiplexed onto the same pin.

The active polarity of a signal is defined using a suffix. Signals ending with an "N" are defined as being active, or asserted, when at a logic zero (low) level. All other signals (including clocks, buses and select lines) will be interpreted as being active, or asserted when at a logic one (high) level.

Signal	Туре	Name/Description
System		
CLK	I	Master Clock. This is the master clock input. The processor frequency is a multiple of this clock frequency. This clock is used as the system clock for all memory and peripheral bus operations.
EXTCLK	0	External Clock. This clock is used for all memory and peripheral bus operations.
COLDRSTN	I	Cold Reset. The assertion of this signal initiates a cold reset. This causes the processor state to be initialized, boot configuration to be loaded, and the internal PLL to lock onto the master clock (CLK).
RSTN	I/O	Reset. The assertion of this bidirectional signal initiates a warm reset. This signal is asserted by the RC32438 during a warm reset.
Memory and Perip	oheral Bus	
BDIRN	0	External Buffer Direction. Memory and peripheral bus external data bus buffer direction control. If the RC32438 memory and peripheral bus is connected to the A side of a transceiver, such as an IDT74FCT245, then this pin may be directly connected to the direction control (e.g., BDIR) pin of the transceiver.
BGN	0	Bus Grant. This signal is asserted by the RC32438 to indicate that the RC32438 has relinquished ownership of the memory and peripheral bus.
BOEN	0	External Buffer Enable. This signal provides an output enable control for an external buffer on the memory and peripheral data bus.
BRN	I	Bus Request. This signal is asserted by an external device to request ownership of the memory and peripheral bus.
BWEN[1:0]	0	Byte Write Enables. These signals are memory and peripheral bus byte write enable signals. BWEN[0] corresponds to byte lane MDATA[7:0] BWEN[1] corresponds to byte lane MDATA[15:8]
CSN[5:0]	0	Chip Selects. These signals are used to select an external device on the memory and peripheral bus.
MADDR[21:0]	0	Address Bus. 22-bit memory and peripheral bus address bus. MADDR[25:22] are available as GPIO alternate functions
MDATA[15:0]	I/O	Data Bus. 16-bit memory and peripheral data bus. During a cold reset, these pins function as inputs that are used to load the boot configuration vector.
OEN	0	Output Enable. This signal is asserted when data should be driven on by an external device on the memory and peripheral bus.
RWN	0	Read Write. This signal indicates if the transaction on the memory and peripheral bus is a read transaction or a write transaction. A high level indicates a read from an external device. A low level indicates a write to an external device.

Table 1 Pin Description (Part 1 of 9)

Signal	Туре	Name/Description				
GPIO[30]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: PCIMUINTN Alternate function: PCI Messaging unit interrupt output.				
GPIO[31]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin.				
SPI Interface		,				
SCK	I/O	Serial Clock. This signal is used as the serial clock output in SPI mode and in PCI satellite mode with suspended CPU execution during PCI serial EEPROM loading. This pin may be configured as a GPIO pin.				
SDI	I/O	Serial Data Input. This signal is used to shift in serial data in SPI mode and in PCI satellite mode with suspended CPU execution during PCI serial EEPROM loading. This pin may be configured as a GPIO pin.				
SDO	I/O	Serial Data Output. This signal is used shift out serial data in SPI mode and in PCI satellite mode with suspended CPU execution during PCI serial EEPROM loading. This pin may be configured as a GPIO pin.				
I ² C Bus Interface	· I	,				
SCL	I/O	I ² C Clock. I ² C-bus clock.				
SDA	I/O	I ² C Data Bus. I ² C-bus data bus.				
Ethernet Interface	es	,				
MIIOCL	I	Ethernet 0 MII Collision Detected. This signal is asserted by the ethernet PHY when a collision is detected.				
MIIOCRS	I	Ethernet 0 MII Carrier Sense. This signal is asserted by the ethernet PHY when either the transmit or receive medium is not idle.				
MIIORXCLK	I	Ethernet 0 MII Receive Clock. This clock is a continuous clock that provides a timing reference for the reception of data.				
MII0RXD[3:0]	I	Ethernet 0 MII Receive Data. This nibble wide data bus contains the data received by the ethernet PHY.				
MIIORXDV	I	Ethernet 0 MII Receive Data Valid. The assertion of this signal indicates that valid receive data is in the MII receive data bus.				
MII0RXER	I	Ethernet 0 MII Receive Error. The assertion of this signal indicates that an error was detected somewhere in the ethernet frame currently being sent in the MII receive data bus.				
MII0TXCLK	I	Ethernet 0 MII Transmit Clock. This clock is a continuous clock that provides a timing reference for the transfer of transmit data.				
MII0TXD[3:0]	0	Ethernet 0 MII Transmit Data. This nibble wide data bus contains the data to be transmitted.				
MIIOTXENP	0	Ethernet 0 MII Transmit Enable. The assertion of this signal indicates that data is present on the MII for transmission.				
MII0TXER	0	Ethernet 0 MII Transmit Coding Error. When this signal is asserted toge with MIITXENP, the ethernet PHY will transmit symbols which are not valid or delimiters.				
MII1CL	I	Ethernet 1 MII Collision Detected. This signal is asserted by the ethernet PHY when a collision is detected.				

