

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	ОТР
EEPROM Size	16 × 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lce673-04i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

FEATURES 1
APPLICATONS 1
GENERAL DESCRIPTION1
SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS
PIN CONFIGURATIONS
ORDERING GUIDE
PIN FUNCTION DESCRIPTIONS
TERMINOLOGY 8
ADC SPECIFICATIONS 8
Integral Nonlinearity 8
Differential Nonlinearity 8
Offset Error 8
Full Scale Error
Full-Scale Effor
Signal to (Noise + Distortion) Ratio
I otal Harmonic Distortion
DAC SPECIFICATIONS
Relative Accuracy
Voltage Output Settling Time
Digital-to-Analog Glitch Impulse
ARCHITECTURE, MAIN FEATURES 9
MEMORY ORGANIZATION9
OVERVIEW OF MCU-RELATED SFRs 10
Accumulator SFR 10
B SFR 10
Stack Pointer SFR 10
Data Pointer
Program Status Word SFR 10
Power Control SFR 10
SPECIAL FUNCTION REGISTERS
ADC CIRCUIT INFORMATION 12
General Overview 12
ADC Transfer Function 12
Turical Operation 12
ADCCONIL (ADC Control SED #1)
$ADCCONI = (ADC Control SFR #1) \dots 13$
$ADCCON2 = (ADC Control SFR #2) \dots 14$
ADCCON3—(ADC Control SFR $\#3$)
Driving the ADC
Voltage Reference Connections
Configuring the ADC 16
ADC DMA Mode 16
DMA Mode Configuration Example
Micro Operation during ADC DMA Mode 17
Offset and Gain Calibration Coefficients
Calibration
NONVOLATILE FLASH MEMORY 18
Flash Memory Overview
Flash/EE Memory and the ADuC812
ADuC812 Flash/EE Memory Reliability
Using the Flash/EE Program Memory
Using the Flash/EE Data Memory
ECON—Flash/EE Memory Control SFR
Flash/EE Memory Timing 20
Using the Flash/EE Memory Interface 20
Erase-All 20
Erase-All
Erase-All 20 Program a Byte 20 USER INTERFACE TO OTHER ON-CHIP
Erase-All 20 Program a Byte 20 USER INTERFACE TO OTHER ON-CHIP 20 ADuC812 PERIPHERALS 21
Erase-All 20 Program a Byte 20 USER INTERFACE TO OTHER ON-CHIP 20 ADuC812 PERIPHERALS 21 Using the DAC 22

WATCHDOG TIMER	. 24
POWER SUPPLY MONITOR	. 24
SERIAL PERIPHERAL INTERFACE	. 25
MISO (Master In, Slave Out Data I/O Pin)	. 25
MOSI (Master Out, Slave In Pin)	26
SCLOCK (Serial Clock I/O Pin)	. 26
SS (Slave Select Input Pin)	. 26
Using the SPI Interface	27
SPI Interface—Master Mode	27
SPI Interface—Slave Mode	27
I^2C COMPATIBLE INTERFACE	28
8051 COMPATIBLE INTERIMOL	20
Derellal I/O Dereta 0, 2	29
Time on Communications	29
Timers/Counters \dots	29
Timer/Counters 0 and 1 Data Registers	. 31
TH0 and TL0	31
THI and TLI	31
TIMER/COUNTERS 0 AND 1 OPERATING MODES	. 32
Mode 0 (13-Bit Timer/Counter)	. 32
Mode 1 (16-Bit Timer/Counter)	. 32
Mode 2 (8-Bit Timer/Counter with Auto Reload)	. 32
Mode 3 (Two 8-Bit Timer/Counters)	. 32
Timer/Counter 2 Data Registers	. 33
TH2 and TL2	33
RCAP2H and RCAP2L	33
Timer/Counter Operation Modes	. 34
16-Bit Autoreload Mode	34
16-Bit Capture Mode	34
UART SERIAL INTERFACE	35
Mode 0 (8-Bit Shift Register Mode)	36
Mode 1 (8-Bit UART Variable Baud Rate)	36
Mode 2 (0-Bit UART with Fixed Band Rate)	36
Mode 2 (9-Bit UART with Variable Baud Rate)	36
UAPT Social Dort Paud Pate Consection	26
Timer 1 Concepted Paud Pates	27
Timer 1 Generated Daud Rates	27
	. 31
	. 38
Interrupt Priority	. 39
Interrupt Vectors	39
ADuC812 HARDWARE DESIGN CONSIDERATIONS	. 40
Clock Oscillator	
External Memory Interface	40
	40 40
Power-On Reset Operation	40 40 41
Power-On Reset Operation	40 40 41 41
Power-On Reset Operation Power Supplies Power Consumption	40 40 41 41 41 42
Power-On Reset Operation Power Supplies Power Consumption Grounding and Board Layout Recommendations	40 40 41 41 42 43
Power-On Reset Operation Power Supplies Power Consumption Grounding and Board Layout Recommendations OTHER HARDWARE CONSIDERATIONS	40 40 41 41 42 43 44
Power-On Reset Operation	40 40 41 41 42 43 43 44 44
Power-On Reset Operation	40 40 41 41 42 43 43 44 44 44
Power-On Reset Operation	40 40 41 41 42 43 43 44 44 44 44
Power-On Reset Operation	40 40 41 41 42 43 43 44 44 44 45 45
Power-On Reset Operation Power Supplies Power Consumption Grounding and Board Layout Recommendations OTHER HARDWARE CONSIDERATIONS In-Circuit Serial Download Access Embedded Serial Port Debugger Single-Pin Emulation Mode Enhanced-Hooks Emulation Mode Typical System Configuration	40 40 41 41 42 43 44 44 44 45 45 45
Power-On Reset Operation	40 40 41 41 42 43 44 44 44 45 45 45 45 45
Power-On Reset Operation Power Supplies Power Consumption Grounding and Board Layout Recommendations OTHER HARDWARE CONSIDERATIONS In-Circuit Serial Download Access Embedded Serial Port Debugger Single-Pin Emulation Mode Enhanced-Hooks Emulation Mode Typical System Configuration QUICKSTART DEVELOPMENT SYSTEM Download—In-Circuit Serial Downloader	40 40 41 41 42 43 44 44 45 45 45 45 45 45
Power-On Reset Operation Power Supplies Power Consumption Grounding and Board Layout Recommendations OTHER HARDWARE CONSIDERATIONS In-Circuit Serial Download Access Embedded Serial Port Debugger Single-Pin Emulation Mode Enhanced-Hooks Emulation Mode Typical System Configuration QUICKSTART DEVELOPMENT SYSTEM Download—In-Circuit Serial Downloader DeBug—In-Circuit Debugger	40 40 41 41 42 43 43 44 45 45 45 45 45 45 45
Power-On Reset Operation Power Supplies Power Consumption Grounding and Board Layout Recommendations OTHER HARDWARE CONSIDERATIONS In-Circuit Serial Download Access Embedded Serial Port Debugger Single-Pin Emulation Mode Enhanced-Hooks Emulation Mode Typical System Configuration QUICKSTART DEVELOPMENT SYSTEM Download—In-Circuit Serial Downloader DeBug—In-Circuit Debugger ADSIM—Windows Simulator	40 40 41 41 42 43 44 45 45 45 45 45 45 45
Power-On Reset Operation Power Supplies Power Consumption Grounding and Board Layout Recommendations OTHER HARDWARE CONSIDERATIONS In-Circuit Serial Download Access Embedded Serial Port Debugger Single-Pin Emulation Mode Enhanced-Hooks Emulation Mode Typical System Configuration QUICKSTART DEVELOPMENT SYSTEM Download—In-Circuit Serial Downloader DeBug—In-Circuit Debugger ADSIM—Windows Simulator TIMING SPECIFICATIONS	$\begin{array}{c} 40\\ 40\\ 41\\ 41\\ 42\\ 43\\ 44\\ 44\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45$
Power-On Reset Operation Power Supplies Power Consumption Grounding and Board Layout Recommendations OTHER HARDWARE CONSIDERATIONS In-Circuit Serial Download Access Embedded Serial Port Debugger Single-Pin Emulation Mode Enhanced-Hooks Emulation Mode Typical System Configuration QUICKSTART DEVELOPMENT SYSTEM Download—In-Circuit Serial Downloader DeBug—In-Circuit Debugger ADSIM—Windows Simulator TIMING SPECIFICATIONS OUTLINE DIMENSIONS	$\begin{array}{c} 40\\ 40\\ 41\\ 41\\ 41\\ 42\\ 43\\ 44\\ 44\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45$
Power-On Reset Operation Power Supplies Power Consumption Grounding and Board Layout Recommendations OTHER HARDWARE CONSIDERATIONS In-Circuit Serial Download Access Embedded Serial Port Debugger Single-Pin Emulation Mode Enhanced-Hooks Emulation Mode Typical System Configuration QUICKSTART DEVELOPMENT SYSTEM Download—In-Circuit Serial Downloader DeBug—In-Circuit Debugger ADSIM—Windows Simulator TIMING SPECIFICATIONS OUTLINE DIMENSIONS Revision History	$\begin{array}{c} 40\\ 40\\ 41\\ 41\\ 42\\ 43\\ 44\\ 44\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45$

