

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	52
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 19x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-UFBGA
Supplier Device Package	64-UFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f091rch6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		6.3.11	EMC characteristics
		6.3.12	Electrical sensitivity characteristics77
		6.3.13	I/O current injection characteristics78
		6.3.14	I/O port characteristics
		6.3.15	NRST pin characteristics
		6.3.16	12-bit ADC characteristics
		6.3.17	DAC electrical specifications
		6.3.18	Comparator characteristics91
		6.3.19	Temperature sensor characteristics 93
		6.3.20	V _{BAT} monitoring characteristics93
		6.3.21	Timer characteristics
		6.3.22	Communication interfaces
7	Pack	age info	ormation
	7.1	UFBGA	A100 package information 100
	7.2	LQFP1	00 package information 103
	7.3	UFBG/	A64 package information
	7.4	WLCSI	P64 package information 109
	7.5	LQFP6	4 package information
	7.6	LQFP4	8 package information
	7.7	UFQFF	PN48 package information118
	7.8	Therma	al characteristics
		7.8.1	Reference document
		7.8.2	Selecting the product temperature range
8	Orde	ering inf	ormation
9	Revi	sion his	tory

3 Functional overview

Figure 1 shows the general block diagram of the STM32F091xB/xC devices.

3.1 ARM[®]-Cortex[®]-M0 core

The ARM[®] Cortex[®]-M0 is a generation of ARM 32-bit RISC processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM[®] Cortex[®]-M0 processors feature exceptional code-efficiency, delivering the high performance expected from an ARM core, with memory sizes usually associated with 8- and 16-bit devices.

The STM32F091xB/xC devices embed ARM core and are compatible with all ARM tools and software.

3.2 Memories

The device has the following features:

- 32 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for fail-critical applications.
- The non-volatile memory is divided into two arrays:
 - up to 256 Kbytes of embedded Flash memory for programs and data
 - Option bytes

The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (Cortex[®]-M0 serial wire) and boot in RAM selection disabled

3.3 Boot modes

At startup, the boot pin and boot selector option bits are used to select one of the three boot options:

- boot from User Flash memory
- boot from System Memory
- boot from embedded SRAM

The boot pin is shared with the standard GPIO and can be disabled through the boot selector option bits. The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15 or PA9/PA10 or I²C on pins PB6/PB7.

DocID026284 Rev 4

3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.5 **Power management**

3.5.1 Power supply schemes

- V_{DD} = V_{DDIO1} = 2.0 to 3.6 V: external power supply for I/Os (V_{DDIO1}) and the internal regulator. It is provided externally through VDD pins.
- V_{DDA} = from V_{DD} to 3.6 V: external analog power supply for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC or DAC are used). It is provided externally through VDDA pin. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be established first.
- V_{DDIO2} = 1.65 to 3.6 V: external power supply for marked I/Os. V_{DDIO2} is provided externally through the VDDIO2 pin. The V_{DDIO2} voltage level is completely independent from V_{DD} or V_{DDA}, but it must not be provided without a valid supply on V_{DD}. The V_{DDIO2} supply is monitored and compared with the internal reference voltage (V_{REFINT}). When the V_{DDIO2} is below this threshold, all the I/Os supplied from this rail are disabled by hardware. The output of this comparator is connected to EXTI line 31 and it can be used to generate an interrupt. Refer to the pinout diagrams or tables for concerned I/Os list.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 13: Power supply scheme*.

3.5.2 Power supply supervisors

The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, $V_{\text{POR/PDR}}$, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD}

