

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	52
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 19x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-UFBGA
Supplier Device Package	64-UFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f091rch6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Both comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined into a window comparator.

3.13 Touch sensing controller (TSC)

The STM32F091xB/xC devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists in charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. For operation, one capacitive sensing GPIO in each group is connected to an external capacitor and cannot be used as effective touch sensing channel.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0		TSC_G5_IO1	PB3
1	TSC_G1_IO2	PA1	5	TSC_G5_IO2	PB4
	TSC_G1_IO3	PA2	5	TSC_G5_IO3	PB6
	TSC_G1_IO4	PA3		TSC_G5_IO4	PB7
	TSC_G2_IO1	PA4		TSC_G6_IO1	PB11
2	TSC_G2_IO2	PA5	6	TSC_G6_IO2	PB12
2	TSC_G2_IO3	PA6	0	TSC_G6_IO3	PB13
	TSC_G2_IO4	PA7		TSC_G6_IO4	PB14
	TSC_G3_IO1	PC5		TSC_G7_IO1	PE2
3	TSC_G3_IO2	PB0	7	TSC_G7_IO2	PE3
5	TSC_G3_IO3	PB1	/	TSC_G7_IO3	PE4
	TSC_G3_IO4	PB2		TSC_G7_IO4	PE5
	TSC_G4_IO1	PA9		TSC_G8_IO1	PD12
4	TSC_G4_IO2	PA10	8	TSC_G8_IO2	PD13
4	TSC_G4_IO3	PA11	0	TSC_G8_IO3	PD14
	TSC_G4_IO4	PA12		TSC_G8_IO4	PD15

Table 5. Capacitive sensing GPIOs available on STM32F091xB/xC devices

	Number of capacitive sensing channels							
Analog I/O group	STM32F091Vx	STM32F091Rx	STM32F091Cx					
G1	3	3	3					
G2	3	3	3					
G3	3	3	2					
G4	3	3	3					
G5	3	3	3					
G6	3	3	3					
G7	3	0	0					
G8	3	0	0					
Number of capacitive sensing channels	24	18	17					

Table 6. Number of capacitive sensing channels available on STM32F091xB/xC devices

3.14 Timers and watchdogs

The STM32F091xB/xC devices include up to six general-purpose timers, two basic timers and an advanced control timer.

Table 7 compares the features of the different timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	3
	TIM2	32-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
	TIM3	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
General purpose	TIM14	16-bit	Up	integer from 1 to 65536	No	1	-
	TIM15	16-bit	Up	integer from 1 to 65536	Yes	2	1
	TIM16 TIM17	16-bit	Up	integer from 1 to 65536	Yes	1	1
Basic	TIM6 TIM7	16-bit	Up	integer from 1 to 65536	Yes	-	-

Table 7. Timer feature comparison

	Pi	n nu	mber	s				Pin functi				
UFBGA100	LQFP100	UFBGA64	LQFP64	WLCSP64	LQFP48/UFQFPN48	Pin name (function upon reset)	Pin type	Pin type I/O structure		Alternate functions	Additional functions	
M11	45	-	-	-	-	PE14	I/O	FT		SPI1_MISO, I2S1_MCK, TIM1_CH4	-	
M12	46	-	-	-	-	PE15	I/O	FT		SPI1_MOSI, I2S1_SD, TIM1_BKIN	-	
L10	47	G7	29	G3	21	PB10	I/O	FTf		SPI2_SCK, I2S2_CK, I2C2_SCL, USART3_TX, CEC, TSC_SYNC, TIM2_CH3	-	
L11	48	H7	30	H3	22	PB11	PB11 I/O FTf USART3_RX, TIM2_CH4 EVENTOUT, TSC_G6_IO1, I2C2_SDA		-			
F12	49	D5	31	H2	23	VSS	S	-		Ground		
G12	50	E5	32	H1	24	VDD	S	-		Digital power supply		
L12	51	H8	33	G2	25	25 PB12 I/O FT USART3 TSC_G6		TIM1_BKIN, TIM15_BKIN, SPI2_NSS, I2S2_WS, USART3_CK, TSC_G6_IO2, EVENTOUT	-			
K12	52	G8	34	F2	26	PB13	PB13 I/O FTf USART3_CTS, TIM1_CH1N,		I2C2_SCL, USART3_CTS,	-		
К11	53	F8	35	G1	27	PB14	SPI2_MISO, I2S2_MCK, I2C2_SDA,		-			
K10	54	F7	36	F1	28	PB15	PB15 I/O FT SPI2_MOSI, I2S2_SD, TIM1_CH3N, TIM15_CH1N, TIM15_CH2		TIM1_CH3N, TIM15_CH1N,	WKUP7, RTC_REFIN		
K9	55	-	I	-	-	PD8	I/O	FT		USART3_TX	-	
K8	56	-	-	-	-	PD9	I/O	FT		USART3_RX	-	
J12	57	-	-	-	-	PD10	I/O	FT		USART3_CK	-	
J11	58	-	-	-	-	PD11	I/O	FT		USART3_CTS	-	