Table 1 Pin Description (Part 7 of 9)

Signal	Туре	Name/Description
MII1CRS	I	Ethernet 1 MII Carrier Sense. This signal is asserted by the ethernet PHY when either the transmit or receive medium is not idle.
MII1RXCLK	I	Ethernet 1 MII Receive Clock. This clock is a continuous clock that provides a timing reference for the reception of data.
MII1RXD[3:0]	I	Ethernet 1 MII Receive Data. This nibble wide data bus contains the data received by the ethernet PHY.
MII1RXDV	I	Ethernet 1 MII Receive Data Valid. The assertion of this signal indicates that valid receive data is in the MII receive data bus.
MII1RXER	I	Ethernet 1 MII Receive Error. The assertion of this signal indicates that an error was detected somewhere in the ethernet frame currently being sent in the MII receive data bus.
MII1TXCLK	I	Ethernet 1 MII Transmit Clock. This clock is a continuous clock that provides a timing reference for the transfer of transmit data.
MII1TXD[3:0]	0	Ethernet 1 MII Transmit Data. This nibble wide data bus contains the data to be transmitted.
MII1TXENP	0	Ethernet 1 MII Transmit Enable. The assertion of this signal indicates that data is present on the MII for transmission.
MII1TXER	0	Ethernet 1 MII Transmit Coding Error. When this signal is asserted together with MIITXENP, the ethernet PHY will transmit symbols which are not valid data or delimiters.
MIIMDC	0	MII Management Data Clock. This signal is used as a timing reference for transmission of data on the management interface.
MIIMDIO	I/O	MII Management Data. This bidirectional signal is used to transfer data between the station management entity and the ethernet PHY.
JTAG / EJTAG		
EJTAG_TMS	1	EJTAG Mode . The value on this signal controls the test mode select of the EJTAG Controller. When using the JTAG boundary scan, this pin should be left disconnected (since there is an internal pull-up) or driven high.
JTAG_TCK	I	JTAG Clock. This is an input test clock used to clock the shifting of data into or out of the boundary scan logic, JTAG Controller, or the EJTAG Controller. JTAG_TCK is independent of the system and the processor clock with a nominal 50% duty cycle.
JTAG_TDI	I	JTAG Data Input. This is the serial data input to the boundary scan logic, JTAG Controller, or the EJTAG Controller.
JTAG_TDO	0	JTAG Data Output. This is the serial data shifted out from the boundary scan logic, JTAG Controller, or the EJTAG Controller. When no data is being shifted out, this signal is tri-stated.
JTAG_TMS	I	JTAG Mode. The value on this signal controls the test mode select of the boundary scan logic or JTAG Controller. When using the EJTAG debug interface, this pin should be left disconnected (since there is an internal pull-up) or driven high.

Table 1 Pin Description (Part 8 of 9)

Signal	Name/Description
MDATA[7]	Boot Device Width. This field specifies the width of the boot device (i.e., Device 0). 0x0 - 8-bit boot device width 0x1 - 16-bit boot device width
MDATA[8]	Reset Mode. This bit specifies the length of time the RSTN signal is driven. 0x0 - Normal reset: RSTN driven for minimum of 4096 clock cycles 0x1 - reserved
MDATA[11:9]	PCI Mode. This bit controls the operating mode of the PCI bus interface. The initial value of the EN bit in the PCIC register is determined by the PCI mode. 0x0 - Disabled (EN initial value is zero) 0x1 - PCI satellite mode with PCI target not ready (EN initial value is one) 0x2 - PCI satellite mode with suspended CPU execution (EN initial value is one) 0x3 - PCI host mode with external arbiter (EN initial value is zero) 0x4 - PCI host mode with internal arbiter using fixed priority arbitration algorithm (EN initial value is zero) 0x5 - PCI host mode with internal arbiter using round robin arbitration algorithm (EN initial value is zero) 0x6 - reserved
MDATA[12]	Disable Watchdog Timer. When this bit is set, the watchdog timer is disabled following a cold reset. 0x0 - Watchdog timer enabled 0x1 - Watchdog timer disabled
MDATA[15:13]	Reserved. These pins must be driven low during boot configuration.