PIN FUNCTION DESCRIPTIONS

Mnemonic	Туре	Function				
DV _{DD}	Р	Digital Positive Supply Voltage, 3 V or 5 V Nominal.				
AV _{DD}	Р	Analog Positive Supply Voltage, 3 V or 5 V Nominal.				
C _{REF}	Ι	Decoupling Input for On-Chip Reference. Connect 0.1 µF between this pin and AGND.				
V _{REF}	I/O	Reference Input/Output. This pin is connected to the internal reference through a series resistor and is the reference source for the ADC. The nominal internal reference voltage is 2.5 V, which appears at the pin. This pin can be overdriven by an external reference.				
AGND	G	Analog Ground. Ground reference point for the analog circuitry.				
P1.0-P1.7	Ι	Port 1 is an 8-bit input port only. Unlike other ports, Port 1 defaults to Analog Input mode. To configure any of these Port Pins as a digital input, write a 0 to the port bit. Port 1 pins are multifunctional and share the following functionality.				
ADC0-ADC7	Ι	Analog Inputs. Eight single-ended analog inputs. Channel selection is via ADCCON2 SFR.				
T2	Ι	Timer 2 Digital Input. Input to Timer/Counter 2. When enabled, Counter 2 is incremented in response to a 1 to 0 transition of the T2 input.				
T2EX	Ι	Digital Input. Capture/Reload trigger for Counter 2; also functions as an Up/Down control input for Counter 2.				
SS	Ι	Slave Select Input for the SPI Interface.				
SDATA	I/O	User selectable, I ² C Compatible or SPI Data Input/Output Pin.				
SCLOCK	I/O	Serial Clock Pin for I ² C Compatible or SPI Serial Interface Clock.				
MOSI	I/O	SPI Master Output/Slave Input Data I/O Pin for SPI Interface.				
MISO	I/O	SPI Master Input/Slave Output Data I/O Pin for SPI Serial Interface.				
DAC0	0	Voltage Output from DAC0.				
DAC1	0	Voltage Output from DAC1.				
RESET	Ι	Digital Input. A high level on this pin for 24 master clock cycles while the oscillator is running resets the device. External power-on reset (POR) circuity must be implemented to drive the RESET pin as described				
D2 0 D2 7	T/O	in the Power-On Reset Operation section.				
P3.0-P3.7	1/0	Port 3 is a bidirectional port with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors; in that state they can be used as inputs. As inputs, Port 3 pin being pulled externally low will source current because of the internal pull-up resistors. Port 3 pins also contain various secondary functions that are described below.				
RxD	I/O	Receiver Data Input (Asynchronous) or Data Input/Output (Synchronous) of Serial (UART) Port				
TxD	0	Transmitter Data Output (Asynchronous) or Clock Output (Synchronous) of Serial (UART) Port				
ĪNT0	Ι	Interrupt 0, programmable edge or level triggered Interrupt input, $\overline{INT0}$ can be programmed to one of two priority levels. This pin can also be used as a gate control input to Timer 0.				
ĪNT1	Ι	Interrupt 1, programmable edge or level triggered Interrupt input, INT1 can be programmed to one of two priority levels. This pin can also be used as a gate control input to Timer 1.				
T0	Ι	Timer/Counter 0 Input.				
T1	Ι	Timer/Counter 1 Input.				
CONVST	Ι	Active Low Convert Start Logic Input for the ADC Block when the External Convert Start Function is Enabled. A low-to-high transition on this input puts the track-and-hold into its hold mode and starts conversion.				
WR	0	Write Control Signal, Logic Output. Latches the data byte from Port 0 into the external data memory.				
RD	0	Read Control Signal, Logic Output. Enables the external data memory to Port 0.				
XTAL2	0	Output of the Inverting Oscillator Amplifier.				
XTAL1	Ι	Input to the Inverting Oscillator Amplifier and to the Internal Clock Generator Circuits.				
DGND	G	Digital Ground. Ground reference point for the digital circuitry.				
P2.0–P2.7 (A8–A15) (A16–A23)	I/O	Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors; in that state they can be used as inputs. As inputs, Port 2 pins being pulled externally low will source current because of the internal pull-up resistors. Port 2 emits the high order address bytes during fetches from external program memory and middle and high order address bytes to the external 24-bit external data memory space.				

PIN FUNCTION DESCRIPTIONS (continued)

Mnemonic	Туре	Function
PSEN	0	Program Store Enable, Logic Output. This output is a control signal that enables the external program memory to the bus during external fetch operations. It is active every six oscillator periods except during external data memory accesses. This pin remains high during internal program execution. PSEN can also be used to enable serial download mode when pulled low through a resistor on power-up or RESET.
ALE	0	Address Latch Enable, Logic Output. This output is used to latch the low byte (and page byte for 24-bit address space accesses) of the address into external memory during normal operation. It is activated every six oscillator periods except during an external data memory access.
ĒĀ	I	External Access Enable, Logic Input. When held high, this input enables the device to fetch code from internal program memory locations 0000H to 1FFFH. When held low, this input enables the device to fetch all instructions from external program memory.
P0.7–P0.0 (A0–A7)	I/O	Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float and in that state can be used as high impedance inputs. Port 0 is also the multiplexed low order address and data bus during accesses to external program or data memory. In this application, it uses strong internal pull-ups when emitting 1s.
EP		Exposed Pad. For the LFCSP, the exposed pad must be soldered and left unconnected.

TERMINOLOGY ADC SPECIFICATIONS

Integral Nonlinearity

This is the maximum deviation of any code from a straight line passing through the endpoints of the ADC transfer function. The endpoints of the transfer function are zero scale, a point 1/2 LSB below the first code transition, and full scale, a point 1/2 LSB above the last code transition.

Differential Nonlinearity

This is the difference between the measured and the ideal 1 LSB change between any two adjacent codes in the ADC.

Offset Error

This is the deviation of the first code transition (0000...000) to (0000...001) from the ideal, i.e., +1/2 LSB.

Full-Scale Error

This is the deviation of the last code transition from the ideal AIN voltage (Full Scale -1.5 LSB) after the offset error has been adjusted out.

Signal-to-(Noise + Distortion) Ratio

This is the measured ratio of signal-to-(noise + distortion) at the output of the ADC. The signal is the rms amplitude of the fundamental. Noise is the rms sum of all nonfundamental signals up to half the sampling frequency ($f_{\rm S}/2$), excluding dc. The ratio is

dependent upon the number of quantization levels in the digitization process; the more levels, the smaller the quantization noise. The theoretical signal-to-(noise + distortion) ratio for an ideal N-bit converter with a sine wave input is given by:

Signal-to-(Noise + Distortion) = (6.02N + 1.76) dB

Thus for a 12-bit converter, this is 74 dB.

Total Harmonic Distortion

Total Harmonic Distortion is the ratio of the rms sum of the harmonics to the fundamental.

DAC SPECIFICATIONS

Relative Accuracy

Relative accuracy or endpoint linearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero-scale error and full-scale error.

Voltage Output Settling Time

This is the amount of time it takes for the output to settle to a specified level for a full-scale input change.

Digital-to-Analog Glitch Impulse

This is the amount of charge injected into the analog output when the inputs change state. It is specified as the area of the glitch in nV sec.

SPECIAL FUNCTION REGISTERS

All registers except the program counter and the four general-purpose register banks reside in the special function register (SFR) area. The SFR registers include control, configuration, and data registers that provide an interface between the CPU and other on-chip peripherals.

