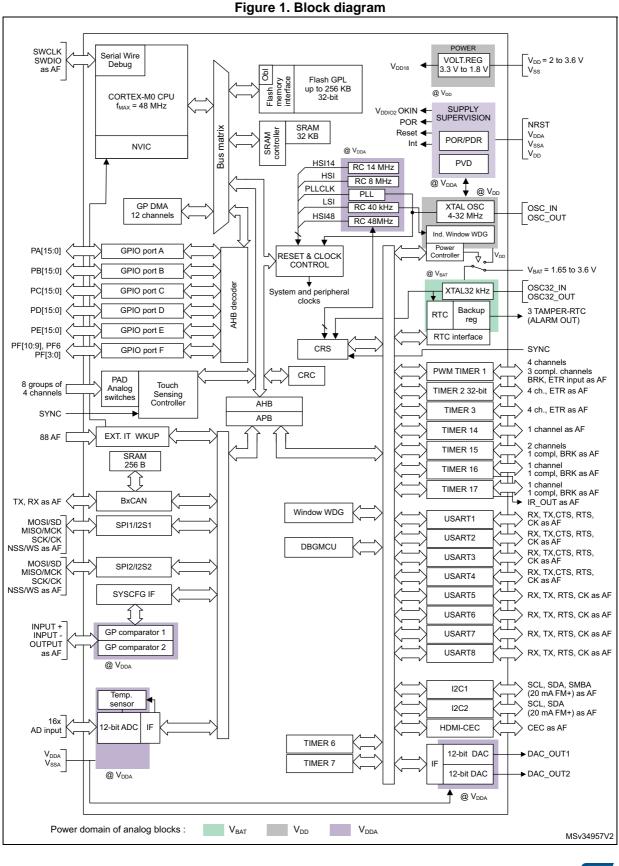


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	38
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f091cbu6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

12/128

DocID026284 Rev 4

STM32F091xB STM32F091xC

Figure 4. LQFP100 package pinout

	Pi	n nui	mber	s						Pin functions		
UFBGA100	LQFP100	UFBGA64	LQFP64	WLCSP64	LQFP48/UFQFPN48	Pin name (function upon reset)	Pin type	I/O structure Notes		Alternate functions	Additional functions	
J1	19	-	-	-	-	PF2	I/O	FT		EVENTOUT, USART7_TX, USART7_CK_RTS	WKUP8	
K1	20	F1	12	G8	8	VSSA	S	-		Analog grou	nd	
M1	21	H1	13	H8	9	VDDA	S	-		Analog power s	upply	
L1	22	-	-	-	-	PF3	I/O	FT		EVENTOUT, USART7_RX, USART6_CK_RTS		
L2	23	G2	14	F7	10	PA0	I/O	TTa		USART2_CTS, TIM2_CH1_ETR, TSC_G1_IO1, USART4_TX COMP1_OUT	RTC_ TAMP2, WKUP1, ADC_IN0, COMP1_INM6	
M2	24	H2	15	F6	11	PA1	I/O	ТТа		USART2_RTS, TIM2_CH2, TIM15_CH1N, TSC_G1_IO2, USART4_RX, EVENTOUT	ADC_IN1, COMP1_INP	
КЗ	25	F3	16	E5	12	PA2	I/O	TTa		USART2_TX, TIM2_CH3, TIM15_CH1, TSC_G1_IO3 COMP2_OUT	ADC_IN2, WKUP4, COMP2_INM6	
L3	26	G3	17	H7	13	PA3	I/O	ТТа		USART2_RX,TIM2_CH4, TIM15_CH2, TSC_G1_IO4	ADC_IN3, COMP2_INP	
D3	27	C2	18	G7	-	VSS	S	-		Ground		
H3	28	D2	19	G6	-	VDD	S	-		Digital power s	upply	
М3	29	H3	20	H6	14	PA4	I/O	TTa		SPI1_NSS, I2S1_WS, TIM14_CH1, TSC_G2_IO1, USART2_CK, USART6_TX	COMP1_INM4, COMP2_INM4, ADC_IN4, DAC_OUT1	
K4	30	F4	21	F5	15	PA5	I/O	ТТа		SPI1_SCK, I2S1_CK, CEC, TIM2_CH1_ETR, TSC_G2_IO2, USART6_RX	COMP1_INM5, COMP2_INM5, ADC_IN5, DAC_OUT2	