Table 3 Boot Configuration Encoding (Part 2 of 2)

Logic Diagram — RC32438

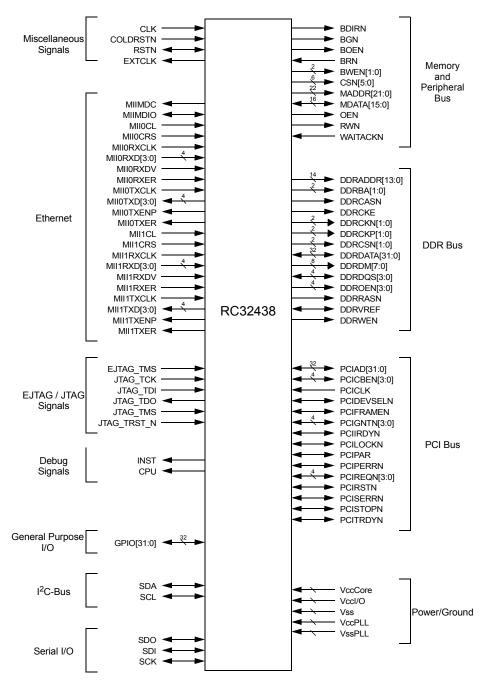


Figure 1 Logic Diagram

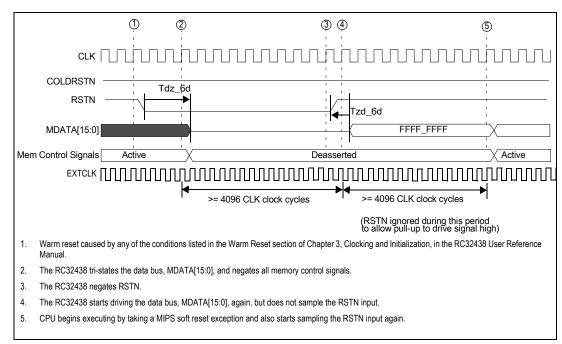


Figure 5 Warm Reset AC Timing Waveform

e:	Symbol ¹	Referenc	200	MHz	233	MHz	266	MHz	300	MHz	11:4	Conditions	Timing
Signal	Symbol	e Edge	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
Memory Bus - DDR Ad	cess												
DDRDATA[31:0]	Tskew_7g ²	DDRDQSx	0.0	0.9	0.0	0.9	0.0	0.9	0.0	8.0	ns		See Figures 6
	Tdo_7k ³		1.5	3.3	1.1	2.9	0.9	2.7	0.7	2.4	ns		and 7.
DDRDM[7:0]	Tdo_7l	DDRDQSx	1.5	3.3	1.1	2.9	0.9	2.7	0.7	2.4	ns		
DDRDQS[3:0]	Tac	DDRCKPx	-0.75	0.75	-0.75	0.75	-0.75	0.75	-0.75	0.75	ns		
DDRADDR[13:0], DDRBA[1:0], DDRCASN, DDRCKE, DDRCSN[1:0], DDROEN[3:0], DDRRASN, DDRWEN	Tdo_7m ⁴	DDRCKPx	1.1	4.5	1.1	4.5	1.1	4.5	1.1	4.5	ns		

Table 7 DDR SDRAM Timing Characteristics

^{1.} In the DDR data sheet: Tskew_7g = t_{DQSQ:} Tdo_7k = t_{DH}, t_{DS:} Tdo_7l = t_{DH}, t_{DS:} Tac = t_{AC:} Tdo_7m = t_{IH}, t_{IS.}

^{2.} Meets DDR timing requirements for DDR 266 SDRAMs with 400 ps remaining margin to compensate for PCB propagation mismatches, which is adequate to guarantee functional timing, provided the RC32438 DDR layout guidelines are followed.

^{3.} Setup times are calculated as applicable clock period - Tdo max. For example, if the DDR is running at 266MHz, it uses a 133MHz input clock. The period for a 133MHz clock is 7.5ns. If the Tdo max value is 4.5ns, the T_{IS} parameter is 7.5ns minus 4.5ns = 3ns. The DDR spec for this parameter is 1ns, so there is 2ns of slack left over for board propagation. Calculations for T_{DS} are similar, but since this parameter is taken relative to the DDRDQS signals, which are referenced on both edges, the effective period with a 133MHz input clock is only 3.75ns. So, if the max Tdo is 2.7ns, we have 3.75ns minus 2.7ns = 1.05ns for T_{DS}. The DDR data sheet specs a value of 0.5ns for 266MHz, so this leaves 0.55ns slack for board propagation delays.