Figure 4 shows a full SFR memory map and SFR contents on reset. Unoccupied SFR locations are shown dark shaded (NOT USED). Unoccupied locations in the SFR address space are not implemented, i.e., no register exists at this location. If an unoccupied location is read, an unspecified value is returned. SFR locations reserved for on-chip testing are shown lighter shaded (RESERVED) and should not be accessed by user software. Sixteen of the SFR locations are also bit addressable and denoted by "1" i.e., the bit addressable SFRs are those whose address ends in 0H or 8H.

ISPI WCOL SPE SPIM CPOL CPHA SPR1 SPR0 BITS	SPICON1	DAC0L	DAC0H	DAC1L	DAC1H	DACCON	RESERVED	NOT USED
	F8H 00H	F9H 00H	FAH 00H	FBH 00H	FCH 00H	FDH 04H		
FILL & FOLL & FOLL & FOLL & FOLL & FOLL & FOLL & BITS		ADCOFSL ²	ADCOFSH ²	ADCGAINL ²	ADCGAINH ²	ADCCON3	RESERVED	SPIDAT
[F7H 0[F6H 0[F5H 0[F4H 0[F3H 0[F2H 0[F1H 0[F0H 0]	F0H 00H	F1H 00H	F2H 20H	F3H 00H	F4H 00H	F5H 00H		F7H 00H
MDO MDE MCO MDI I2CM I2CRS I2CTX I2CI BITS			DESEDVED	DESEDVED				ADCCON1
EFH 0 EEH 0 EDH 0 ECH 0 EBH 0 EAH 0 E9H 0 E8H 0	E8H 00H	NEGENVED	NESERVED	NEGENVED	RESERVED	NEGENVED	NEGENVED	EFH 20H
	ACC1							DECEDVED
E7H 0 E6H 0 E5H 0 E4H 0 E3H 0 E2H 0 E1H 0 E0H 0 BITS	EOH OOH	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED
ADCL DMA CCONV SCONV CS3 CS2 CS1 CS0	ADCCON21	ADCDATAL	ADCDATAH					PSMCON
DFH 0 DEH 0 DDH 0 DCH 0 DBH 0 DAH 0 D9H 0 D8H 0 BITS		D9H 00H	DAH 00H	RESERVED	RESERVED	RESERVED	RESERVED	DFH DEH
	DCW1		DMAL	рман	DMAR			
D7H 0 D6H 0 D5H 0 D4H 0 D3H 0 D2H 0 D1H 0 D0H 0		RESERVED				RESERVED	RESERVED	RESERVED
			D2H 00H		D4H 00H	THO		
TF2 EXF2 RCLK TCLK EXEN2 TR2 CNT2 CAP2 BITS		RESERVED	RCAP2L	RCAP2H	TL2	TH2	RESERVED	RESERVED
	C8H 00H		CAH 00H	CBH 00H	CCH 00H	CDH 00H		
PRE2 PRE1 PRE0 WDR1 WDR2 WDS WDE BITS	WDCON'	NOT USED	NOT USED	NOT USED	ETIM3	RESERVED	EDARL	RESERVED
C7H 0 C6H 0 C5H 0 C4H 0 C3H 0 C2H 0 C1H 0 C0H 0	COH 00H				C4H C9H		C6H 00H	
PSI PADC PT2 PS PT1 PX1 PT0 PX0 BITS		ECON	ETIM1	ETIM2	EDATA1	EDATA2	EDATA3	EDATA4
BFH 0 BEH 0 BDH 0 BCH 0 BBH 0 BAH 0 B9H 0 B8H 0	B8H 00H	B9H 00H	BAH 52H	BBH 04H	BCH 00H	BDH 00H	BEH 00H	BFH 00H
RD WR T1 T0 INT1 INT0 TxD RxD BITS	P31	NOT USED	NOT USED	NOT USED	NOT USED	NOT USED	NOT USED	NOT USED
B7H 1 B6H 1 B5H 1 B4H 1 B3H 1 B2H 1 B1H 1 B0H 1	BOH FFH							
EA EADC ET2 ES ET1 EX1 ET0 EX0 PITE	IE1	IE2						
AFH 0 AEH 0 ADH 0 ACH 0 ABH 0 AAH 0 A9H 0 A8H 0	A8H 00H	A9H 00H	NOT USED	NOT USED	NOT USED	NOT USED	NOT USED	NOT USED
	P21							
A THE A CHARTER A AND A AND A AND A AND A AND A BITS								
	A0H FFH	NOT USED	NOT USED	NOT USED	NOT USED	NOT USED	NOT USED	NOT USED
	A0H FFH	NOT USED	NOT USED	NOT USED	NOT USED	NOT USED	NOT USED	NOT USED
A/H I A9H I A4H I A3H I A2H I A1H I A0H I SM0 SM1 SM2 REN TB8 RB8 TI RI BITS 9FH 0 9EH 0 9CH 0 9BH 0 9AH 0 98H 0	A0H FFH SCON ¹ 98H 00H	SBUF	NOT USED	NOT USED	NOT USED	NOT USED	NOT USED	NOT USED
A/H I A9H I A4H I A3H I A2H I A1H I A0H I SM0 SM1 SM2 REN TB8 RB8 TI RI BITS 9FH 0 9EH 0 9CH 0 9BH 0 9AH 0 9BH 0 BITS	A0H FFH SCON ¹ 98H 00H P1 ^{1,3}	SBUF 99H 00H	NOT USED I2CDAT 9AH 00H	NOT USED I2CADD 9BH 55H	NOT USED	NOT USED	NOT USED	NOT USED
A/H I A9H I A4H I A3H I A2H I A1H I A0H I SM0 SM1 SM2 REN TB8 RB8 TI RI BITS 9FH 0 9EH 0 9CH 0 9BH 0 9AH 0 98H 0 BITS 97H 1 96H 1 95H 1 94H 1 93H 1 92H 1 91H 1 90H 1	A0H FFH SCON ¹ 98H 00H P1 ^{1, 3}	NOT USED SBUF 99H 00H NOT USED	NOT USED I2CDAT 9AH 00H NOT USED	NOT USED 12CADD 9BH 55H NOT USED	NOT USED NOT USED NOT USED	NOT USED	NOT USED	NOT USED
A/H I A6H I A4H I A3H I A2H I A1H I A0H I SM0 SM1 SM2 REN TB8 RB8 TI RI BITS 9FH 0 9EH 0 9DH 0 9CH 0 9AH 0 99H 0 98H 0 97H 1 96H 1 95H 1 94H 1 93H 1 92H 1 91H 1 90H 1 BITS	A0H FFH SCON ¹ 98H 00H P1 ^{1, 3} 90H FFH	NOT USED SBUF 99H 00H NOT USED	NOT USED I2CDAT 9AH 00H NOT USED	NOT USED I2CADD 9BH 55H NOT USED	NOT USED NOT USED NOT USED	NOT USED	NOT USED	NOT USED
A/H I A5H I A4H I A3H I A2H I A1H I A0H I SM0 SM1 SM2 REN TB8 RB8 TI RI BITS 9FH 0 9EH 0 9DH 0 9CH 0 9BH 0 9H 0	A0H FFH SCON ¹ 98H 00H P1 ^{1, 3} 90H FFH TCON ¹	NOT USED SBUF 99H 00H NOT USED TMOD	NOT USED I2CDAT 9AH 00H NOT USED TL0	NOT USED 12CADD 9BH 55H NOT USED TL1	NOT USED NOT USED NOT USED THO	NOT USED NOT USED NOT USED TH1	NOT USED NOT USED NOT USED NOT USED	NOT USED NOT USED NOT USED NOT USED
A/H I A6H I A4H I A3H I A2H I A1H I A0H I SM0 SM1 SM2 REN TB8 RB8 TI RI BITS 9FH 0 9EH 0 9CH 0 9BH 0 9AH 0 9H 0 98H 0 97H 1 96H 1 95H 1 94H 1 93H 1 92H 1 91H 1 90H 1 BITS 7F1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 BITS 8FH 0 8DH 0 8AH 0 89H 0 88H 0	A0H FFH SCON ¹ 98H 00H P1 ^{1, 3} 90H FFH TCON ¹ 88H 00H	NOT USED SBUF 99H 00H NOT USED TMOD 89H 00H	NOT USED 12CDAT 9AH 00H NOT USED TL0 8AH 00H	NOT USED 12CADD 9BH 55H NOT USED TL1 8BH 00H	NOT USED NOT USED NOT USED THO 8CH 00H	NOT USED NOT USED NOT USED TH1 8DH 00H	NOT USED NOT USED NOT USED NOT USED	NOT USED NOT USED NOT USED
A/H 1 A6H 1 A5H 1 A4H 1 A3H 1 A2H 1 A1H 1 A0H 1 SM0 SM1 SM2 REN TB8 RB8 T1 R1 R1 BITS 9FH 0 9EH 0 9CH 0 9BH 0 9AH 0 9H 0 98H 0 97H 1 96H 1 95H 1 94H 1 93H 1 92H 1 91H 1 90H 1 BITS 7F1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 IBITS 8FH 0 8DH 0 8BH 0 8AH 0 89H 0 88H 0 8FH 1 8CH 0 8BH 0 8AH 0 89H 0 88H 0 88H 0 87H 1 86H 1 82H 4 82H 4 82H 4 82H 4	A0H FFH SCON ¹ 98H 00H P1 ^{1,3} 90H FFH TCON ¹ 88H 00H P0 ¹	NOT USED SBUF 99H 00H NOT USED TMOD 89H 00H SP	NOT USED I2CDAT 9AH 00H NOT USED TL0 8AH 00H DPL	NOT USED 12CADD 9BH 55H NOT USED TL1 8BH 00H DPH	NOT USED NOT USED NOT USED THO 8CH 00H DPP	NOT USED NOT USED NOT USED TH1 8DH 00H RESERVED	NOT USED NOT USED NOT USED NOT USED RESERVED	NOT USED NOT USED NOT USED NOT USED PCON