Table 13. STM32F091xB/xC pin definitions (continued)
--

Table To. Alternate functions selected through GFIOC_AFK registers for port C									
Pin name	AF0	AF1	AF2						
PC0	EVENTOUT	USART7_TX	USART6_TX						
PC1	EVENTOUT	USART7_RX	USART6_RX						
PC2	EVENTOUT	SPI2_MISO, I2S2_MCK	USART8_TX						
PC3	EVENTOUT	SPI2_MOSI, I2S2_SD	USART8_RX						
PC4	EVENTOUT	USART3_TX	-						
PC5	TSC_G3_IO1	USART3_RX	-						
PC6	TIM3_CH1	USART7_TX	-						
PC7	TIM3_CH2	USART7_RX	-						
PC8	TIM3_CH3	USART8_TX	-						
PC9	TIM3_CH4	USART8_RX	-						
PC10	USART4_TX	USART3_TX	-						
PC11	USART4_RX	USART3_RX	-						
PC12	USART4_CK	USART3_CK	USART5_TX						
PC13	-	-	-						
PC14	-	-	-						
PC15	-	-	-						

Table 16. Alternate functions selected through GPIOC_AFR registers for port C

Table 17. Alternate functions selected through GPIOD_AFR registers for port D

Pin name	AF0	AF1	AF2
PD0	CAN_RX	SPI2_NSS, I2S2_WS	-
PD1	CAN_TX	SPI2_SCK, I2S2_CK	-
PD2	TIM3_ETR	USART3_RTS	USART5_RX
PD3	USART2_CTS	SPI2_MISO, I2S2_MCK	-
PD4	USART2_RTS	SPI2_MOSI, I2S2_SD	-
PD5	USART2_TX	-	-
PD6	USART2_RX	-	-
PD7	USART2_CK	-	-
PD8	USART3_TX	-	-
PD9	USART3_RX	-	-
PD10	USART3_CK	-	-
PD11	USART3_CTS	-	-
PD12	USART3_RTS	TSC_G8_IO1	USART8_CK_RTS
PD13	USART8_TX	TSC_G8_IO2	
PD14	USART8_RX	TSC_G8_IO3	-
PD15	CRS_SYNC	TSC_G8_IO4	USART7_CK_RTS

Bus	Boundary address	Size	Peripheral
	0x4001 5C00 - 0x4001 7FFF	9 KB	Reserved
	0x4001 5800 - 0x4001 5BFF	1 KB	DBGMCU
	0x4001 4C00 - 0x4001 57FF	3 KB	Reserved
	0x4001 4800 - 0x4001 4BFF	1 KB	TIM17
	0x4001 4400 - 0x4001 47FF	1 KB	TIM16
	0x4001 4000 - 0x4001 43FF	1 KB	TIM15
	0x4001 3C00 - 0x4001 3FFF	1 KB	Reserved
	0x4001 3800 - 0x4001 3BFF	1 KB	USART1
	0x4001 3400 - 0x4001 37FF	1 KB	Reserved
	0x4001 3000 - 0x4001 33FF	1 KB	SPI1/I2S1
APB	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1
	0x4001 2800 - 0x4001 2BFF	1 KB	Reserved
	0x4001 2400 - 0x4001 27FF	1 KB	ADC
	0x4001 2000 - 0x4001 23FF	1 KB	Reserved
	0x4001 1C00 – 0x4001 1FFF	1 KB	USART8
	0x4001 1800 – 0x4001 1BFF	1 KB	USART7
	0x4001 1400 – 0x4001 17FF	1 KB	USART6
	0x4001 0800 - 0x4001 13FF	3 KB	Reserved
	0x4001 0400 - 0x4001 07FF	1 KB	EXTI
	0x4001 0000 - 0x4001 03FF	1 KB	SYSCFG + COMP
	0x4000 8000 - 0x4000 FFFF	32 KB	Reserved