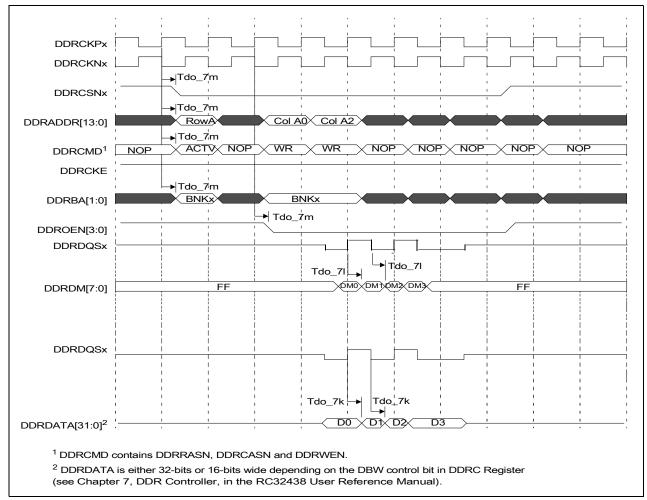


Figure 7 DDR SDRAM Timing Waveform — Write Access

Signal	Symbol	Reference	200MHz		233MHz		266MHz		300MHz		Unit	Conditions	Timing Diagram
Jigilai	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Oiiit		Reference
Memory and Periphe	eral Bus ¹												See Figures 8
MADDR[21:0]	Tdo_8a	EXTCLK rising	0.0	5.0	0.0	5.0	0.0	5.0	0.0	5.0	ns		and 9.
	Tdz_8a ²		0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.1	ns		
	Tzd_8a ²		0.5	2.3	0.5	2.3	0.5	2.3	0.5	2.3	ns		
MADDR[25:22]	Tdo_8b	EXTCLK rising	0.0	6.5	0.0	6.5	0.0	6.5	0.0	6.5	ns		
	Tdz_8b ²	1	0.7	1.5	0.7	1.5	0.7	1.5	0.7	1.5	ns		
	Tzd_8b ²		1.2	3.3	1.2	3.3	1.2	3.3	1.2	3.3	ns		

Table 8 Memory and Peripheral Bus AC Timing Characteristics (Part 1 of 3)