SFR MAP KEY:

THESE BITS ARE CONTAINED IN THIS BYTE.

TCON MNEMONIC DEFAULT VALUE 00H SFR ADDRESS

SFR NOTES

15FRs WHOSE ADDRESS ENDS IN 0H OR 8H ARE BIT ADDRESSABLE. 2CALIBRATION COEFFICIENTS ARE PRECONFIGURED ON POWER-UP TO FACTORY CALIBRATED VALUES. 3THE PRIMARY FUNCTION OF PORT 11 SA SAN ANALOG INPUT PORT; THEREFORE, TO ENABLE THE DIGITAL SECONDARY FUNCTIONS ON THESE PORT PINS, WRITE A "0" TO THE CORRESPONDING PORT 1 SFR BIT.

Figure 4. Special Function Register Locations and Reset Values

88H

ADCCON1—(ADC Control SFR #1) The ADCCON1 register controls conversion and acquisition times, hardware conversion modes and power-down modes as detailed below.

SFR Address	EFH
SFR Power-On Default Value	20H

MD1	MD0	CK1	СК0	AQ1	AQ0	T2C	EXC

Bit	Name	Description
ADCCON1.7 ADCCON1.6	MD1 MD0	The mode bits (MD1, MD0) select the active operating mode of the ADC as follows:MD1MD0Active Mode00ADC powered down01ADC normal mode10ADC powered down if not executing a conversion cycle11ADC standby if not executing a conversion cycleNote: In power-down mode the ADC V _{REF} circuits are maintained on, whereas all ADC peripherals are powered down, thus minimizing current consumption.
ADCCON1.5 ADCCON1.4	CK1 CK0	The ADC clock divide bits (CK1, CK0) select the divide ratio for the master clock used to generate the ADC clock. A typical ADC conversion will require 17 ADC clocks. The divider ratio is selected as follows:CK1CK0MCLK Divider001012104118
ADCCON1.3 ADCCON1.2	AQ1 AQ0	The ADC acquisition select bits (AQ1, AQ0) select the time provided for the input track-and-hold amplifier to acquire the input signal, and are selected as follows: AQ1 AQ0 #ADC Clks 0 0 1 0 1 2 1 0 4 1 1 8
ADCCON1.1	T2C	The Timer 2 conversion bit (T2C) is set by the user to enable the Timer 2 overflow bit be used as the ADC convert start trigger input. ADC conversions are initiated on the second Timer 2 overflow.
ADCCON1.0	EXC	The external trigger enable bit (EXC) is set by the user to allow the external CONVST pin to be used as the active low convert start input. This input should be an active low pulse (minimum pulsewidth >100 ns) at the required sample rate.

Table III. ADCCON1 SFR Bit Designations

ADCCON2—(ADC Control SFR #2)

The ADCCON2 register controls ADC channel selection and conversion modes as detailed below.

SFR AddressD8HSFR Power-On Default Value00H

ADCI DMA CCONV	SCONV	CS3	CS2	CS1	CS0
----------------	-------	-----	-----	-----	-----

Table IV.	ADCCON2 S	SFR Bit	Designations
-----------	-----------	---------	--------------

Location	Name	Desc	riptio	n						
ADCCON2.7	ADCI	The ADC interrupt bit (ADCI) is set by hardware at the end of a single ADC conversion cycle or at the end of a DMA block conversion. ADCI is cleared by hardware when the PC vectors to the ADC Interrupt Service Routine.								
ADCCON2.6	DMA	The I A mo	The DMA mode enable bit (DMA) is set by the user to enable a preconfigured ADC DMA mode operation. A more detailed description of this mode is given in the ADC DMA Mode section.							
ADCCON2.5	CCONV	The of contract of converse of converse of converse of the con	The continuous conversion bit (CCONV) is set by the user to initiate the ADC into a continuous mode of conversion. In this mode, the ADC starts converting based on the timing and channel configuration already set up in the ADCCON SFRs; the ADC automatically starts another conversion once a previous conversion has completed.							
ADCCON2.4	SCONV	The sautor	single natica	convei lly rese	rsion b et to "(it (SCONV) is set to initiate a single conversion cycle. The SCONV bit is 0" on completion of the single conversion cycle.				
ADCCON2.3 ADCCON2.2 ADCCON2.1 ADCCON2.0	CS3 CS2 CS1 CS0	The channel selection bits (CS3–0) allow the user to program the ADC channel selection un software control. When a conversion is initiated, the channel converted will be the one point these channel selection bits. In DMA mode, the channel selection is derived from the channel written to the external memory.								
		CS3	CS2	CS1	CS0	CH#				
		0	0	0	0	0				
		0	0	0	1	1				
		0	0	1	0	2				
		0	0	1	1	3				
		0	1	0	0	4				
		0	1	1	1					
		0	1	1	1	7				
		1	0	0	0	Temp Sensor				
		1	1	1	1	DMA STOP				
		All of	ther co	mbina	ations	reserved.				

ADCCON3—(ADC Control SFR #3)

The ADCCON3 register gives user software an indication of ADC busy status.

SFR Address	F5H
SFR Power-On Default Value	00H

BUSY RSVD RSVD RSVD RSVD RSVD RSVD RSVD RSVD
--

Bit Location	Bit Status	Description
ADCCON3.7	BUSY	The ADC busy status bit (BUSY) is a read-only status bit that is set during a valid ADC conversion or calibration cycle. BUSY is automatically cleared by the core at the end of conversion or calibration.
ADCCON3.6	RSVD	ADCCON3.0–3.6 are reserved (RSVD) for internal use. These bits will read as "0" and should only
ADCCON3.5	RSVD	be written as "0" by user software.
ADCCON3.4	RSVD	
ADCCON3.3	RSVD	
ADCCON3.2	RSVD	
ADCCON3.1	RSVD	
ADCCON3.0	RSVD	

Using the Flash/EE Program Memory

This 8K byte Flash/EE program memory array is mapped into the lower 8K bytes of the 64K bytes program space addressable by the ADuC812 and will be used to hold user code in typical applications.

The program memory array can be programmed in one of two modes:

Serial Downloading (In-Circuit Programming)

As part of its embedded download/debug kernel, the ADuC812 facilitates serial code download via the standard UART serial port. Serial download mode is automatically entered on power-up if the external pin \overrightarrow{PSEN} is pulled low through an external resistor as shown in Figure 15. Once in this mode, the user can download code to the program memory array while the device is sited in its target application hardware. A PC serial download executable is provided as part of the ADuC812 QuickStart development system.

The Serial Download protocol is detailed in a MicroConverter Applications Note uC004, available from the ADI MicroConverter website at www.analog.com/micronverter.

Figure 15. Flash/EE Memory Serial Download Mode Programming

Parallel Programming

The parallel programming mode is fully compatible with conventional third party Flash or EEPROM device programmers. In this mode, Ports P0, P1, and P2 operate as the external data and address bus interface, ALE operates as the Write Enable strobe, and Port P3 is used as a general configuration port that configures the device for various program and erase operations during parallel programming.

The high voltage (12 V) supply required for Flash programming is generated using on-chip charge pumps to supply the high voltage program lines.

