

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 19x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f091rbt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The STM32F091xB/xC microcontrollers incorporate the high-performance ARM[®] Cortex[®]-M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories (up to 256 Kbytes of Flash memory and 32 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. The device offers standard communication interfaces (two I²Cs, two SPIs/one I²S, one HDMI CEC and up to eight USARTs), one CAN, one 12-bit ADC, one 12-bit DAC with two channels, seven 16-bit timers, one 32-bit timer and an advanced-control PWM timer.

The STM32F091xB/xC microcontrollers operate in the -40 to +85 °C and -40 to +105 °C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

The STM32F091xB/xC microcontrollers include devices in seven different packages ranging from 48 pins to 100 pins with a die form also available upon request. Depending on the device chosen, different sets of peripherals are included.

These features make the STM32F091xB/xC microcontrollers suitable for a wide range of applications such as application control and user interfaces, hand-held equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.

3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 32 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 88 GPIOs can be connected to the 16 external interrupt lines.

3.10 Analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $\mathsf{V}_{\mathsf{SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at a temperature of 30 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2	TS ADC raw data acquired at a temperature of 110 $^{\circ}$ C (± 5 $^{\circ}$ C), V _{DDA} = 3.3 V (± 10 mV)	0x1FFF F7C2 - 0x1FFF F7C3

Table 3. Temperature sensor calibration values

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. The

USART modes/features ⁽¹⁾	USART1 USART2 USART3	USART4	USART5 USART6 USART7 USART8						
Single-wire half-duplex communication	Х	Х	Х						
IrDA SIR ENDEC block	Х	-	-						
LIN mode	Х	-	-						
Dual clock domain and wakeup from Stop mode	Х	-	-						
Receiver timeout interrupt	Х	-	-						
Modbus communication	Х	-	-						
Auto baud rate detection	Х	-	-						
Driver Enable	Х	Х	Х						

Table 10. STM32F091xB/xC USART implementation (continued)

1. X = supported.

3.18 Serial peripheral interface (SPI) / Inter-integrated sound interface (I²S)

Two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

Two standard I²S interfaces (multiplexed with SPI1 and SPI2 respectively) supporting four different audio standards can operate as master or slave at half-duplex communication mode. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, they can output a clock for an external audio component at 256 times the sampling frequency.

SPI features ⁽¹⁾	SPI1 and SPI2
Hardware CRC calculation	Х
Rx/Tx FIFO	Х
NSS pulse mode	Х
I ² S mode	Х
TI mode	Х

Table 11. STM32F091xB/xC SPI/I²S implementation

1. X = supported.

3.19 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

The device embeds a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC controller to wakeup the MCU from Stop mode on data reception.

3.20 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

3.21 Clock recovery system (CRS)

The STM32F091xB/xC embeds a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

3.22 Serial wire debug port (SW-DP)

An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.

	Pi	n nui	mber	s						Pin functions		
UFBGA100	LQFP100	UFBGA64	LQFP64	WLCSP64	LQFP48/UFQFPN48	Pin name (function upon reset)	Pin type	I/O structure Notes		Alternate functions	Additional functions	
J1	19	-	-	-	-	PF2	I/O	FT		EVENTOUT, USART7_TX, USART7_CK_RTS	WKUP8	
K1	20	F1	12	G8	8	VSSA	S	-		Analog grou	nd	
M1	21	H1	13	H8	9	VDDA	S	-		Analog power s	upply	
L1	22	-	-	-	-	PF3	I/O	FT		EVENTOUT, USART7_RX, USART6_CK_RTS		
L2	23	G2	14	F7	10	PA0	I/O	TTa		USART2_CTS, TIM2_CH1_ETR, TSC_G1_IO1, USART4_TX COMP1_OUT	RTC_ TAMP2, WKUP1, ADC_IN0, COMP1_INM6	
M2	24	H2	15	F6	11	PA1	I/O	ТТа		USART2_RTS, TIM2_CH2, TIM15_CH1N, TSC_G1_IO2, USART4_RX, EVENTOUT	ADC_IN1, COMP1_INP	
КЗ	25	F3	16	E5	12	PA2	I/O	TTa		USART2_TX, TIM2_CH3, TIM15_CH1, TSC_G1_IO3 COMP2_OUT	ADC_IN2, WKUP4, COMP2_INM6	
L3	26	G3	17	H7	13	PA3	I/O	ТТа		USART2_RX,TIM2_CH4, TIM15_CH2, TSC_G1_IO4	ADC_IN3, COMP2_INP	
D3	27	C2	18	G7	-	VSS	S	-		Ground		
H3	28	D2	19	G6	-	VDD	S	-		Digital power supply		
М3	29	H3	20	H6	14	PA4	I/O	TTa		SPI1_NSS, I2S1_WS, TIM14_CH1, TSC_G2_IO1, USART2_CK, USART6_TX	COMP1_INM4, COMP2_INM4, ADC_IN4, DAC_OUT1	
K4	30	F4	21	F5	15	PA5	I/O	ТТа		SPI1_SCK, I2S1_CK, CEC, TIM2_CH1_ETR, TSC_G2_IO2, USART6_RX	COMP1_INM5, COMP2_INM5, ADC_IN5, DAC_OUT2	