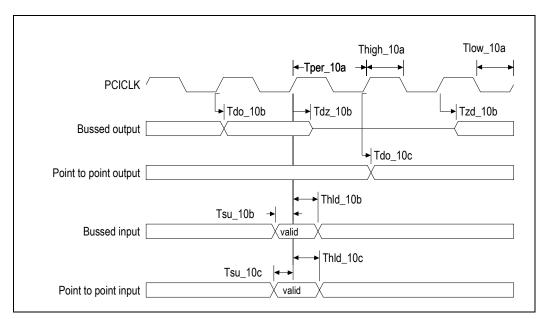


Figure 13 PCI AC Timing Waveform

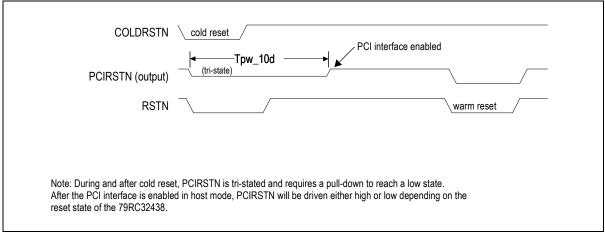


Figure 14 PCI AC Timing Waveform — PCI Reset in Host Mode

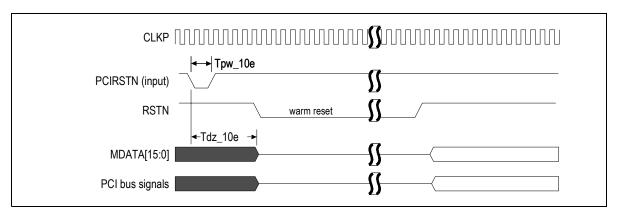


Figure 15 PCI AC Timing Waveform — PCI Reset in Satellite Mode

e:	Sumah al	Reference	200MHz		233MHz		266MHz		300MHz		11:4	Conditions	Timing
Signal	Symbol	Edge	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
EJTAG and JTAG		<u>'</u>						ı					l
JTAG_TCK	Tper_16a	none	25.0	50.0	25.0	50.0	25.0	50.0	25.0	50.0	ns		See Figure 22.
	Thigh_16a, Tlow_16a		10.0	25.0	10.0	25.0	10.0	25.0	10.0	25.0	ns		
JTAG_TMS ¹ ,	Tsu_16b	JTAG_TCK	2.4	_	2.4	_	2.4	_	2.4	_	ns		
JTAG_TDI	Thld_16b	rising	1.0	_	1.0	_	1.0	_	1.0	_	ns		
JTAG_TDO	Tdo_16c	JTAG_TCK	_	11.3	_	11.3	_	11.3	_	11.3	ns		
	Tdz_16c ²	falling	_	11.3	_	11.3	_	11.3	_	11.3	ns		
JTAG_TRST_N	Tpw_16d ²	none	25.0	_	25.0	_	25.0	_	25.0	_	ns		
EJTAG_TMS ¹	Tsu_16e	JTAG_TCK	2.0	_	2.0	_	2.0	_	2.0	_	ns		
	Thld_6e	rising	1.0	_	1.0	_	1.0	_	1.0	_	ns		
VSENSE	Trise_16f	none	_	2	_	2	_	2	_	2	sec	Measured from 0.5V (T _{active})	See Figure 24.

Table 14 JTAG AC Timing Characteristics

^{1.} The JTAG specification, IEEE 1149.1, recommends that both JTAG_TMS and EJTAG_TMS should be held at 1 while the signal applied at JTAG_TRST_N changes from 0 to 1. Otherwise, a race may occur if JTAG_TRST_N is deasserted (going from low to high) on a rising edge of JTAG_TCK when either JTAG_TMS or EJTAG_TMS is low, because the TAP controller might go to either the Run-Test/Idle state or stay in the Test-Logic-Reset state.

 $^{^{2\}cdot}$ The values for this symbol were determined by calculation, not by testing.

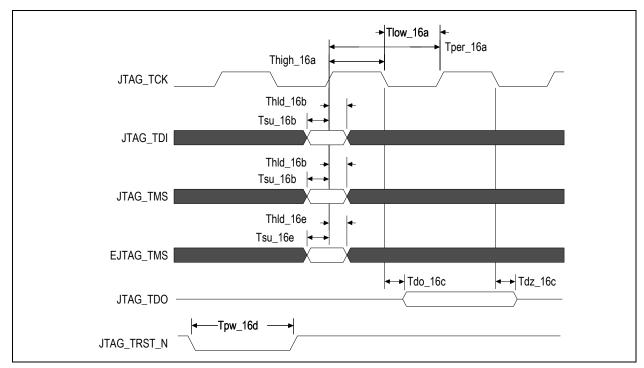


Figure 22 JTAG AC Timing Waveform

The IEEE 1149.1 specification requires that the JTAG and EJTAG TAP controllers be reset at power-up whether or not the interfaces are used for a boundary scan or a probe. Reset can occur through a pull-down resistor on JTAG_TRST_N if the probe is not connected. However, on-chip pull-up resistors are implemented on the RC32438 due to an IEEE 1149.1 requirement. Having on-chip pull-up and external pull-down resistors for the JTAG_TRST_N signal requires special care in the design to ensure that a valid logical level is provided to JTAG_TRST_N, such as using a small external pull-down resistor to ensure this level overrides the on-chip pull-up. An alternative is to use an active power-up reset circuit for JTAG_TRST_N, which drives JTAG_TRST_N low only at power-up and then holds JTAG_TRST_N high afterwards with a pull-up resistor.

Figure 23 shows the electrical connection of the EJTAG probe target system connector.

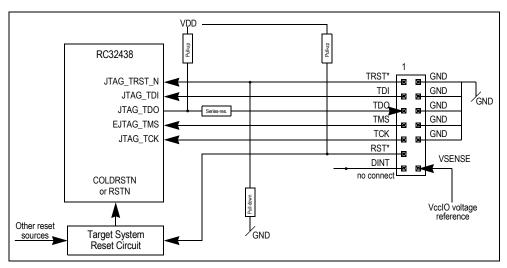
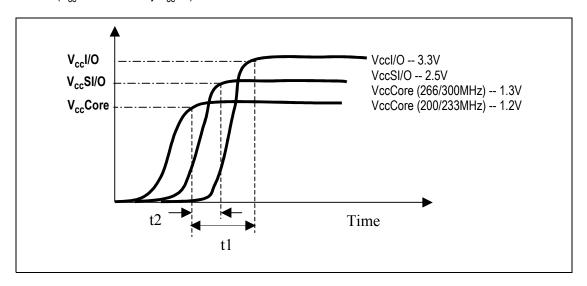


Figure 23 Target System Electrical EJTAG Connection

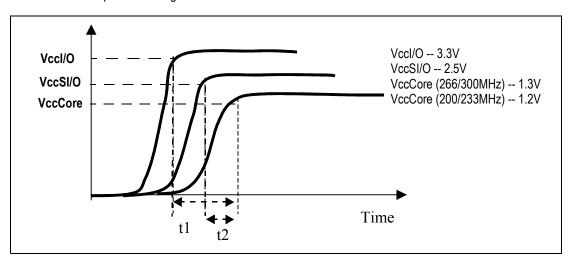
Power-on Sequence


Three power-on sequences are given below. Sequence #1 is recommended because it will prevent I/O conflicts and will also allow the input signals to propagate when the I/O powers are brought up.