The complete parallel programming specification is available on the MicroConverter homepage at www.analog.com/microconverter.

Using the Flash/EE Data Memory

The user Flash/EE data memory array consists of 640 bytes that are configured into 160 (Page 00H to Page 9FH) 4-byte pages, as shown in Figure 16.

Figure 16. User Flash/EE Memory Configuration

As with other ADuC812 user peripheral circuits, the interface to this memory space is via a group of registers mapped in the SFR space. A group of four data registers (EDATA1–4) is used to hold the 4-byte page being accessed. EADRL is used to hold the 8-bit address of the page being accessed. Finally, ECON is an 8-bit control register that may be written with one of five Flash/EE memory access commands to trigger various read, write, erase, and verify functions. These register can be summarized as follows:

ECON:	SFR Address Function	B9H Controls access to 640 bytes Flash/EE data space
	Default	00H
EADRL:	SFR Address	C6H Holds the Flash/EE data
EDATA1-4:	Default	page address. 0H through 9FH 00H
	SFR Address Function	BCH to BFH, respectively Holds the Flash/EE data memory page write or page read data bytes.
	Default	EDATA1-4→00H

A block diagram of the SFR registered interface to the data Flash/EE memory array is shown in Figure 17.

Figure 17. User Flash/EE Memory Control and Configuration

USER INTERFACE TO OTHER ON-CHIP ADuC812 PERIPHERALS

The following section gives a brief overview of the various peripherals also available on-chip. A summary of the SFRs used to control and configure these peripherals is also given.

DAC

The ADuC812 incorporates two 12-bit voltage output DACs on-chip. Each has a rail-to-rail voltage output buffer capable

of driving 10 k Ω /100 pF. Each has two selectable ranges, 0 V to V_{REF} (the internal band gap 2.5 V reference) and 0 V to AV_{DD}. Each can operate in 12-bit or 8-bit mode. Both DACs share a control register, DACCON, and four data registers, DAC1H/L, DAC0H/L. It should be noted that in 12-bit asynchronous mode, the DAC voltage output will be updated as soon as the DACL data SFR has been written; therefore, the DAC data registers should be updated as DACH first, followed by DACL.

		DAC Contr	ol				
DACCON		Register					
SFR Address		FDH					
Power-On Defa	ult Value	04H					
Bit Addressable	•	No					
MODE	RNG1	RNG0	CLR1	CLR0	SYNC	PD1	PD0

Table VIII. DACCON SFR Bit Designations

Bit	Name	Description
7	MODE	The DAC MODE bit sets the overriding operating mode for both DACs.
		Set to "1" = 8-bit mode (Write eight Bits to DACxL SFR).
		Set to " 0 " = 12-bit mode.
6	RNG1	DAC1 Range Select Bit.
		Set to "1" = DAC1 range $0-V_{DD}$.
		Set to "0" = DAC1 range $0-V_{REF}$.
5	RNG0	DAC0 Range Select Bit.
		Set to "1" = DAC0 range $0-V_{DD}$.
		Set to "0" = DAC0 range $0-V_{REF}$.
4	CLR1	DAC1 Clear Bit.
		Set to " 0 " = DAC1 output forced to 0 V.
		Set to "1" = DAC1 output normal.
3	CLR0	DAC0 Clear Bit.
		Set to " 0 " = DAC1 output forced to 0 V.
		Set to "1" = DAC1 output normal.
2	SYNC	DAC0/1 Update Synchronization Bit.
		When set to "1" the DAC outputs update as soon as DACxL SFRs are written. The user can
		simultaneously update both DACs by first updating the DACxL/H SFRs while SYNC is "0." Both
		DACs will then update simultaneously when the SYNC bit is set to "1."
1	PD1	DAC1 Power-Down Bit.
		Set to "1" = Power-on DAC1.
		Set to "0" = Power-off DAC1.
0	PD0	DAC0 Power-Down Bit.
		Set to "1" = Power-on DAC0.
		Set to "0" = Power-off DAC0.

DACxH/L	DAC Data Registers	
Function	DAC data registers, written by use	r to update the DAC output.
SFR Address	DAC0L (DAC0 Data Low Byte)	→F9H; DAC1L (DAC1 data low byte)→FBH
	DAC0H (DAC0 Data High Byte)	→FAH; DAC1H(DAC1 data high byte)→FCH
Power-On Default Value	00H	→All four registers
Bit Addressable	No	→All four registers

The 12-bit DAC data should be written into DACxH/L, right-justified such that DACL contains the lower eight bits, and the lower nibble of DACH contains the upper four bits.

Figure 21. Source and Sink Current Capability with $V_{REF} = V_{DD} = 3 V$

To drive significant loads with the DAC outputs, external buffering may be required, as illustrated in Figure 22.

Figure 22. Buffering the DAC Outputs

The DAC output buffer also features a high impedance disable function. In the chip's default power-on state, both DACs are disabled, and their outputs are in a high impedance state (or "three-state") where they remain inactive until enabled in software. This means that if a zero output is desired during power-up or power-down transient conditions, then a pull-down resistor must be added to each DAC output. Assuming this resistor is in place, the DAC outputs will remain at ground potential whenever the DAC is disabled. However, each DAC output will still spike briefly when power is first applied to the chip, and again when each DAC is first enabled in software. Typical scope shots of these spikes are given in Figure 23 and Figure 24, respectively.

Figure 23. DAC Output Spike at Chip Power-Up

Figure 24. DAC Output Spike at DAC Enable

MOSI (Master Out, Slave In Pin)

The MOSI (master out, slave in) pin is configured as an output line in master mode and an input line in slave mode. The MOSI line on the master (data out) should be connected to the MOSI line in the slave device (data in). The data is transferred as byte wide (8-bit) serial data, MSB first.

SCLOCK (Serial Clock I/O Pin)

The master serial clock (SCLOCK) is used to synchronize the data being transmitted and received through the MOSI and MISO data lines. A single data bit is transmitted and received in each SCLOCK period. Therefore, a byte is transmitted/received after eight SCLOCK periods. The SCLOCK pin is configured as an output in master mode and as an input in slave mode. In master mode, the bit rate, polarity, and phase of the clock are controlled by the CPOL, CPHA, SPR0, and SPR1 bits in the SPICON SFR (see Table XI). In slave mode, the SPICON register will have to be configured with the phase and polarity (CPHA and CPOL) of the expected input clock. In both master and slave modes, the

SPICON SFR Address Power-On Default Value Bit Addressable SPI Control Register F8H OOH Yes data is transmitted on one edge of the SCLOCK signal and sampled on the other. It is important therefore that the CPHA and CPOL are configured the same for the master and slave devices.

SS (Slave Select Input Pin)

The Slave Select (\overline{SS}) input pin is shared with the ADC5 input. To configure this pin as a digital input, the bit must be cleared, e.g., CLR P1.5.

This line is active low. Data is only received or transmitted in slave mode when the \overline{SS} pin is low, allowing the ADuC812 to be used in single master, multislave SPI configurations. If CPHA = 1, then the \overline{SS} input may be permanently pulled low. With CPHA = 0, the \overline{SS} input must be driven low before the first bit in a byte wide transmission or reception, and return high again after the last bit in that byte wide transmission or reception. In SPI Slave mode, the logic level on the external \overline{SS} pin can be read via the SPR0 bit in the SPICON SFR. The following SFR registers are used to control the SPI interface.

ISPI WCOL SPE	SPIM	CPOL	СРНА	SPR1	SPR0
---------------	------	------	------	------	------

Table XI. SPICON SFR Bit Designations

Bit	Name	Description			
7	ISPI	SPI Interrupt Bit.			
		Set by MicroConverter at the end of each SPI transfer.			
		Cleared directly by user code or indirectly by reading the SPIDAT SFR.			
6	WCOL	Write Collision Error Bit.			
		Set by MicroConverter if SPIDAT is written to while an SPI transfer is in progress.			
		Cleared by user code.			
5	SPE	SPI Interface Enable Bit.			
		Set by user to enable the SPI interface.			
		Cleared by user to enable I ² C interface.			
4	SPIM	SPI Master/Slave Mode Select Bit.			
		Set by user to enable Master mode operation (SCLOCK is an output).			
		Cleared by user to enable Slave mode operation (SCLOCK is an input).			
3	CPOL*	Clock Polarity Select Bit.			
		Set by user if SCLOCK idles high.			
		Cleared by user if SCLOCK idles low.			
2	CPHA*	Clock Phase Select Bit.			
		Set by user if leading SCLOCK edge is to transmit data.			
		Cleared by user if trailing SCLOCK edge is to transmit data.			
1	SPR1	SPI Bit Rate Select Bits.			
0	SPR0	These bits select the SCLOCK rate (bit rate) in Master mode as follows:			
		SPR1 SPR0 Selected Bit Rate			
		$0 \qquad 0 \qquad f_{OSC}/4$			
		$0 1 f_{OSC}/8$			
		$1 \qquad 0 \qquad f_{OSC}/32$			
		1 1 $f_{OSC}/64$			
		In SPI Slave mode, i.e., SPIM = 0, the logic level on the external SS pin can be read			
		via the SPR0 bit.			