Table 13. STM32F091xB/xC pin definitions (continued)
--

	Pi	in nui	mber			13. 01111321 0317		•		Pin functions			
UFBGA100	LQFP100	UFBGA64	LQFP64	WLCSP64	LQFP48/UFQFPN48	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions		
J10	59	-	-	-	-	PD12	I/O	FT		USART3_RTS, TSC_G8_IO1, USART8_CK_RTS	-		
H12	60	-	-	-	-	PD13	I/O	FT		TSC_G8_IO2, USART8_TX	-		
H11	61	-	-	-	-	PD14	I/O	FT		TSC_G8_IO3, USART8_RX	-		
H10	62	-	-	-	-	PD15	I/O	FT	TSC_G8_IO4, FT CRS_SYNC, USART7_CK_RTS		-		
E12	63	F6	37	E1	-	PC6	I/O	FT	(3)	TIM3_CH1, USART7_TX	-		
E11	64	E7	38	D1	-	PC7	I/O	FT	(3)	TIM3_CH2, USART7_RX	-		
E10	65	E8	39	E2	-	PC8	I/O	FT	(3)	TIM3_CH3, USART8_TX	-		
D12	66	D8	40	E3	-	PC9	I/O	FT	FT ⁽³⁾ TIM3_CH4, USART8_RX		-		
D11	67	D7	41	D2	29	PA8	I/O	FT	(3)	USART1_CK, TIM1_CH1, EVENTOUT, MCO, CRS_SYNC	-		
D10	68	C7	42	C1	30	PA9	I/O	FT	(3)	USART1_TX, TIM1_CH2, TIM15_BKIN, MCO, TSC_G4_IO1, I2C1_SCL	-		
C12	69	C6	43	C2	31	PA10	I/O	FT	(3)	USART1_RX, TIM1_CH3, TIM17_BKIN, TSC_G4_IO2, I2C1_SDA	-		
B12	70	C8	44	D3	32	PA11	I/O	FT	(3)	CAN_RX, USART1_CTS, TIM1_CH4, COMP1_OUT, TSC_G4_IO3, EVENTOUT, I2C2_SCL	-		
A12	71	B8	45	B1	33	PA12	I/O	FT	(3)	CAN_TX, USART1_RTS, TIM1_ETR, COMP2_OUT, TSC_G4_IO4, EVENTOUT, I2C2_SDA	-		
A11	72	A8	46	C3	34	PA13	I/O	FT	(3) (4)	IR_OUT, SWDIO	-		
C11	73	-	-	-	-	PF6	I/O	FT	(3)	-	-		
F11	74	D6	47	B2	35	VSS	S	-		Ground			
G11	75	E6	48	A1	36	VDDIO2	S	-		Digital power su	ıpply		

Table 13. STM32F091xB/xC pin definitions (continued)

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

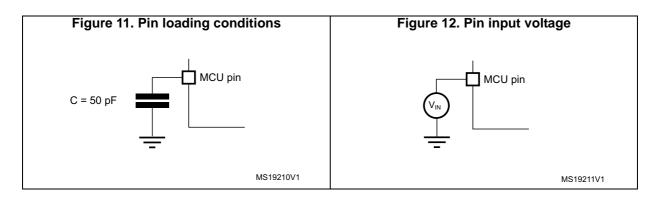
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3.3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 11*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 12*.