Note: The ESD diodes may be damaged if one of the voltages is applied and one of the other voltages is at a ground level.

A. Recommended Sequence

t2 > 0 whenever possible ($V_{cc}Core$)


t1 - t2 can be 0 (V_{cc}SI/O followed by V_{cc}I/O)

B. Reverse Voltage Sequence

If sequence A is not feasible, then Sequence B can be used:

t1 <50ms and t2 <50ms to prevent damage.

C. Simultaneous Power-up

VccI/O, VccSI/O, and VccCore can be powered up simultaneously.

Power Consumption

Para	meter	200	MHz	233	MHz	266	MHz	300	MHz	Unit	Conditions
		Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.		Conditions
I _{cc} I/O		130	150	180	200	220	250	260	300	mA	C _L = 35 pF
I _{cc} SI/O		100	120	150	170	200	220	250	270	mA	T _{ambient} = 25°C Max. values use the maximum volt-
I _{cc} Core, I _{cc} PLL	Normal mode	460	500	510	550	610	650	680	730	mA	ages listed in Table 15. Typical values use the typical voltages listed in that table.
Power Dissipation	Normal mode	1.2	1.6	1.6	1.9	2.0	2.4	2.4	2.7	W	

Table 17 RC32438 Power Consumption

DC Electrical Characteristics

Values based on systems running at recommended supply voltages, as shown in Table 15.

Note: See Table 2, Pin Characteristics, for a complete I/O listing.

I/O Type	Para- meter	Min.	Typical	Max.	Unit	Conditions
LOW Drive Output	I _{OL}	_	14.0	_	mA	V _{OL} = 0.4V
	I _{OH}	_	-12.0	_	mA	V _{OH} = 1.5V
HIGH Drive	I _{OL}	_	24.0	_	mA	V _{OL} = 0.4V
Output	I _{OH}	_	-42.0	_	mA	V _{OH} = 1.5V
Schmitt Trigger	V _{IL}	-0.3	_	0.8	V	_
Input (STI)	V_{IH}	2.0	_	V _{cc} I/O + 0.5	V	_
SSTL_2 (for DDR	I _{OL}	7.6	_	_	mA	V _{OL} = 0.5V
SDRAM)	I _{OH}	-7.6	_	_	mA	V _{OH} = 1.76V
-	V_{IL}	-0.3	_	0.5(V _{cc} SI/O) - 0.18	V	
-	V _{IH}	0.5(V _{cc} SI/O) + 0.18	_	V _{cc} SI/O + 0.3	V	

Table 18 DC Electrical Characteristics (Part 1 of 2)

Absolute Maximum Ratings

Symbol	Parameter	Min ¹	Max ¹	Unit
V _{CC} I/O	I/O supply except for SSTL_2 ²	-0.6	4.0	V
V _{CC} SI/O	I/O supply for SSTL_2 ²	-0.6	3.0	V
V _{CC} Core	Core Supply Voltage	-0.6	2.0	V
V _{CC} PLL	PLL supply	-0.6	2.0	V
VinI/O	I/O Input Voltage except for SSTL_2	-0.6	V _{cc} I/O+ 0.5	V
VinSI/O	I/O Input Voltage for SSTL_2	-0.6	V _{cc} SI/O+ 0.5	V
T _a Industrial	Ambient Operating Temperature	-40	+85	°C
T _a Commercial	Ambient Operating Temperature	0	+70	°C
T _s	Storage Temperature	-40	+125	°C

Table 19 Absolute Maximum Ratings

^{1.} Functional and tested operating conditions are given in Table 15. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

 $^{^{2\}cdot}$ SSTL_2 I/Os are used to connect to DDR SDRAM.