*The CPOL and CPHA bits should both contain the same values for master and slave devices.

8051 COMPATIBLE ON-CHIP PERIPHERALS

This section gives a brief overview of the various secondary peripheral circuits that are also available to the user on-chip. These remaining functions are fully 8051 compatible and are controlled via standard 8051 SFR bit definitions.

Parallel I/O Ports 0-3

The ADuC812 uses four input/output ports to exchange data with external devices. In addition to performing general-purpose I/O, some ports are capable of external memory operations; others are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general-purpose I/O pin.

Port 0 is an 8-bit, open-drain, bidirectional I/O port that is directly controlled via the P0 SFR (SFR address = 80H). Port 0 pins that have 1s written to them via the Port 0 SFR will be configured as open-drain and will therefore float. In that state, Port 0 pins can be used as high impedance inputs. An external pull-up resistor will be required on Port 0 outputs to force a valid logic high level externally. Port 0 is also the multiplexed low order address and data bus during accesses to external program or data memory. In this application, it uses strong internal pull-ups when emitting 1s.

Port 1 is also an 8-bit port directly controlled via the P1 SFR (SFR address = 90H). Port 1 is an input only port. Port 1 digital output capability is not supported on this device. Port 1 pins can be configured as digital inputs or analog inputs.

By (power-on) default these pins are configured as analog inputs, i.e., "1" written in the corresponding Port 1 register bit. To configure any of these pins as digital inputs, the user should write a "0" to these port bits to configure the corresponding pin as a high impedance digital input.

These pins also have various secondary functions described in Table XIII.

Table XIII. Port 1, Alternate Pin Functions

Pin	Alternate Function
P1.0	T2 (Timer/Counter 2 External Input)
P1.1	T2EX (Timer/Counter 2 Capture/Reload Trigger)
P1.5	SS (Slave Select for the SPI Interface)

Port 2 is a bidirectional port with internal pull-up resistors directly controlled via the P2 SFR (SFR address = A0H). Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors and, in that state, can be used as inputs. As inputs, Port 2 pins being pulled externally low will source current because of the internal pull-up resistors. Port 2 emits the high order address bytes during fetches from external program memory, and middle and high order address bytes during accesses to the 24-bit external data memory space.

Port 3 is a bidirectional port with internal pull-ups directly controlled via the P3 SFR (SFR address = B0H). Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and, in that state, can be used as inputs. As inputs, Port 3 pins being pulled externally low will source current because of the internal pull-ups. Port 3 pins also have various secondary functions described in Table XIV.

Table XIV.	Port 3	Alternate	Pin	Functions
Laure MIN.	TOLL	munate	1 111	runctions

Pin	Alternate Function						
P3.0	RxD (UART Input Pin)						
	(or Serial Data I/O in Mode 0)						
P3.1	TxD (UART Output Pin)						
	(or Serial Clock Output in Mode 0)						
P3.2	INTO (External Interrupt 0)						
P3.3	INT1 (External Interrupt 1)						
P3.4	T0 (Timer/Counter 0 External Input)						
P3.5	T1 (Timer/Counter 1 External Input)						
P3.6	WR (External Data Memory Write Strobe)						
P3.7	RD (External Data Memory Read Strobe)						

The alternate functions of P1.0, P1.1, P1.5, and Port 3 pins can be activated only if the corresponding bit latch in the P1 and P3 SFRs contains a 1. Otherwise, the port pin is stuck at 0.

Timers/Counters

The ADuC812 has three 16-bit Timer/Counters: Timer 0, Timer 1, and Timer 2. The Timer/Counter hardware has been included on-chip to relieve the processor core of the overhead inherent in implementing timer/counter functionality in software. Each Timer/Counter consists of two 8-bit registers, THx and TLx (x = 0, 1, and 2). All three can be configured to operate either as timers or event counters.

In Timer function, the TLx register is incremented every machine cycle. Thus, think of it as counting machine cycles. Since a machine cycle consists of 12 core clock periods, the maximum count rate is 1/12 of the core clock frequency.

In Counter function, the TLx register is incremented by a 1-to-0 transition at its corresponding external input pin, T0, T1, or T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since it takes two machine cycles (24 core clock periods) to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the core clock frequency. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it must be held for a minimum of one full machine cycle.

User configuration and control of all Timer operating modes is achieved via three SFRs:

TMOD, TCON

T2CON

Control and configuration for Timers 0 and 1.

Control and configuration for Timer 2.

TMOD SFR Address

Bit Addressable

Timer/Counter 0 and 1 Mode Register 89H Power-On Default Value 00H

No

Gate	C/T	M1	M 0	Gate	C/T	M1	M 0					
L		Ta	ble XV. TMOD	SFR Bit Designa	itions							
Bit	Name	Descriptio	Description									
7	Gate	Timer 1 G Set by softwork	Timer 1 Gating Control. Set by software to enable Timer/Counter 1 only while INT1 pin is high and TR1 control bit is set. Cleared by software to enable Timer 1 whenever TR1 control bit is set.									
6	C/T	Timer 1 T Set by soft Cleared by	Timer 1 Timer or Counter Select Bit. Set by software to select counter operation (input from T1 pin). Cleared by software to select timer operation (input from internal system clock).									
5	M1	Timer 1 M	ode Select Bit 1	(used with M0 B	it).	5	,					
4	M0	Timer 1 M M1	lode Select Bit 0. M0									
			0 TH1 1 16-E 0 8-Bi reloa	l operates as an 8 Bit Timer/Counter t Autoreload Tim aded into TL1 eac er/Counter 1 Stor	-bit timer/counter. TH1 and TL1 er/Counter. TH ch time it overflo	er. TL1 serves as are cascaded; the 1 holds a value t ows.	5-bit prescaler. ere is no prescale: hat is to be					
3	Gate	Timer 0 Gating Control. Set by software to enable Timer/Counter 0 only while $\overline{INT0}$ pin is high and TR0 control bit is set.										
2	C/T	Timer 0 Timer or Counter Select Bit. Set by software to select counter operation (input from T0 pin).										
1	M1	Timer 0 Mode Select Bit 1										
0	MO	Timer 0 M M1	lode Select Bit 1. M0									
		0	0 TH() operates as an 8	-bit timer/counter	er. TL0 serves as	5-bit prescaler.					
		0	1 16-E	Bit Timer/Counter	. TH0 and TL0	are cascaded; the	ere is no prescale					
		1	0 8-Bi reloa	t Autoreload Tim aded into TL0 eao	er/Counter. TH ch time it overflo	0 holds a value t	hat is to be					
		1	1 TL0 bits.	is an 8-bit timer/ TH0 is an 8-bit 1	counter controll	ed by the standa olled by Timer	rd timer 0 contr l control bits.					

		T	imer/Counter 0	and				
Т	CON	1	Control Registe	r				
S	FR Address	88	8H					
Р	ower-On Defau	ult Value 00	ЭH					
В	it Addressable	Y	es					
	TE1	TD1	TEO	TDO	IE1*	IT1*	IE0*	IT0*
	111	INI	IFU	IKU		111		110

*These bits are not used in the control of Timer/Counter 0 and 1, but are used instead in the control and monitoring of the external INT0 and INT1 interrupt pins.