1. Data based on characterization results, not tested in production unless otherwise specified.

	er				V _{DDA}	= 2.4 V	1		V _{DDA}	= 3.6 \	/	
Symbol	Bara-meter Bara-meter	Conditions	f _{HCLK}		м	ax @ T _A	(2)		Μ	Unit		
	Para			Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
		HSI48	48 MHz	312	333	338	347	316	334	341	350	
		HSE	48 MHz	147	168	178	181	160	181	192	197	
	Supply current in	bypass.	32 MHz	101	119	125	127	109	127	135	138	
	Run or		24 MHz	80	96	98	100	87	101	106	109	
	Sleep mode,	HSE	8 MHz	2.8	3.5	3.7	3.9	3.7	4.3	4.6	4.7	
I _{DDA}	code executing	bypass, PLL off	1 MHz	2.7	3.2	3.5	3.8	3.3	3.9	4.4	4.7	μA
	from Flash memory	HSI clock, PLL on	48 MHz	214	243	254	259	235	262	275	281	
			32 MHz	166	193	203	204	185	207	216	220	
or RAM	or RAM		24 MHz	144	171	177	178	161	180	187	190	
		HSI clock, PLL off	8 MHz	65	83	85	86	77	90	92	93	

Table 30. Typical and maximum current consumption from the $\rm V_{DDA}$ supply

 Current consumption from the V_{DDA} supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, I_{DDA} is independent from the frequency.

2. Data based on characterization results, not tested in production unless otherwise specified.

	Parameter	Conditions	Тур @ V _{BAT}									
Symbol			1.65 V	1.8 V	2.4 V	2.7 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
	RTC domain	LSE & RTC ON; "Xtal mode": lower driving capability; LSEDRV[1:0] = '00'	0.5	0.5	0.6	0.7	0.9	1.0	1.0	1.3	1.8	
I _{DD_VBAT}	supply current	LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1:0] = '11'	0.8	0.8	0.9	1.0	1.2	1.3	1.4	1.7	2.2	μA

Table 32. Typical and maximum current consumption from the $\rm V_{BAT}$ supply

1. Data based on characterization results, not tested in production.

Typical current consumption

The MCU is placed under the following conditions:

- V_{DD} = V_{DDA} = 3.3 V
- All I/O pins are in analog input configuration
- The Flash memory access time is adjusted to f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled, f_{PCLK} = f_{HCLK}
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 35*. The MCU is placed under the following conditions:

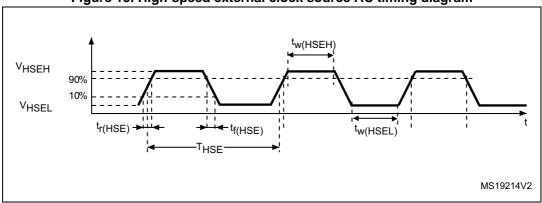
- All I/O pins are in analog mode
- All peripherals are disabled unless otherwise mentioned
- The given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- Ambient operating temperature and supply voltage conditions summarized in *Table 21: Voltage characteristics*

	Peripheral	Typical consumption at 25 °C	Unit	
	BusMatrix ⁽¹⁾	3.1		
	CRC	2.0		
	DMA1	5.5		
	DMA2	5.1		
	Flash memory interface	15.4		
	GPIOA	5.5		
AHB	GPIOB	5.4	µA/MHz	
АПБ	GPIOC	3.2		
	GPIOD	3.1		
	GPIOE	4.0		
	GPIOF	2.5		
	SRAM	0.8		
	TSC	5.5		
	All AHB peripherals	61.0		

Table 35. Peripheral current consumption

	Peripheral	Typical consumption (continued	/ Unit
	APB-Bridge ⁽²⁾	3.6	
	ADC ⁽³⁾	4.3	
	CAN	12.4	
	CEC	0.4	
	CRS	0.0	
	DAC ⁽³⁾	4.2	
	DBG (MCU Debug Support)	0.2	
	12C1	2.9	
	12C2	2.4	
	PWR	0.6	
	SPI1	8.8	
	SPI2	7.8	
	SYSCFG and COMP	1.9	
	TIM1	15.2	
	TIM14	2.6	
	TIM15	8.7	
APB	TIM16	5.8	µA/MHz
	TIM17	7.0	
	TIM2	16.2	
	TIM3	11.9	
	TIM6	11.8	
	TIM7	2.5	
	USART1	17.6	
	USART2	16.3	
	USART3	16.2	
	USART4	4.7	
	USART5	4.4	
	USART6	5.5	
	USART7	5.2	
	USART8	5.1	
	00/11/10	1	
	WWDG	1.1	

 Table 35. Peripheral current consumption (continued)

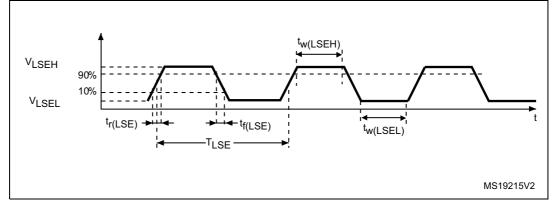

1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).