Table 13. STM32F091xB/xC pin definitions (continued)

	Pi	n nu	mber	s						Pin functior	IS		
UFBGA100	LQFP100	UFBGA64	LQFP64	WLCSP64	LQFP48/UFQFPN48	Pin name (function upon reset)	Pin type	Pin type I/O structure		Pin type I/O structure		Alternate functions	Additional functions
C5	91	C4	57	C5	41	PB5	I/O	FT		SPI1_MOSI, I2S1_SD, I2C1_SMBA, TIM16_BKIN, TIM3_CH2, USART5_CK_RTS	WKUP6		
В5	92	D3	58	A5	42			I2C1_SCL, USART1_TX, TIM16_CH1N, TSC_G5_I03	-				
B4	93	C3	59	B5	43	PB7 I/O FTf USART4_CTS TIM17_CH1N		I2C1_SDA, USART1_RX, USART4_CTS, TIM17_CH1N, TSC_G5_IO4	-				
A4	94	B4	60	C6	44	PF11-BOOT0	I/O	FT		-	Boot memory selection		
A3	95	В3	61	A6	45	PB8			I2C1_SCL, CEC, TIM16_CH1, TSC_SYNC, CAN_RX	-			
В3	96	A3	62	B6	46	PB9	I/O FTf SPI2_NSS, I2S2_WS, I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT, CAN_TX		-				
C3	97	-	-	-	-	PE0	I/O	FT		EVENTOUT, TIM16_CH1	-		
A2	98	-	-	-	-	PE1	I/O	FT		EVENTOUT, TIM17_CH1	-		
D3	99	D4	63	A7	47	VSS	S	-		Ground			
C4	100	E4	64	A8	48	VDD	S	-		Digital power supply			

PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF. - These GPIOs must not be used as current sources (e.g. to drive an LED). 1.

2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC domain and RTC register descriptions in the reference manual.

3. PC6, PC7, PC8, PC9, PA8, PA9, PA10, PA11, PA12, PA13, PF6, PA14, PA15, PC10, PC11, PC12, PD0, PD1 and PD2 I/Os are supplied by VDDIO2

After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin and the internal pull-down on the SWCLK pin are activated. 4.

Bus	Boundary address	Size	Peripheral
	0x4800 1800 - 0x5FFF FFFF	~384 MB	Reserved
	0x4800 1400 - 0x4800 17FF	1 KB	GPIOF
	0x4800 1000 - 0x4800 13FF	1 KB	GPIOE
AHB2	0x4800 0C00 - 0x4800 0FFF	1 KB	GPIOD
AND2	0x4800 0800 - 0x4800 0BFF	1 KB	GPIOC
	0x4800 0400 - 0x4800 07FF	1 KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1 KB	GPIOA
	0x4002 4400 - 0x47FF FFFF	~128 MB	Reserved
	0x4002 4000 - 0x4002 43FF	1 KB	TSC
	0x4002 3400 - 0x4002 3FFF	3 KB	Reserved
	0x4002 3000 - 0x4002 33FF	1 KB	CRC
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved
AHB1	0x4002 2000 - 0x4002 23FF	1 KB	Flash memory interface
	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved
	0x4002 1000 - 0x4002 13FF	1 KB	RCC
	0x4002 0400 - 0x4002 0FFF	3 KB	Reserved
	0x4002 0000 - 0x4002 03FF	1 KB	DMA
	0x4001 8000 - 0x4001 FFFF	32 KB	Reserved