RC32438 Ground Pins

| V _{ss} PLL |
|-----------------|-----------------|-----------------|-----------------|---------------------|
| D4 | L10 | P13 | U15 | AA1, AC1 |
| D5 | L11 | P14 | U16 | |
| D6 | L12 | P15 | U17 | |
| D10 | L13 | P16 | U23 | |
| D11 | L14 | P17 | V4 | |
| D12 | L15 | R3 | V23 | |
| D16 | L16 | R10 | W4 | |
| D17 | L17 | R11 | W23 | |
| D18 | M10 | R12 | Y4 | |
| D19 | M11 | R13 | Y23 | |
| E4 | M12 | R14 | AA4 | |
| F4 | M13 | R15 | AA23 | |
| G4 | M14 | R16 | AB4 | |
| G23 | M15 | R17 | AB23 | |
| H4 | M16 | T10 | AC4 | |
| H23 | M17 | T11 | AC5 | |
| J4 | N10 | T12 | AC6 | |
| J23 | N11 | T13 | AC10 | |
| K10 | N12 | T14 | AC11 | |
| K11 | N13 | T15 | AC12 | |
| K12 | N14 | T16 | AC16 | |
| K13 | N15 | T17 | AC17 | 7 |
| K14 | N16 | U10 | AC18 | |
| K15 | N17 | U11 | AC19 | |
| K16 | P10 | U12 | | |
| K17 | P11 | U13 | | |
| K23 | P12 | U14 | | 7 |

Table 22 RC32438 Ground Pins

Signal Name	I/O Type	Location	Signal Category
DDRADDR[00]	0	AC26	DDR Bus
DDRADDR[01]	0	AB25	
DDRADDR[02]	0	AB26	
DDRADDR[03]	0	AA25	
DDRADDR[04]	0	AA26	
DDRADDR[05]	0	Y26	
DDRADDR[06]	0	W25	
DDRADDR[07]	0	W24	
DDRADDR[08]	0	V24	
DDRADDR[09]	0	U26	
DDRADDR[10]	0	T25	
DDRADDR[11]	0	U24	
DDRADDR[12]	0	T26	
DDRADDR[13]	0	R25	
DDRBA[00]	0	Y25	
DDRBA[01]	0	W26	
DDRCASN	0	V26	
DDRCKE	0	K26	
DDRCKN[00]	0	H24	
DDRCKN[01]	0	Y24	
DDRCKP[00]	0	G24	
DDRCKP[01]	0	AA24	
DDRCSN[00]	0	T24	
DDRCSN[01]	0	R26	
DDRDATA[00]	I/O	C23	
DDRDATA[01]	I/O	B23	
DDRDATA[02]	I/O	A24	
DDRDATA[03]	I/O	C24	
DDRDATA[04]	I/O	A25	
DDRDATA[05]	I/O	A26	
DDRDATA[06]	I/O	B26	
DDRDATA[07]	I/O	C26	
DDRDATA[08]	I/O	C25	
DDRDATA[09]	I/O	E24	
DDRDATA[10]	I/O	D26	

Table 24 RC32438 Alphabetical Signal List (Part 2 of 9)