Table XVI. TCON SFR Bit Designations

Bit	Name	Description
7	TF1	Timer 1 Overflow Flag.
		Set by hardware on a Timer/Counter 1 overflow.
		Cleared by hardware when the Program Counter (PC) vectors to the interrupt service routine.
6	TR1	Timer 1 Run Control Bit.
		Set by user to turn on Timer/Counter 1.
		Cleared by user to turn off Timer/Counter 1.
5	TF0	Timer 0 Overflow Flag.
		Set by hardware on a Timer/Counter 0 overflow.
		Cleared by hardware when the PC vectors to the interrupt service routine.
4	TR0	Timer 0 Run Control Bit.
		Set by user to turn on Timer/Counter 0.
		Cleared by user to turn off Timer/Counter 0.
3	IE1	External Interrupt 1 (INT1) Flag.
		Set by hardware by a falling edge or zero level being applied to external interrupt pin INT1,
		depending on bit IT1 state.
		Cleared by hardware when the when the PC vectors to the interrupt service routine only if the
		interrupt was transition-activated. If level-activated, the external requesting source controls the
		request flag, rather than the on-chip hardware.
2	IT1	External Interrupt 1 (IE1) Trigger Type.
		Set by software to specify edge-sensitive detection (i.e., 1-to-0 transition).
		Cleared by software to specify level-sensitive detection (i.e., zero level).
1	IE0	External Interrupt 0 (INT0) Flag.
		Set by hardware by a falling edge or zero level being applied to external interrupt pin INT0,
		depending on bit ITO state.
		Cleared by hardware when the PC vectors to the interrupt service routine only if the interrupt
		was transition activated. If level activated, the external requesting source controls the request flag,
		rather than the on-chip hardware.
0	ITO	External Interrupt 0 (IE0) Trigger Type.
		Set by software to specify edge-sensitive detection (i.e., 1-to-0 transition).
		Cleared by software to specify level-sensitive detection (i.e., zero level).

Timer/Counters 0 and 1 Data Registers

Each timer consists of two 8-bit registers. These can be used as independent registers or combined to be a single 16-bit register depending on the timer mode configuration.

TH0 and TL0

Timer 0 high byte and low byte. SFR Address = 8CH, 8AH, respectively.

TH1 and TL1

Timer 1 high byte and low byte. SFR Address = 8DH, 8BH, respectively.

Mode 0 (8-Bit Shift Register Mode)

Mode 0 is selected by clearing both the SM0 and SM1 bits in the SFR SCON. Serial data enters and exits through RxD. TxD outputs the shift clock. Eight data bits are transmitted or received. Transmission is initiated by any instruction that writes to SBUF. The data is shifted out of the RxD line. The eight bits are transmitted with the least significant bit (LSB) first, as shown in Figure 32.

Figure 32. UART Serial Port Transmission, Mode 0

Reception is initiated when the receive enable bit (REN) is 1 and the receive interrupt bit (RI) is 0. When RI is cleared, the data is clocked into the RxD line and the clock pulses are output from the TxD line.

Mode 1 (8-Bit UART, Variable Baud Rate)

Mode 1 is selected by clearing SM0 and setting SM1. Each data byte (LSB first) is preceded by a start bit (0) and followed by a stop bit (1). Therefore 10 bits are transmitted on TxD or received on RxD. The baud rate is set by the Timer 1 or Timer 2 overflow rate, or a combination of the two (one for transmission and the other for reception).

Transmission is initiated by writing to SBUF. The "write to SBUF" signal also loads a 1 (stop bit) into the ninth bit position of the transmit shift register. The data is output bit by bit until the stop bit appears on TxD and the transmit interrupt flag (TI) is automatically set, as shown in Figure 33.

Reception is initiated when a 1-to-0 transition is detected on RxD. Assuming a valid start bit was detected, character reception continues. The start bit is skipped and the eight data bits are clocked into the serial port shift register. When all eight bits have been clocked in, the following events occur:

The eight bits in the receive shift register are latched into SBUF.

The ninth bit (Stop bit) is clocked into RB8 in SCON.

The Receiver interrupt flag (RI) is set.

This will be the case if, and only if, the following conditions are met at the time the final shift pulse is generated:

RI = 0, and

Either SM2 = 0 or SM2 = 1 and the received stop bit = 1.

If either of these conditions is not met, the received frame is irretrievably lost, and RI is not set.

Mode 2 (9-Bit UART with Fixed Baud Rate)

Mode 2 is selected by setting SM0 and clearing SM1. In this mode, the UART operates in 9-bit mode with a fixed baud rate. The baud rate is fixed at Core_Clk/64 by default, although by setting the SMOD bit in PCON, the frequency can be doubled to Core_Clk/32. Eleven bits are transmitted or received, a start bit (0), eight data bits, a programmable ninth bit, and a stop bit (1). The ninth bit is most often used as a parity bit, although it can be used for anything, including a ninth data bit if required.

To transmit, the eight data bits must be written into SBUF. The ninth bit must be written to TB8 in SCON. When transmission is initiated, the eight data bits (from SBUF) are loaded onto the transmit shift register (LSB first). The contents of TB8 are loaded into the ninth bit position of the transmit shift register. The transmission will start at the next valid baud rate clock. The TI flag is set as soon as the stop bit appears on TxD.

Reception for Mode 2 is similar to that of Mode 1. The eight data bytes are input at RxD (LSB first) and loaded onto the receive shift register. When all eight bits have been clocked in, the following events occur:

The eight bits in the receive shift register are latched into SBUF.

The ninth data bit is latched into RB8 in SCON.

The Receiver interrupt flag (RI) is set.

This will be the case if, and only if, the following conditions are met at the time the final shift pulse is generated:

$$RI = 0$$
, and

Either SM2 = 0, or SM2 = 1 and the received stop bit = 1.

If either of these conditions is not met, the received frame is irretrievably lost, and RI is not set.

Mode 3 (9-Bit UART with Variable Baud Rate)

Mode 3 is selected by setting both SM0 and SM1. In this mode the 8051 UART serial port operates in 9-bit mode with a variable baud rate determined by either Timer 1 or Timer 2. The operation of the 9-bit UART is the same as for Mode 2, but the baud rate can be varied as for Mode 1.

In all four modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI = 0 and REN = 1. Reception is initiated in the other modes by the incoming start bit if REN = 1.

UART Serial Port Baud Rate Generation

Mode 0 Baud Rate Generation

The baud rate in Mode 0 is fixed:

Mode 0 Baud Rate = (Core Clock Frequency/12)

Mode 2 Baud Rate Generation

The baud rate in Mode 2 depends on the value of the SMOD bit in the PCON SFR. If SMOD = 0, the baud rate is 1/64 of the core clock. If SMOD = 1, the baud rate is 1/32 of the core clock:

Mode 2 Baud Rate = $(2^{SMOD}/64) \times (Core Clock Frequency)$

Mode 1 and 3 Baud Rate Generation

The baud rates in Modes 1 and 3 are determined by the overflow rate in Timer 1 or Timer 2, or both (one for transmit and the other for receive).

ADuC812 HARDWARE DESIGN CONSIDERATIONS

This section outlines some of the key hardware design considerations that must be addressed when integrating the ADuC812 into any hardware system.

Clock Oscillator

The clock source for the ADuC812 can come either from an external source or from the internal clock oscillator. To use the internal clock oscillator, connect a parallel resonant crystal between Pins 32 and 33, and connect a capacitor from each pin to ground as shown below.

Figure 35. External Parallel Resonant Crystal Connections

Figure 36. Connecting an External Clock Source

Whether using the internal oscillator or an external clock source, the ADuC812's specified operational clock speed range is 300 kHz to 16 MHz. The core is static, and will function all the way down to dc. But at clock speeds slower that 400 kHz the ADC will no longer function correctly. Therefore, to ensure specified operation, use a clock frequency of at least 400 kHz and no more than 16 MHz.

External Memory Interface

In addition to its internal program and data memories, the ADuC812 can access up to 64 K bytes of external program memory (ROM, PROM, etc.) and up to 16 M bytes of external data memory (SRAM).

To select from which code space (internal or external program memory) to begin executing instructions, tie the \overline{EA} (external access) pin high or low, respectively. When \overline{EA} is high (pulled up to V_{DD}), user program execution will start at address 0 of the internal 8 K bytes Flash/EE code space. When \overline{EA} is low (tied to ground) user program execution will start at address 0 of the external code space. In either case, addresses above 1FFFH (8K) are mapped to the external space.

Note that a second very important function of the \overline{EA} pin is described in the Single Pin Emulation Mode section.

External program memory (if used) must be connected to the ADuC812 as illustrated in Figure 37. Note that 16 I/O lines (Ports 0 and 2) are dedicated to bus functions during external program memory fetches. Port 0 (P0) serves as a multiplexed address/data bus. It emits the low byte of the program counter (PCL) as an address, and then goes into a float state awaiting the arrival of the code byte from the program memory. During the time that the low byte of the program counter is valid on P0, the signal ALE (Address Latch Enable) clocks this byte into an address latch. Meanwhile, Port 2 (P2) emits the high byte of the program counter (PCH), then <u>PSEN</u> strobes the EPROM and the code byte is read into the ADuC812.