Table 20. STM32F091xB/xC	peripheral reg	jister boundary	addresses

Symbol	Parameter	6	Typical con Run i	sumption in node		sumption in mode	Unit
Symbol	Falameter	f _{HCLK}	Peripherals enabled	Peripherals disabled	Peripherals enabled	Peripherals disabled	Unit
		48 MHz	26.7	15.1	16.4	3.8	
		36 MHz	20.4	11.8	12.7	3.3	
		32 MHz	18.5	11.0	11.4	3.0	
	Current	24 MHz	14.6	8.7	9.0	2.3	
1	consumption	16 MHz	10.2	6.1	6.4	1.8	m۵
I _{DD}	from V _{DD} supply	8 MHz	5.1	3.3	3.2	1.2	- mA
	Supply	4 MHz	3.3	2.2	2.3	1.1	
		2 MHz	2.2	1.7	1.7	1.1	
		1 MHz	1.6	1.4	1.4	1.1	
		500 kHz	1.4	1.2	1.2	1.0	
		48 MHz		17	72		
		36 MHz		1:	31		
		32 MHz		1'	19		
	Current	24 MHz	93				
I _{DDA}	consumption	16 MHz		6	7		ıιΔ
'DDA	from V _{DDA} supply	8 MHz		2	.7		μA
	ouppiy	4 MHz	2.7				
		2 MHz		2	.7		
		1 MHz		2	.7		
		500 kHz		2	.7		

Table 33. Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 53: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt

High-speed internal 48 MHz (HSI48) RC oscillator

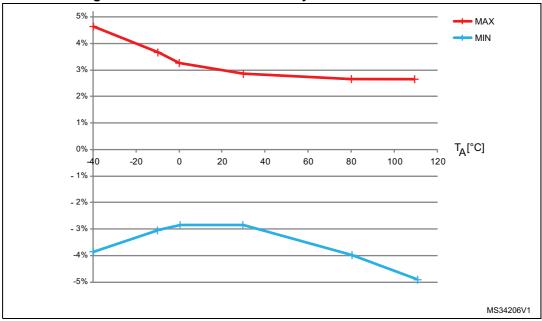

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
f _{HSI48}	Frequency	-	-	48	-	MHz		
TRIM	HSI48 user-trimming step	-	0.09 ⁽²⁾	0.14	0.2 ⁽²⁾	%		
DuCy _(HSI48)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%		
		$T_A = -40$ to 105 °C	-4.9 ⁽³⁾	-	4.7 ⁽³⁾	%		
100	Accuracy of the HSI48 oscillator (factory calibrated)	T _A = −10 to 85 °C	-4.1 ⁽³⁾	-	3.7 ⁽³⁾	%		
ACC _{HSI48}		T _A = 0 to 70 °C	-3.8 ⁽³⁾	-	3.4 ⁽³⁾	%		
		T _A = 25 °C	-2.8	-	2.9	%		
t _{su(HSI48)}	HSI48 oscillator startup time	-	-	-	6 ⁽²⁾	μs		
I _{DDA(HSI48)}	HSI48 oscillator power consumption	-	-	312	350 ⁽²⁾	μA		

Table 43. HSI48 oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = –40 to 105 $^\circ\text{C}$ unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

Figure 21. HSI48 oscillator accuracy characterization results

Low-speed internal (LSI) RC oscillator

Table 44.	LSI oscillator	characteristics ⁽¹⁾
-----------	----------------	--------------------------------

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	50	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	85	μs
I _{DDA(LSI)} ⁽²⁾	LSI oscillator power consumption	-	0.75	1.2	μA

1. V_{DDA} = 3.3 V, T_A = –40 to 105 $^\circ\text{C}$ unless otherwise specified.

2. Guaranteed by design, not tested in production.

6.3.9 PLL characteristics

The parameters given in *Table 45* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

Symbol	Parameter		Value				
Symbol		Min	Тур	Max	Unit		
£	PLL input clock ⁽¹⁾	1 ⁽²⁾	8.0	24 ⁽²⁾	MHz		
f _{PLL_IN}	PLL input clock duty cycle	40 ⁽²⁾	-	60 ⁽²⁾	%		
f _{PLL_OUT}	PLL multiplier output clock	16 ⁽²⁾	-	48	MHz		
t _{LOCK}	PLL lock time	-	-	200 ⁽²⁾	μs		
Jitter _{PLL}	Cycle-to-cycle jitter	-	_	300 ⁽²⁾	ps		

Table 45. PLL characteristics

1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by f_{PLL_OUT}.