Table 20. STM32F091xB/xC peripheral register boundary addresses (continued)

Symbol	Ratings	Max.	Unit
ΣI _{VDD}	Total current into sum of all VDD power lines (source) ⁽¹⁾	120	
ΣI _{VSS}	Total current out of sum of all VSS ground lines (sink) ⁽¹⁾	-120	
I _{VDD(PIN)}	Maximum current into each VDD power pin (source) ⁽¹⁾	100	
I _{VSS(PIN)}	Maximum current out of each VSS ground pin (sink) ⁽¹⁾	-100	
	Output current sunk by any I/O and control pin	25	
I _{IO(PIN)}	Output current source by any I/O and control pin	-25	
	Total output current sunk by sum of all I/Os and control pins ⁽²⁾	80	
ΣΙ _{ΙΟ(ΡΙΝ)}	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	-80	mA
	Total output current sourced by sum of all I/Os supplied by VDDIO2	-40	
	Injected current on FT and FTf pins	-5/+0 ⁽⁴⁾	
I _{INJ(PIN)} ⁽³⁾	Injected current on TC and RST pin	± 5	
	Injected current on TTa pins ⁽⁵⁾	± 5	1
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	1

Table 22. Current characteristics

1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.

3. A positive injection is induced by $V_{IN} > V_{DDIOx}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 21: Voltage characteristics* for the maximum allowed input voltage values.

4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

5. On these I/Os, a positive injection is induced by $V_{IN} > V_{DDA}$. Negative injection disturbs the analog performance of the device. See note ⁽²⁾ below *Table 59: ADC accuracy*.

6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 23. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled f_{PCLK} = f_{HCLK}

The parameters given in *Table 29* to *Table 32* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

1. Data based on characterization results, not tested in production unless otherwise specified.

	er				V _{DDA}	= 2.4 V	1		V _{DDA}	= 3.6 \	/														
Symbol	Para-meter	Conditions	f _{HCLK}		м	ax @ T _A	(2)		Μ	lax @ T	A ⁽²⁾	Unit													
	Para			Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C														
		HSI48	48 MHz	312	333	338	347	316	334	341	350														
		HSE	48 MHz	147	168	178	181	160	181	192	197														
	Supply current in	bypass, n PLL on	32 MHz	101	119	125	127	109	127	135	138														
	Run or		24 MHz	80	96	98	100	87	101	106	109														
	Sleep mode,	HSE	8 MHz	2.8	3.5	3.7	3.9	3.7	4.3	4.6	4.7														
I _{DDA}	code executing	ode bypass,	1 MHz	2.7	3.2	3.5	3.8	3.3	3.9	4.4	4.7	μA													
	from	from	from	from	from	from	from	from	from	from	from	from	from	from	om	48 MHz	214	243	254	259	235	262	275	281	
mem	Flash memory		32 MHz	166	193	203	204	185	207	216	220														
	or RAM		24 MHz	144	171	177	178	161	180	187	190														
		HSI clock, PLL off	8 MHz	65	83	85	86	77	90	92	93														

Table 30. Typical and maximum current consumption from the $\rm V_{DDA}$ supply

 Current consumption from the V_{DDA} supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, I_{DDA} is independent from the frequency.

2. Data based on characterization results, not tested in production unless otherwise specified.

6.3.6 Wakeup time from low-power mode

The wakeup times given in *Table 36* are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture.

The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.

The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode. The wakeup source from Standby mode is the WKUP1 pin (PA0).

All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

Symbol	Parameter	Conditions	Typ @Vdd = Vdda						Unit
			= 2.0 V	= 2.4 V	= 2.7 V	= 3 V	= 3.3 V	Max	Unit
twustop	Wakeup from Stop mode	Regulator in run mode	3.2	3.1	2.9	2.9	2.8	5	
		Regulator in low power mode	7.0	5.8	5.2	4.9	4.6	9	
twustandby	Wakeup from Standby mode	-	60.4	55.6	53.5	52	51	-	μs
twusleep	Wakeup from Sleep mode	-	4 SYSCLK cycles					-	

 Table 36. Low-power mode wakeup timings

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in *Figure 15: High-speed external clock source AC timing diagram*.