back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

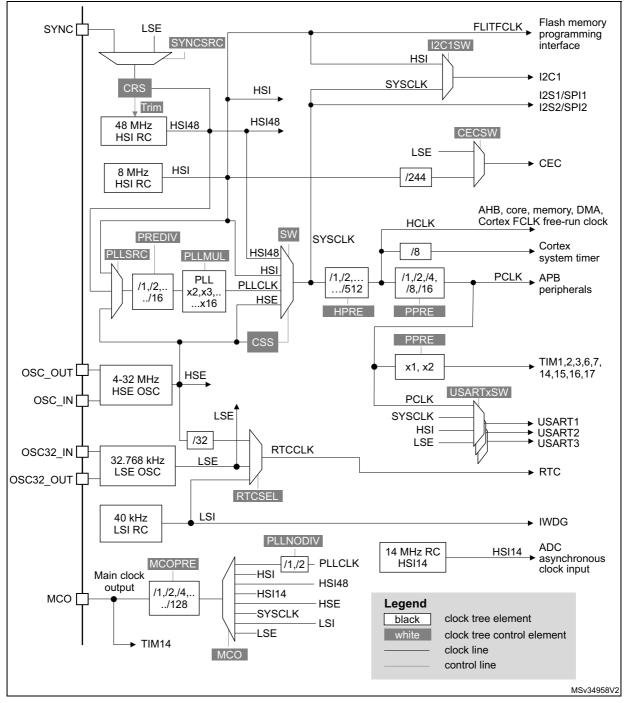


Figure 2. Clock tree

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.

DocID026284 Rev 4

3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 32 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 88 GPIOs can be connected to the 16 external interrupt lines.

3.10 Analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $\mathsf{V}_{\mathsf{SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at a temperature of 30 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2	TS ADC raw data acquired at a temperature of 110 $^{\circ}$ C (± 5 $^{\circ}$ C), V _{DDA} = 3.3 V (± 10 mV)	0x1FFF F7C2 - 0x1FFF F7C3

Table 3. Temperature sensor calibration values

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. The

	Number of capacitive sensing channels					
Analog I/O group	STM32F091Vx	STM32F091Rx	STM32F091Cx			
G1	3	3	3			
G2	3	3	3			
G3	3	3	2			
G4	3	3	3			
G5	3	3	3			
G6	3	3	3			
G7	3	0	0			
G8	3	0	0			
Number of capacitive sensing channels	24	18	17			

Table 6. Number of capacitive sensing channels available on STM32F091xB/xC devices

3.14 Timers and watchdogs

The STM32F091xB/xC devices include up to six general-purpose timers, two basic timers and an advanced control timer.

Table 7 compares the features of the different timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	3
	TIM2	32-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
	TIM3	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
General purpose	TIM14	16-bit	Up	integer from 1 to 65536	No	1	-
	TIM15	16-bit	Up	integer from 1 to 65536	Yes	2	1
	TIM16 TIM17	16-bit	Up	integer from 1 to 65536	Yes	1	1
Basic	TIM6 TIM7	16-bit	Up	integer from 1 to 65536	Yes	-	-

Table 7. Timer feature comparison

4 Pinouts and pin descriptions

Тор	op view											
F	1	2	3	4	5	6	7	8	9	10	11	12
A	(PE3)	(PE1)	(PB8)	(PF11-) BOOT0	(PD7)	(PD5)	(РВ4)	(РВЗ)	(PA15)	PA14	PA13	PA12
в	(PE4)	(PE2)	(PB9)	(PB7)	(PB6)	(PD6)	(PD4)	(PD3)	(PD1)	PC12	PC10	PA11
с	(PC13)	(PE5)	PEO		(PB5)			PD2	PD0	PC11	PF6	PA10
D	PC14- OSC32	PE6	vss							PA9	PA8	PC9
Е	OSC32	VBAT	NC							PC8	PC7	PC6
F	(PF0- OSC_) IN_	(PF9)									vss	vss
G	(OSC_)	(PF10)									VDDIO2	VDD
н	PC0									(PD15)	(PD14)	(PD13)
J	PF2	(PC1)	PC2							(PD12)	(PD11)	(PD10)
к	(VSSA)	(PC3)	(PA2)	(PA5)	(PC4)			(PD9)	(PD8)	(PB15)	(PB14)	(PB13)
L	(PF3)	PA0	(PA3)	PA6	(PC5)	(PB2)	(PE8)	(PE10)	(PE12)	(PB10)	(PB11)	(PB12)
М	(VDDA)	(PA1)	(PA4)	(PA7)	РВО	(РВ1)	(PE7)	(PE9)	(PE11)	(PE13)	(PE14)	(PE15)
	UFBGA100											
	I/O supp	lied from	VDDIO2			OFBG	5A100					MS