2. Guaranteed by design, not tested in production.

6.3.10 Memory characteristics

Flash memory

The characteristics are given at T_A = -40 to 105 °C unless otherwise specified.

Table 46	. Flash	memory	characteristics
----------	---------	--------	-----------------

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	T _A = - 40 to +105 °C	40	53.5	60	μs
t _{ERASE}	Page (2 KB) erase time	T _A = - 40 to +105 °C	20	-	40	ms
t _{ME}	Mass erase time	T _A = - 40 to +105 °C	20	-	40	ms
1	Supply ourrant	Write mode	-	-	10	mA
IDD	Supply current	Erase mode	-	-	12	mA

1. Guaranteed by design, not tested in production.

	Table 35. 1/0 static characteristics (continued)								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
R _{PU}	Weak pull-up equivalent resistor (3)	V _{IN} = V _{SS}	25	40	55	kΩ			
R _{PD}	Weak pull-down equivalent resistor ⁽³⁾	V _{IN} = - V _{DDIOx}	25	40	55	kΩ			
C _{IO}	I/O pin capacitance	-	-	5	-	pF			

Table 53. I/O static characteristics (continued)

1. Data based on design simulation only. Not tested in production.

2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 52: I/O current injection susceptibility.

3. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 22* for standard I/Os, and in *Figure 23* for 5 V-tolerant I/Os. The following curves are design simulation results, not tested in production.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2:

- The sum of the currents sourced by all the I/Os on V_{DDIOx}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 21: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 21: Voltage characteristics*).

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*. All I/Os are CMOS- and TTL-compliant (FT, TTa or TC unless otherwise specified).

Symbol	Parameter	Conditions	Min	Max	Unit	
V _{OL}	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4		
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -0.4	-	V	
V _{OL}	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4		
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	2.4	-	V	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA	-	1.3	V	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -1.3	-	v	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 6 mA	-	0.4	V	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 2 V	V _{DDIOx} -0.4	-	v	
V _{OL} ⁽⁴⁾	Output low level voltage for an I/O pin	= 4 m A	-	0.4	V	
V _{OH} ⁽⁴⁾	Output high level voltage for an I/O pin	I _{IO} = 4 mA	V _{DDIOx} -0.4	-	V	
V _{OLFm+} ⁽³⁾	Output low level voltage for an FTf I/O pin in Fm+ mode	I _{IO} = 20 mA V _{DDIOx} ≥ 2.7 V	-	0.4	V	
		I _{IO} = 10 mA	-	0.4	V	

Table 54. Output voltage characteristics⁽¹⁾

 The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 21: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. Data based on characterization results. Not tested in production.