2. The APB Bridge is automatically active when at least one peripheral is ON on the Bus.

3. The power consumption of the analog part (I_{DDA}) of peripherals such as ADC, DAC, comparators, is not included. Refer to the tables of characteristics in the subsequent sections.

1. Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source


In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 16*.

Symbol	Parameter ⁽¹⁾	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency	-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V_{LSEL}	OSC32_IN input pin low level voltage	V_{SS}	-	0.3 V _{DDIOx}	v
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time	450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time	-	-	50	115

Table 38. Low-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

DocID026284 Rev 4

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (for example control registers)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Conditions Monitored		Unit
		oonaniono	frequency band		onit
		V _{DD} = 3.6 V, T _Δ = 25 °C,	0.1 to 30 MHz	3	
6	Peak level		30 to 130 MHz	23	dBµV
	compliant with IEC 61967-2	130 MHz to 1 GHz	15		
			EMI Level	4	-

Table 49. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

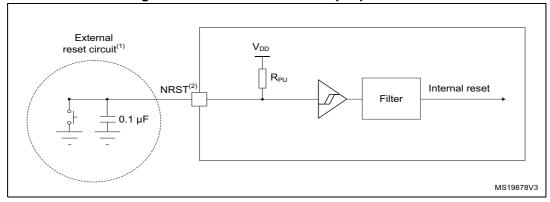

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV	
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ	
V _{F(NRST)}	NRST input filtered pulse	-	-	-	100 ⁽¹⁾	ns	
V	NRST input not filtered pulse	$2.7 < V_{DD} < 3.6$	300 ⁽³⁾	-	_	ns	
V _{NF(NRST)}		$2.0 < V_{DD} < 3.6$	500 ⁽³⁾	-	-	115	

Table 56. NRST pin characteristics (continued)

1. Data based on design simulation only. Not tested in production.

 The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

3. Data based on design simulation only. Not tested in production.

- 1. The external capacitor protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 56: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.

6.3.16 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 57* are derived from tests performed under the conditions summarized in *Table 24: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Table 57. ADC c	haracteristics
-----------------	----------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DDA}	Analog supply voltage for ADC ON	-	2.4	-	3.6	V	
I _{DDA (ADC)}	Current consumption of the ADC ⁽¹⁾	V _{DDA} = 3.3 V	-	0.9	-	mA	
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz	
f _S ⁽²⁾	Sampling rate	12-bit resolution	0.043	-	1	MHz	

Equation 1: R_{AIN} max formula

$$R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 58. R _{AIN} max for f _{ADC} = 14 MHz						
T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ) ⁽¹⁾				
1.5	0.11	0.4				
7.5	0.54	5.9				
13.5	0.96	11.4				
28.5	2.04	25.2				
41.5	2.96	37.2				
55.5	3.96	50				
71.5	5.11	NA				
239.5	17.1	NA				

1. Guaranteed by design, not tested in production.

Table 59. ADC accuracy $^{(1)(2)(3)}$

Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit
ET	Total unadjusted error		±1.3	±2	
EO	Offset error	$f_{PCLK} = 48 \text{ MHz},$	±1	±1.5	
EG	Gain error	f _{ADC} = 14 MHz, R _{AIN} < 10 kΩ V _{DDA} = 3 V to 3.6 V	±0.5	±1.5	LSB
ED	Differential linearity error	$T_A = 25 $ °C	±0.7	±1	
EL	Integral linearity error		±0.8	±1.5	
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	f _{PCLK} = 48 MHz,	±1.9	±2.8	
EG	Gain error	f _{ADC} = 14 MHz, R _{AIN} < 10 kΩ V _{DDA} = 2.7 V to 3.6 V	±2.8	±3	LSB
ED	Differential linearity error	$T_{A} = -40 \text{ to } 105 \text{ °C}$	±0.7	±1.3	
EL	Integral linearity error		±1.2	±1.7	
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	f _{PCLK} = 48 MHz,	±1.9	±2.8	
EG	Gain error	f _{ADC} = 14 MHz, R _{AIN} < 10 kΩ V _{DDA} = 2.4 V to 3.6 V T _A = 25 °C	±2.8	±3	LSB
ED	Differential linearity error		±0.7	±1.3	1
EL	Integral linearity error		±1.2	±1.7	

1. ADC DC accuracy values are measured after internal calibration.

6.3.19 Temperature sensor characteristics

Table 62. TS characteristic

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	± 1	± 2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₃₀	Voltage at 30 °C (± 5 °C) ⁽²⁾	1.34	1.43	1.52	V
t _{START} ⁽¹⁾	ADC_IN16 buffer startup time		-	10	μs
t _{S_temp} ⁽¹⁾	ADC compliant time when reading the		-	-	μs

1. Guaranteed by design, not tested in production.

2. Measured at V_{DDA} = 3.3 V ± 10 mV. The V_{30} ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3: Temperature sensor calibration values.