Symbol	Parameter ⁽¹⁾	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	-	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V _{HSEL}	OSC_IN input pin low level voltage	V _{SS}	-	0.3 V _{DDIOx}	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	15	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time	-	-	20	113

Table 37	High-speed	ovtornal	lisor	clock	characteristics
Table Jr.	iligii-speeu	EXICILIA	usei	CIUCK	characteristics

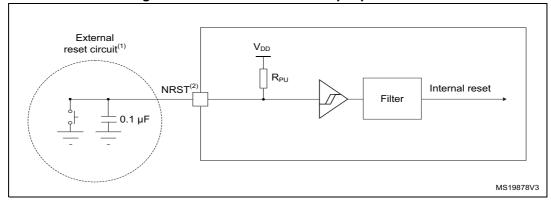

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV		
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ		
V _{F(NRST)}	NRST input filtered pulse	-	-	-	100 ⁽¹⁾	ns		
V	NRST input not filtered pulse	$2.7 < V_{DD} < 3.6$	300 ⁽³⁾	-	_	ns		
V _{NF(NRST)}		$2.0 < V_{DD} < 3.6$	500 ⁽³⁾	-	-	115		

Table 56. NRST pin characteristics (continued)

1. Data based on design simulation only. Not tested in production.

 The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

3. Data based on design simulation only. Not tested in production.

- 1. The external capacitor protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 56: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.

6.3.16 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 57* are derived from tests performed under the conditions summarized in *Table 24: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Table 57. ADC c	haracteristics
-----------------	----------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{DDA}	Analog supply voltage for ADC ON	-	2.4	-	3.6	V		
I _{DDA (ADC)}	Current consumption of the ADC ⁽¹⁾	V _{DDA} = 3.3 V	-	0.9	-	mA		
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz		
f _S ⁽²⁾	Sampling rate	12-bit resolution	0.043	-	1	MHz		

Equation 1: R_{AIN} max formula

$$R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 58. R _{AIN} max for f _{ADC} = 14 MHz								
T _s (cycles)	T _s (cycles) t _S (μs) $R_{AIN} \max (k\Omega)^{(1)}$							
1.5	0.11	0.4						
7.5	0.54	5.9						
13.5	0.96	11.4						
28.5	2.04	25.2						
41.5	2.96	37.2						
55.5	3.96	50						
71.5	5.11	NA						
239.5	17.1	NA						

1. Guaranteed by design, not tested in production.

Table 59. ADC accuracy⁽¹⁾⁽²⁾⁽³⁾

Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit
ET	Total unadjusted error		±1.3	±2	
EO	Offset error	$f_{PCLK} = 48 \text{ MHz},$	±1	±1.5	
EG	Gain error	f _{ADC} = 14 MHz, R _{AIN} < 10 kΩ V _{DDA} = 3 V to 3.6 V	±0.5	±1.5	LSB
ED	Differential linearity error	$T_A = 25 $ °C	±0.7	±1	
EL	Integral linearity error		±0.8	±1.5	
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	f _{PCLK} = 48 MHz,	±1.9	±2.8	
EG	Gain error	f _{ADC} = 14 MHz, R _{AIN} < 10 kΩ V _{DDA} = 2.7 V to 3.6 V	±2.8	±3	LSB
ED	Differential linearity error	$T_{A} = -40 \text{ to } 105 \text{ °C}$	±0.7	±1.3	
EL	Integral linearity error		±1.2	±1.7	
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	f _{PCLK} = 48 MHz,	±1.9	±2.8	
EG	Gain error	f_{ADC} = 14 MHz, R_{AIN} < 10 k Ω V _{DDA} = 2.4 V to 3.6 V	±2.8	±3	LSB
ED	Differential linearity error	$T_A = 25 \text{°C}$	±0.7	±1.3	1
EL	Integral linearity error		±1.2	±1.7	