Figure 3. UFBGA100 package pinout

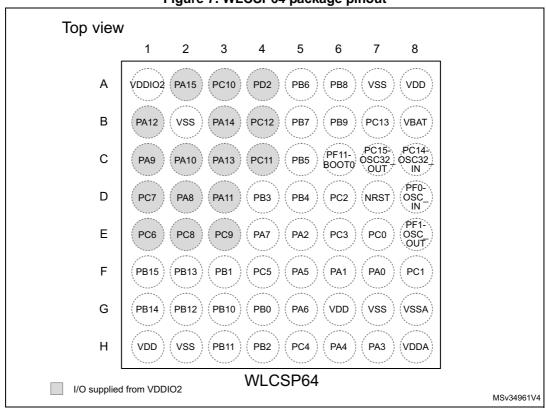
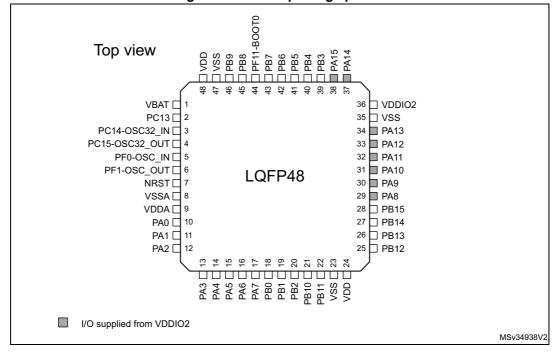



Figure 7. WLCSP64 package pinout

1. The above figure shows the package in top view, changing from bottom view in the previous document versions.

Figure 8. LQFP48 package pinout

DocID026284 Rev 4

Table To. Alter	Table 16. Alternate functions selected through GFIOC_AFK registers for port C							
Pin name	AF0	AF1	AF2					
PC0	EVENTOUT	USART7_TX	USART6_TX					
PC1	EVENTOUT	USART7_RX	USART6_RX					
PC2	EVENTOUT	SPI2_MISO, I2S2_MCK	USART8_TX					
PC3	EVENTOUT	SPI2_MOSI, I2S2_SD	USART8_RX					
PC4	EVENTOUT	USART3_TX	-					
PC5	TSC_G3_IO1	USART3_RX	-					
PC6	TIM3_CH1	USART7_TX	-					
PC7	TIM3_CH2	USART7_RX	-					
PC8	TIM3_CH3	USART8_TX	-					
PC9	TIM3_CH4	USART8_RX	-					
PC10	USART4_TX	USART3_TX	-					
PC11	USART4_RX	USART3_RX	-					
PC12	USART4_CK	USART3_CK	USART5_TX					
PC13	-	-	-					
PC14	-	-	-					
PC15	-	-	-					

Table 16. Alternate functions selected through GPIOC_AFR registers for port C

Table 17. Alternate functions selected through GPIOD_AFR registers for port D

Pin name	AF0	AF1	AF2
PD0	CAN_RX	SPI2_NSS, I2S2_WS	-
PD1	CAN_TX	SPI2_SCK, I2S2_CK	-
PD2	TIM3_ETR	USART3_RTS	USART5_RX
PD3	USART2_CTS	SPI2_MISO, I2S2_MCK	-
PD4	USART2_RTS	SPI2_MOSI, I2S2_SD	-
PD5	USART2_TX	-	-
PD6	USART2_RX	-	-
PD7	USART2_CK	-	-
PD8	USART3_TX	-	-
PD9	USART3_RX	-	-
PD10	USART3_CK	-	-
PD11	USART3_CTS	-	-
PD12	USART3_RTS	TSC_G8_IO1	USART8_CK_RTS
PD13	USART8_TX	TSC_G8_IO2	
PD14	USART8_RX	TSC_G8_IO3	-
PD15	CRS_SYNC	TSC_G8_IO4	USART7_CK_RTS