Figure 37. External Program Memory Interface

Note that program memory addresses are always 16 bits wide, even in cases where the actual amount of program memory used is less than 64 K bytes. External program execution sacrifices two of the 8-bit ports (P0 and P2) to the function of addressing the program memory. While executing from external program memory, Ports 0 and 2 can be used simultaneously for read/write access to external data memory, but not for general-purpose I/O.

Though both external program memory and external data memory are accessed by some of the same pins, the two are completely independent of each other from a software point of view. For example, the chip can read/write external data memory while executing from external program memory.

Figure 38 shows a hardware configuration for accessing up to 64 K bytes of external RAM. This interface is standard to any 8051 compatible MCU.

Figure 38. External Data Memory Interface (64K Address Space)

As an alternative to providing two separate power supplies, the user can help keep AV_{DD} quiet by placing a small series resistor and/or ferrite bead between it and DV_{DD} , and then decoupling AV_{DD} separately to ground. An example of this configuration is shown in Figure 44. With this configuration, other analog circuitry (such as op amps, voltage reference, and so on) can be powered from the AV_{DD} supply line as well. The user will still want to include back-to-back Schottky diodes between AV_{DD} and DV_{DD} in order to protect from power-up and power-down transient conditions that could separate the two supply voltages momentarily.

Figure 44. External Single-Supply Connections

Notice that in both Figure 43 and Figure 44, a large value (10 μF) reservoir capacitor sits on DV_{DD} and a separate 10 μF capacitor sits on AV_{DD} . Also, local small value (0.1 μF) capacitors are located at each V_{DD} pin of the chip. As per standard design practice, be sure to include all of these capacitors, and ensure the smaller capacitors are close to each AV_{DD} pin with trace lengths as short as possible. Connect the ground terminal of each of these capacitors directly to the underlying ground plane. Finally, it should also be noted that, at all times, the analog and digital ground pins on the ADuC812 must be referenced to the same system ground reference point.

Power Consumption

The currents consumed by the various sections of the ADuC812 are shown in Table XXVII. The CORE values given represent the current drawn by DV_{DD} , while the rest (ADC, DAC, Voltage Reference) are pulled by the AV_{DD} pin and can be disabled in software when not in use. The other on-chip peripherals (watchdog timer, power supply monitor, and so on) consume negligible current and are therefore lumped in with the CORE operating current here. Of course, the user must add any currents sourced by the DAC or the parallel and serial I/O pins, in order to determine the total current needed at the ADuC812's supply pins. Also, current drawn from the DV_{DD} supply will increase by approximately 10 mA during Flash/EE erase and program cycles.

Table XXVII. Typical IDD of Core and Peripherals

	$V_{DD} = 5 V$	$V_{DD} = 3 V$
CORE		
(Normal Mode)	$(1.6 \text{ nAs} \times \text{MCLK}) +$	$(0.8 \text{ nAs} \times \text{MCLK}) +$
	6 mA	3 mA
CORE		
(Idle Mode)	$(0.75 \text{ nAs} \times \text{MCLK}) +$	$(0.25 \text{ nAs} \times \text{MCLK}) +$
	5 mA	3 mA
ADC	1.3 mA	1.0 mA
DAC (Each)	250 μΑ	200 μΑ
Voltage Ref	200 μΑ	150 μΑ

Since operating DV_{DD} current is primarily a function of clock speed, the expressions for CORE supply current in Table XXVII are given as functions of MCLK, the oscillator frequency. Plug in a value for MCLK in hertz to determine the current consumed by the core at that oscillator frequency. Since the ADC and DACs can be enabled or disabled in software, add only the currents from the peripherals you expect to use. The internal voltage reference is automatically enabled whenever either the ADC or at least one DAC is enabled. And again, do not forget to include current sourced by I/O pins, serial port pins, DAC outputs, and so forth, plus the additional current drawn during Flash/EE erase and program cycles.

A software switch allows the chip to be switched from normal mode into idle mode, and also into full power-down mode. Below are brief descriptions of power-down and idle modes.

In idle mode, the oscillator continues to run but is gated off to the core only. The on-chip peripherals continue to receive the clock, and remain functional. Port pins and DAC output pins retain their states in this mode. The chip will recover from idle mode upon receiving any enabled interrupt, or upon receiving a hardware reset.

In full power-down mode, the on-chip oscillator stops, and all on-chip peripherals are shut down. Port pins retain their logic levels in this mode, but the DAC output goes to a high impedance state (three-state). The chip will only recover from power-down mode upon receiving a hardware reset or when power is cycled. During full power-down mode, the ADuC812 consumes a total of approximately $5 \mu A$.

		12 N	AHz	Variabl	le Clock	
Parameter		Min	Max	Min	Max	Unit
EXTERNAL	DATA MEMORY READ CYCLE					
t _{RLRH}	RD Pulsewidth	400		6t _{CK} - 100		ns
t _{AVLL}	Address Valid after ALE Low	43		$t_{CK} - 40$		ns
t _{LLAX}	Address Hold after ALE Low	48		t _{CK} - 35		ns
t _{RLDV}	RD Low to Valid Data In		252		5t _{CK} – 165	ns
t _{RHDX}	Data and Address Hold after $\overline{\text{RD}}$	0		0		ns
t _{RHDZ}	Data Float after RD		97		$2t_{CK} - 70$	ns
t _{LLDV}	ALE Low to Valid Data In		517		$8t_{CK} - 150$	ns
t _{AVDV}	Address to Valid Data In		585		9t _{CK} – 165	ns
t _{LLWL}	ALE Low to $\overline{\text{RD}}$ or $\overline{\text{WR}}$ Low	200	300	3t _{CK} - 50	3t _{CK} + 50	ns
t _{AVWL}	Address Valid to $\overline{\text{RD}}$ or $\overline{\text{WR}}$ Low	203		$4t_{CK} - 130$		ns
t _{RLAZ}	RD Low to Address Float		0		0	ns
t _{WHLH}	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ High to ALE High	43	123	t _{CK} - 40	$6t_{CK} - 100$	ns

Figure 52. External Data Memory Read Cycle

		12 N	AHz	Variable (Clock	
Parameter			Max	Min	Max	Unit
EXTERNAL I	DATA MEMORY WRITE CYCLE					
t _{WLWH}	WR Pulsewidth	400		6t _{CK} - 100		ns
t _{AVLL}	Address Valid after ALE Low	43		$t_{CK} - 40$		ns
t _{LLAX}	Address Hold after ALE Low	48		t _{CK} - 35		ns
t _{LLWL}	ALE Low to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	200	300	$3t_{CK} - 50$	3t _{CK} + 50	ns
t _{AVWL}	Address Valid to $\overline{\text{RD}}$ or $\overline{\text{WR}}$ Low	203		$4t_{CK} - 130$		ns
t _{QVWX}	Data Valid to WR Transition	33		$t_{CK} - 50$		ns
t _{OVWH}	Data Setup before \overline{WR}	433		7t _{CK} - 150		ns
t _{WHQX}	Data and Address Hold after $\overline{\mathrm{WR}}$	33		$t_{CK} - 50$		ns
t _{WHLH}	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ High to ALE High	43	123	$t_{\rm CK} - 40$	$6t_{CK} - 100$	ns

Figure 53. External Data Memory Write Cycle

			12 MH	z	V	ariable Cloc	k	
Parameter		Min	Тур	Max	Min	Тур	Max	Unit
UART TIMING (Shift Register Mode)								
t _{XLXL}	Serial Port Clock Cycle Time		1.0			$12t_{CK}$		μs
t _{QVXH}	Output Data Setup to Clock	700			10t _{CK} - 1	33		ns
t _{DVXH}	Input Data Setup to Clock	300			$2t_{CK} + 13$	33		ns
t _{XHDX}	Input Data Hold after Clock	0			0			ns
t _{XHQX}	Output Data Hold after Clock	50			2t _{CK} - 11	7		ns

Figure 54. UART Timing in Shift Register Mode

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADuC812BSZ	–40°C to +85°C	52-Lead Metric Quad Flat Package [MQFP]	S-52-2
ADuC812BSZ-REEL	–40°C to +85°C	52-Lead Metric Quad Flat Package [MQFP]	S-52-2
EVAL-ADuC812QSZ		QuickStart Development System	

¹ Z = RoHS Compliant Part.