1. ADC DC accuracy values are measured after internal calibration.

Prescaler divider PR[2:0] bits		Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit				
/4	0	0.1	409.6					
/8	1	0.2	819.2					
/16	2	0.4	1638.4					
/32	3	0.8	3276.8	ms				
/64	4	1.6	6553.6					
/128	5	3.2	13107.2					
/256	6 or 7	6.4	26214.4					

Table 65. IWDG min/max timeout period at 40 kHz (LSI)⁽¹⁾

1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

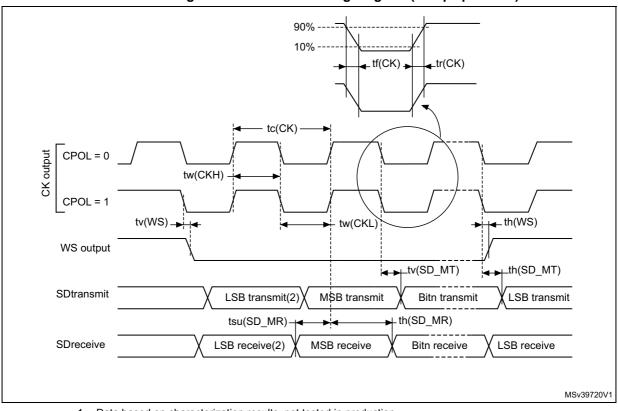
Prescaler	WDGTB	Min timeout value Max timeout valu		Unit
1	0	0.0853	5.4613	
2	1	0.1706	10.9226	ms
4	2	0.3413	21.8453	ms
8	3	0.6826	43.6906	

Table 66. WWDG min/max timeout value at 48 MHz (PCLK)

6.3.22 Communication interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:


- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I²C timings requirements are guaranteed by design when the I2Cx peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DDIOx} is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I²C I/Os characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Figure 32. I²S master timing diagram (Philips protocol)

- 1. Data based on characterization results, not tested in production.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

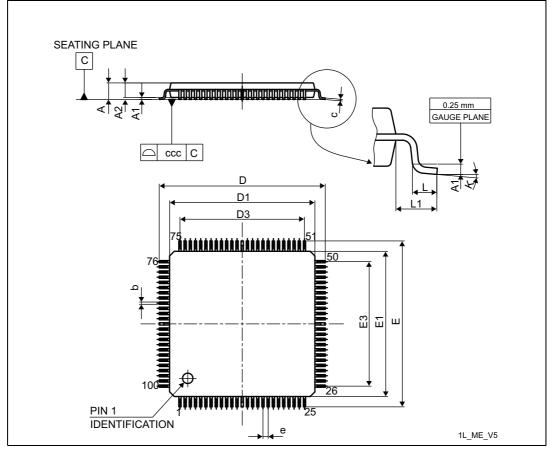
7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 UFBGA100 package information

UFBGA100 is a 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra-fine-profile ball grid array package.

Figure 33. UFBGA100 package outline


1. Drawing is not to scale.

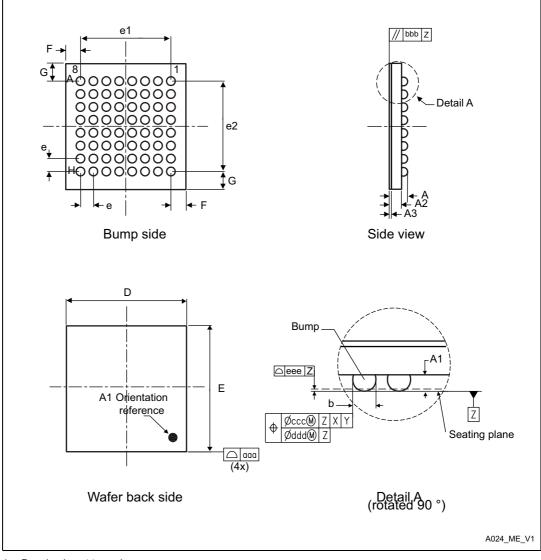
Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
A	-	-	0.600	-	-	0.0236
A1	-	-	0.110	-	-	0.0043
A2	-	0.450	-	-	0.0177	-
A3	-	0.130	-	-	0.0051	0.0094
A4	-	0.320	-	-	0.0126	-

7.2 LQFP100 package information

LQFP100 is a100-pin, 14 x 14 mm low-profile quad flat package.