6.3 Operating conditions

6.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Мах	Unit	
f _{HCLK}	Internal AHB clock frequency -		0	48	MHz	
f _{PCLK}	Internal APB clock frequency	-	0	48	MHZ	
V _{DD}	Standard operating voltage	-	2.0	3.6	V	
V _{DDIO2}	I/O supply voltage	Must not be supplied if V_{DD} is not present	1.65	3.6	V	
M	Analog operating voltage (ADC and DAC not used)	Must have a potential equal	V_{DD}	3.6	V	
V _{DDA}	Analog operating voltage (ADC and DAC used)	to or higher than V _{DD}	2.4	3.6	V	
V _{BAT}	Backup operating voltage	-	1.65	3.6	V	
	I/O input voltage	TC and RST I/O	-0.3	V _{DDIOx} +0.3	V	
V _{IN}		TTa I/O	-0.3	V _{DDA} +0.3 ⁽¹⁾		
		FT and FTf I/O	-0.3	5.5 ⁽¹⁾		
		UFBGA100	-	364	mW	
		LQFP100	-	476		
	Power dissipation at T _A = 85 °C	LQFP64	-	455		
P _D	for suffix 6 or T_{Δ} = 105 °C for	WLCSP64	-	377		
	suffix 7 ⁽²⁾	UFBGA64	-	308		
		LQFP48	-	370		
		UFQFPN48	-	625		
	Ambient temperature for the	Maximum power dissipation	-40	85	•	
т.	suffix 6 version	Low power dissipation ⁽³⁾	-40	105	°C	
ΤΑ	Ambient temperature for the	Maximum power dissipation	-40	105		
	suffix 7 version	Low power dissipation ⁽³⁾	-40	125	°C	
T /	lunation towns return respect	Suffix 6 version	-40	105	•	
TJ	Junction temperature range	Suffix 7 version	-40	125	°C	

Table 24. General operating conditions

1. For operation with a voltage higher than V_{DDIOx} + 0.3 V, the internal pull-up resistor must be disabled.

2. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} . See Section 7.8: Thermal characteristics

3. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.8: Thermal characteristics).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 25* are derived from tests performed under the ambient temperature condition summarized in *Table 24*.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 35*. The MCU is placed under the following conditions:

- All I/O pins are in analog mode
- All peripherals are disabled unless otherwise mentioned
- The given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- Ambient operating temperature and supply voltage conditions summarized in *Table 21: Voltage characteristics*

	Peripheral	Typical consumption at 25 °C	Unit
	BusMatrix ⁽¹⁾	3.1	
	CRC	2.0	
	DMA1	5.5	
	DMA2	5.1	
	Flash memory interface	15.4	
	GPIOA	5.5	
AHB	GPIOB	5.4	
АПБ	GPIOC	3.2	µA/MHz
	GPIOD	3.1	
	GPIOE	4.0	
	GPIOF	2.5	
	SRAM	0.8	
	TSC	5.5	
	All AHB peripherals	61.0	

Table 35. Peripheral current consumption

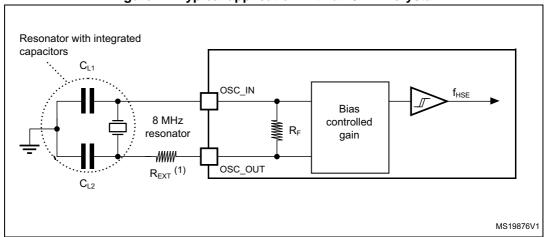


Figure 17. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 40*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
		low drive capability	-	0.5	0.9	
	LSE current consumption	medium-low drive capability	-	-	1	
I _{DD}	LSE current consumption	medium-high drive capability	-	-	1.3	μA
		high drive capability	-	-	1.6	
	Oscillator transconductance	low drive capability	5	-	-	
~		medium-low drive capability	8	-	-	μΑ/V
9 _m		medium-high drive capability	15	-	-	
		high drive capability	25	-	-	
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DDIOx} is stabilized	-	2	-	S

Table 40. LSE oscillator	characteristics	(f _{LSE} = 32.768 kHz)
--------------------------	-----------------	---------------------------------

1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

2. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

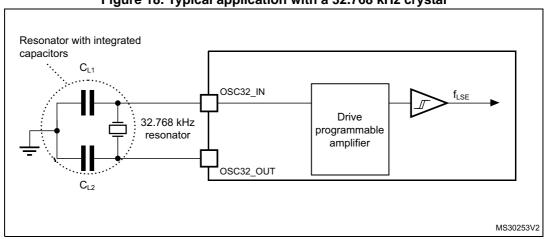


Figure 18. Typical application with a 32.768 kHz crystal

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.8 Internal clock source characteristics

The parameters given in *Table 41* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*. The provided curves are characterization results, not tested in production.