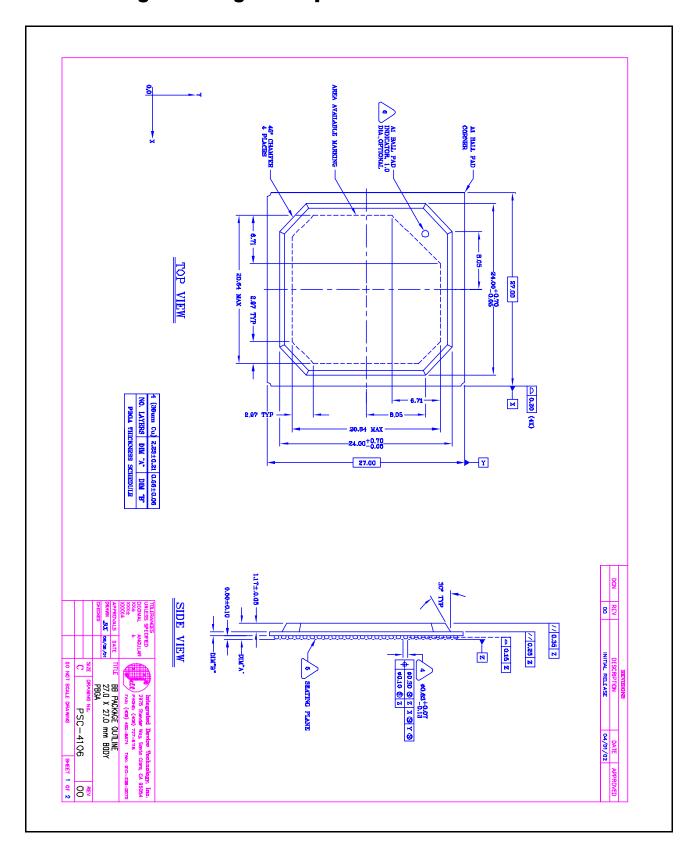

Signal Name	I/O Type	Location	Signal Category
MDATA[02]	I/O	B12	Memory and Peripheral Bus
MDATA[03]	I/O	B10	
MDATA[04]	I/O	C14	
MDATA[05]	I/O	C13	
MDATA[06]	I/O	A12	
MDATA[07]	I/O	A11	
MDATA[08]	I/O	B11	
MDATA[09]	I/O	C11	
MDATA[10]	I/O	A10	
MDATA[11]	I/O	B9	
MDATA[12]	I/O	C10	
MDATA[13]	I/O	B8	
MDATA[14]	I/O	A9	
MDATA[15]	I/O	A8	
MII0CL	I	A1	Ethernet Interfaces
MII0CRS	I	B1	
MIIORXCLK	I	C2	
MII0RXD[00]	I	C1	
MII0RXD[01]	I	D2	
MII0RXD[02]	I	D3	
MII0RXD[03]	I	D1	
MII0RXDV	I	G2	
MII0RXER	I	G1	
MIIOTXCLK	I	G3	
MII0TXD[00]	0	E2	
MII0TXD[01]	0	E3	
MII0TXD[02]	0	E1	
MII0TXD[03]	0	F2	
MII0TXENP	0	F3	
MII0TXER	0	F1	
MII1CL	I	H2	
MII1CRS	I	H1	
MII1RXCLK	I	H3	1
MII1RXD[00]	I	J2	
MII1RXD[01]	I	J1	

Table 24 RC32438 Alphabetical Signal List (Part 6 of 9)

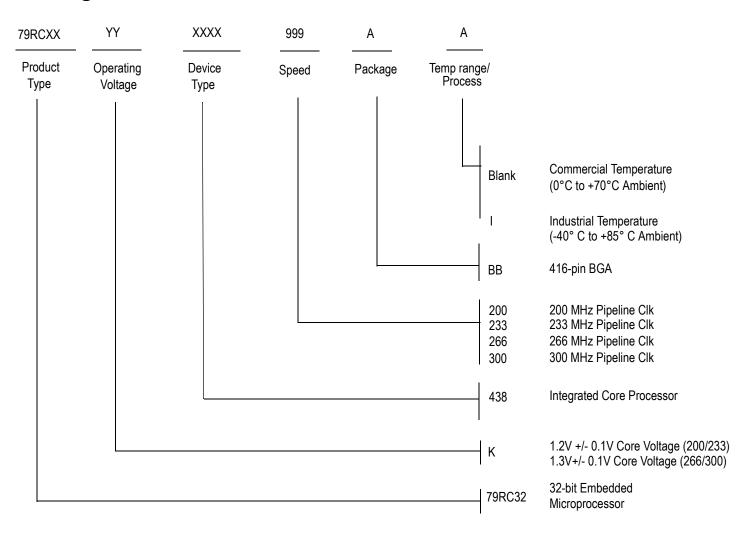

Signal Name	I/O Type	Location	Signal Category
MII1RXD[02]	ļ	K2	Ethernet Interfaces
MII1RXD[03]	I	J3	
MII1RXDV	I	K1	
MII1RXER	I	L2	
MII1TXCLK	I	K3	
MII1TXD[00]	0	L1	
MII1TXD[01]	0	M2	
MII1TXD[02]	0	M1	
MII1TXD[03]	0	L3	
MII1TXENP	0	N2	
MII1TXER	0	N1	
MIIMDC	0	М3	
MIIMDIO	I/O	P2	
OEN	0	C5	Memory and Peripheral Bus
PCIAD[00]	I/O	AD22	PCI Bus
PCIAD[01]	I/O	AF23	
PCIAD[02]	I/O	AE23	
PCIAD[03]	I/O	AF22	
PCIAD[04]	I/O	AD23	
PCIAD[05]	I/O	AE22	
PCIAD[06]	I/O	AD20	
PCIAD[07]	I/O	AF21	
PCIAD[08]	I/O	AD19	
PCIAD[09]	I/O	AF20	
PCIAD[10]	I/O	AE20	
PCIAD[11]	I/O	AD18	
PCIAD[12]	I/O	AF19	
PCIAD[13]	I/O	AE19	
PCIAD[14]	I/O	AF18	
PCIAD[15]	I/O	AD17	
PCIAD[16]	I/O	AE12	
PCIAD[17]	I/O	AF11	
PCIAD[18]	I/O	AD10	1
PCIAD[19]	I/O	AE11	
PCIAD[20]	I/O	AF10	

Table 24 RC32438 Alphabetical Signal List (Part 7 of 9)

RC32438 Package Drawing — 416-pin BGA

Ordering Information

Valid Combinations

79RC32K438 -200BB, 233BB, 266BB, 300BB 416-pin BGA package, Commercial Temperature

79RC32K438 -200BBI, 233BBI 416-pin BGA package, Industrial Temperature

CORPORATE HEADQUARTERS

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES:

800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support:

email: rischelp@idt.com phone: 408-284-8208