1. Drawing is not to scale.

Table 72. LQPF100 pa	ackage mechanical data
----------------------	------------------------


Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378

DocID026284 Rev 4

7.4 WLCSP64 package information

WLCSP64 is a 64-ball, 3.347 x 3.585 mm, 0.4 mm pitch wafer-level chip-scale package.

1. Drawing is not to scale.

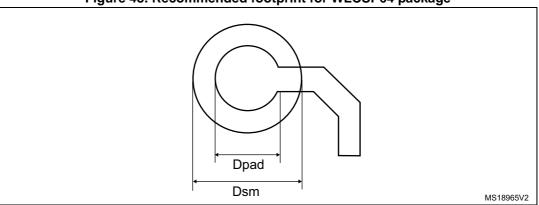

Symbol	millimeters inches ⁽¹⁾					
Symbol	Min	Тур	Max	Min	Тур	Max
А	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.175	-	-	0.0069	-
A2	-	0.380	-	-	0.0150	-
A3	-	0.025	-	-	0.0010	-

Table 75. WLCSP64 package mechanical data (continued)							
Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Мах	
b ⁽²⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110	
D	3.312	3.347	3.382	0.1304	0.1318	0.1331	
E	3.550	3.585	3.620	0.1398	0.1411	0.1425	
е	-	0.400	-	-	0.0157	-	
e1	-	2.800	-	-	0.1102	-	
e2	-	2.800	-	-	0.1102	-	
F	-	0.2735	-	-	0.0108	-	
G	-	0.3925	-	-	0.0155	-	
aaa	-	-	0.100	-	-	0.0039	
bbb	-	-	0.100	-	-	0.0039	
CCC	-	-	0.100	-	-	0.0039	
ddd	-	-	0.050	-	-	0.0020	
eee	-	-	0.050	-	-	0.0020	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 43. Recommended footprint for WLCSP64 package

 Table 76. WLCSP64 recommended PCB design rules

Dimension	Recommended values		
Pitch	0.4		
Drod	260 µm max. (circular)		
Dpad	220 µm recommended		
Dsm	300 μm min. (for 260 μm diameter pad)		
PCB pad design	Non-solder mask defined via underbump allowed.		

7.5 LQFP64 package information

LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.

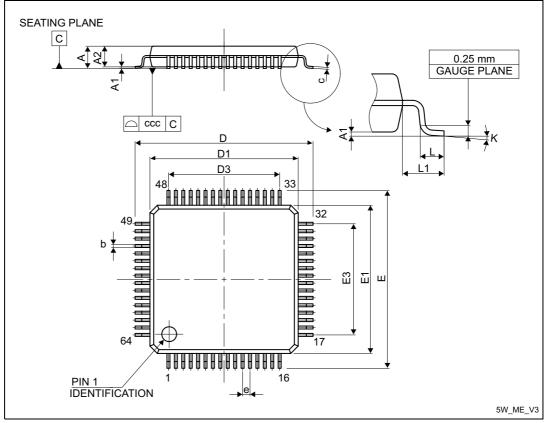


Figure 45. LQFP64 package outline

1. Drawing is not to scale.

Table 77. LQFP64	package	mechanical data
------------------	---------	-----------------

Cumhal	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-

17-Dec-2015 3 17-Dec-2015 3 (continued) - (continued) - (continued) - (continued) - (continued) - (continued) - <td< th=""></td<>
value added for t _{v(SD_ST)} - <i>Figure 32: I²S master timing diagram (Philips protocol)</i> added definition of edge level references Section 7: Package information: - <i>Figure 33: UFBGA100 package outline</i> and associated <i>Table 70</i> updated - <i>Figure 34</i> and associated <i>Table 71</i> updated - <i>Figure 35: UFBGA100 package marking example</i> and associated text updated - <i>Figure 38: LQFP100 package marking example</i> and associated text updated - <i>Table 74: UFBGA64 recommended PCB design rules</i> added

Table 82. Docume	nt revision	history (continued)
------------------	-------------	-----------	------------

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

DocID026284 Rev 4