High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)

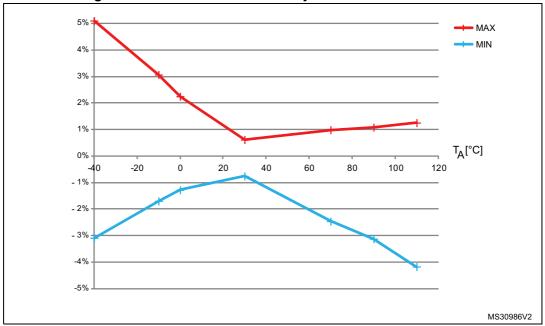

Symbol	Parameter Conditions Min		Min	Тур	Max	Unit		
f _{HSI14}	Frequency	-	-	14	-	MHz		
TRIM	HSI14 user-trimming step	-	-	-	1 ⁽²⁾	%		
DuCy _(HSI14)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%		
	Accuracy of the HSI14 oscillator (factory calibrated)	T _A = -40 to 105 °C	-4.2 ⁽³⁾	-	5.1 ⁽³⁾	%		
ACC		T _A = −10 to 85 °C	-3.2 ⁽³⁾	-	3.1 ⁽³⁾	%		
ACC _{HSI14}		T _A = 0 to 70 °C	-2.5 ⁽³⁾	-	2.3 ⁽³⁾	%		
		T _A = 25 °C	-1	-	1	%		
t _{su(HSI14)}	HSI14 oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs		
I _{DDA(HSI14)}	HSI14 oscillator power consumption	-	-	100	150 ⁽²⁾	μA		

Table 42. HSI14 oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

Figure 20. HSI14 oscillator accuracy characterization results

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit				
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycle				
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 85 °C	30					
		1 kcycle ⁽²⁾ at T _A = 105 °C	10	Year				
		10 kcycle ⁽²⁾ at T _A = 55 °C	20					

 Table 47. Flash memory endurance and data retention

1. Data based on characterization results, not tested in production.

2. Cycling performed over the whole temperature range.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 48*. They are based on the EMS levels and classes defined in application note AN1709.

Table 48. EMS c	haracteristics
-----------------	----------------

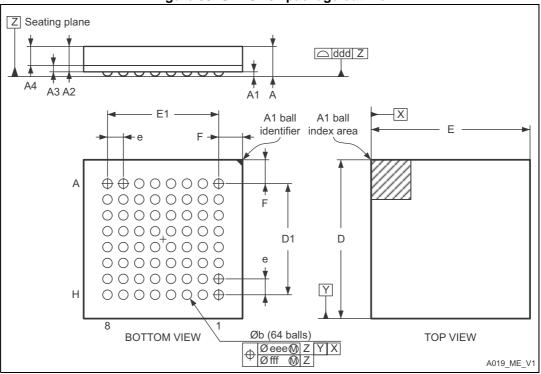
Symb	ol Parameter	Conditions	Level/ Class
V _{FES}	Voltage limits to be applied on any I/O pi to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25 °C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-2	2B
V _{EFT}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25°C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-4	4B

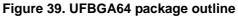
Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

6.3.17 DAC electrical specifications


Symbol Parameter Min Typ Max Unit Comments						
Cymbol			.96	max	onit	
V _{DDA}	Analog supply voltage for DAC ON	2.4	-	3.6	V	-
R _{LOAD} ⁽¹⁾	Resistive load with buffer	5	-	-	kΩ	Load connected to V _{SSA}
INLOAD	ON	25	-	-	kΩ	Load connected to V _{DDA}
R _O ⁽¹⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V _{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	$V_{DDA} = 3.6 V and (0x155) and (0xEAB) at V_{DDA} = 2.4 V$
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{DDA} – 1LSB	V	excursion of the DAC.
I _{DDA} ⁽¹⁾	DAC DC current consumption in quiescent mode ⁽²⁾	-	-	600	μA	With no load, middle code (0x800) on the input
'DDA'		-	-	700	μA	With no load, worst code (0xF1C) on the input
DNL ⁽³⁾	Differential non linearity Difference between two consecutive code-1LSB)	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration
		-	-	±2	LSB	Given for the DAC in 12-bit configuration
	Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±1	LSB	Given for the DAC in 10-bit configuration
INL ⁽³⁾		-	-	±4	LSB	Given for the DAC in 12-bit configuration
	Offset error	-	-	±10	mV	-
Offset ⁽³⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at V_{DDA} = 3.6 V
	(0x800) and the ideal value = $V_{DDA}/2$)	-	-	±12	LSB	Given for the DAC in 12-bit at V_{DDA} = 3.6 V