6.3.20 V_{BAT} monitoring characteristics

Symbol	Parameter		Тур	Max	Unit
R	Resistor bridge for V _{BAT}		2 x 50	-	kΩ
Q	Ratio on V _{BAT} measurement		2	-	-
Er ⁽¹⁾	Error on Q		-	+1	%
t _{S_vbat} ⁽¹⁾	ADC sampling time when reading the V _{BAT}		-	-	μs

Table 63. V_{BAT} monitoring characteristics

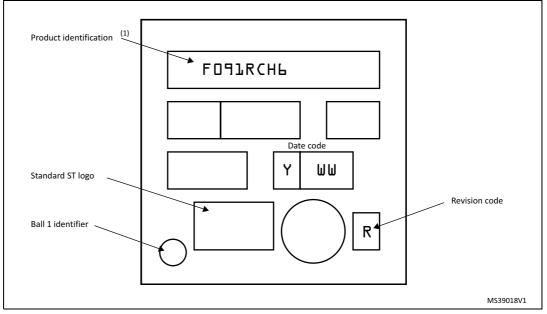
1. Guaranteed by design, not tested in production.

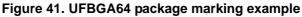
6.3.21 Timer characteristics

The parameters given in the following tables are guaranteed by design.

Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t mu	Timer resolution time	-	-	1	-	t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time	f _{TIMxCLK} = 48 MHz	-	20.8	-	ns
f _{EXT}	Timer external clock frequency on CH1 to CH4	-	-	f _{TIMxCLK} /2	-	MHz
		f _{TIMxCLK} = 48 MHz	-	24	-	MHz
tmax_count	16-bit timer maximum period	-	-	2 ¹⁶	-	t _{TIMxCLK}
		f _{TIMxCLK} = 48 MHz	-	1365	-	μs
	32-bit counter maximum period	-	-	2 ³²	-	t _{TIMxCLK}
		f _{TIMxCLK} = 48 MHz	-	89.48	-	S

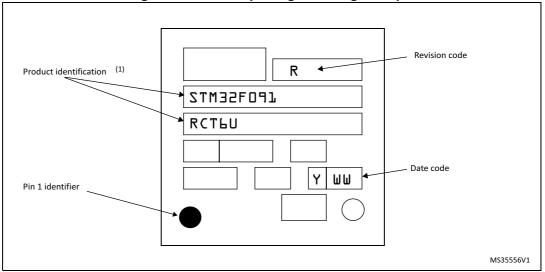

Table 64. TIMx characteristics



Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

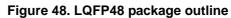
Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

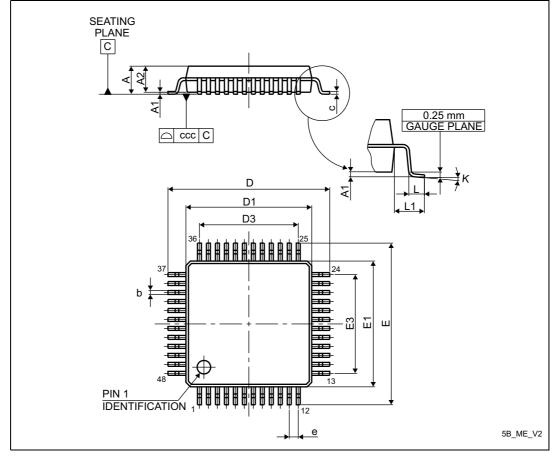

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

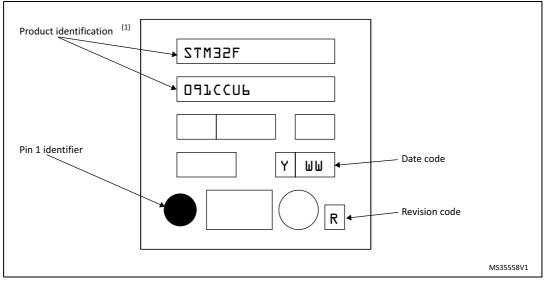
Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.




 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.6 LQFP48 package information

LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.


1. Drawing is not to scale.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 53. UFQFPN48 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