Table 60. DAC characteristics

7.3 UFBGA64 package information

UFBGA64 is a 64-ball, 5 x 5 mm, 0.5 mm pitch ultra-fine-profile ball grid array package.

1. Drawing is not to scale.

Symbol		millimeters			inches ⁽¹⁾	
	Min	Тур	Max	Min	Тур	Max
А	0.460	0.530	0.600	0.0181	0.0209	0.0236
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197
A3	0.080	0.130	0.180	0.0031	0.0051	0.0071
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146
b	0.170	0.280	0.330	0.0067	0.0110	0.0130
D	4.850	5.000	5.150	0.1909	0.1969	0.2028
D1	3.450	3.500	3.550	0.1358	0.1378	0.1398
E	4.850	5.000	5.150	0.1909	0.1969	0.2028
E1	3.450	3.500	3.550	0.1358	0.1378	0.1398
е	-	0.500	-	-	0.0197	-
F	0.700	0.750	0.800	0.0276	0.0295	0.0315

Table 73. UFBGA64 package mechanical data

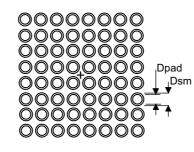


Table For Di Device publicago mochamoar data (continuou)							
Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Max	
А	0.460	0.530	0.600	0.0181	0.0209	0.0236	
ddd	-	-	0.080	-	-	0.0031	
eee	-	-	0.150	-	-	0.0059	
fff	-	-	0.050	-	-	0.0020	

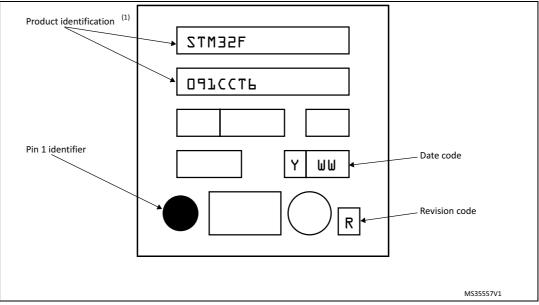
Table 73. UFBGA64 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 40. Recommended footprint for UFBGA64 package

A019_FP_V2

Table 74. UFBGA64 recommended PCB design rules

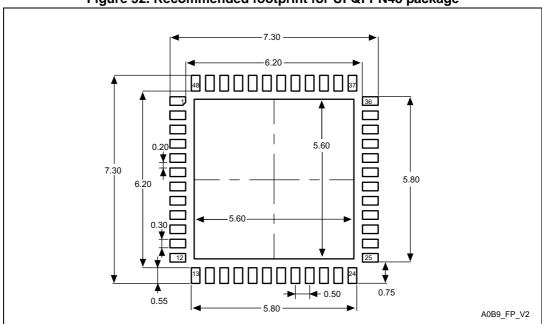

Dimension	Recommended values				
Pitch	0.5				
Dpad	0.280 mm				
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)				
Stencil opening	0.280 mm				
Stencil thickness	Between 0.100 mm and 0.125 mm				
Pad trace width	0.100 mm				

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 50. LQFP48 package marking example


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Symbol		millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
D	6.900	7.000	7.100	0.2717	0.2756	0.2795	
E	6.900	7.000	7.100	0.2717	0.2756	0.2795	
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
Т	-	0.152	-	-	0.0060	-	
b	0.200	0.250	0.300	0.0079	0.0098	0.0118	
е	-	0.500	-	-	0.0197	-	
ddd	-	-	0.080	-	-	0.0031	

Table 79. UFQFPN48 package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 52. Recommended footprint for UFQFPN48 package

1. Dimensions are expressed in millimeters.