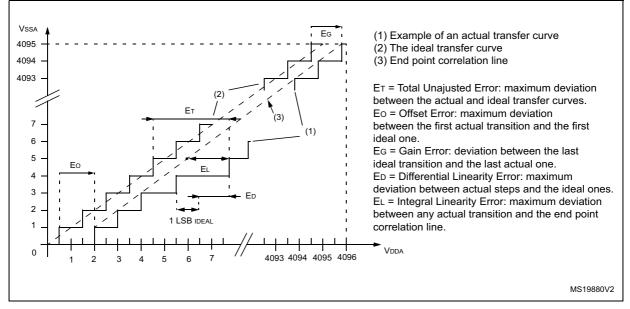
4. Data based on characterization results. Not tested in production.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 24* and *Table 55*, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit				
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 50 pF, V _{DDIOx} ≥ 2 V						2	MHz
	t _{f(IO)out}	Output fall time			125	ns				
x0	t _{r(IO)out}	Output rise time		-	125	115				
X0	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	1	MHz				
	t _{f(IO)out}	Output fall time	C_L = 50 pF, V_{DDIOx} < 2 V	-	125	ns				
	t _{r(IO)out}	Output rise time		-	125	115				
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	10	MHz				
	t _{f(IO)out}	Output fall time	C_L = 50 pF, $V_{DDIOx} \ge 2 V$	-	25					
01	t _{r(IO)out}	Output rise time			25	ns				
01	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	4	MHz				
	t _{f(IO)out}	Output fall time	C_L = 50 pF, V_{DDIOx} < 2 V		62.5	ns				
	t _{r(IO)out}	Output rise time			62.5					
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	50					
	f	Maximum frequency ⁽³⁾	C_L = 50 pF, $V_{DDIOx} \ge 2.7 V$	-	30	MHz				
	f _{max(IO)out}		C_L = 50 pF, 2 V \leq V _{DDIOx} $<$ 2.7 V	-	20					
			C_L = 50 pF, V_{DDIOx} < 2 V	-	10					
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	5					
11	+	Output fall time	C_L = 50 pF, $V_{DDIOx} \ge 2.7 V$	-	8					
11	t _{f(IO)out}		C_L = 50 pF, 2 V \leq V _{DDIOx} $<$ 2.7 V	-	12	- ns				
			C_L = 50 pF, V_{DDIOx} < 2 V	-	25					
			C _L = 30 pF, V _{DDIOx} ≥ 2.7 V	-	5					
	t	Output rise time	C _L = 50 pF, V _{DDIOx} ≥ 2.7 V	-	8					
	t _{r(IO)out}		C_{L} = 50 pF, 2 V ≤ V_{DDIOx} < 2.7 V		12					
			C_L = 50 pF, V_{DDIOx} < 2 V	-	25					

Table 55. I/O AC characteristics⁽¹⁾⁽²⁾



Electrical characteristics

ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input 2. pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC

accuracy.

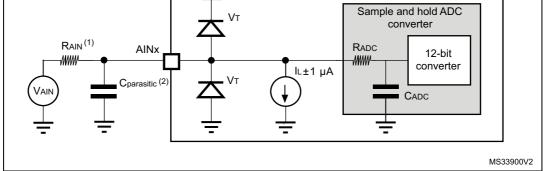

- Better performance may be achieved in restricted V_{DDA}, frequency and temperature ranges. 3.
- 4. Data based on characterization results, not tested in production.

Figure 26. ADC accuracy characteristics

Figure 27. Typical connection diagram using the ADC

- Refer to Table 57: ADC characteristics for the values of R_{AIN} , R_{ADC} and C_{ADC} . 1.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 13: Power supply scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

DocID026284 Rev 4

6.3.17 DAC electrical specifications

Symbol	Parameter	Min	Тур	Max	Unit	Comments
V _{DDA}	Analog supply voltage for	2.4		3.6	V	-
	DAC ON Resistive load with buffer	5	-	-	kΩ	Load connected to V _{SSA}
R _{LOAD} ⁽¹⁾	ON	25	-	-	kΩ	Load connected to V _{DDA}
R ₀ ⁽¹⁾	Impedance output with buffer OFF	_	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	code (0x0E0) to (0xF1C) at V_{DDA} = 3.6 V and (0x155) and (0xEAB) at V_{DDA} = 2.4 V
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{DDA} – 1LSB	V	excursion of the DAC.
I _{DDA} ⁽¹⁾	DAC DC current consumption in quiescent	-	-	600	μA	With no load, middle code (0x800) on the input
'DDA` ′	mode ⁽²⁾	-	-	700	μA	With no load, worst code (0xF1C) on the input
DNL ⁽³⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration
	Integral non linearity (difference between	-	-	±1	LSB	Given for the DAC in 10-bit configuration
INL ⁽³⁾	measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration
	Offset error	-	-	±10	mV	-
Offset ⁽³⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at $V_{DDA} = 3.6 V$
	(0x800) and the ideal value = $V_{DDA}/2$)	-	-	±12	LSB	Given for the DAC in 12-bit at V_{DDA} = 3.6 V

Table 60. DAC characteristics

6.3.19 Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	± 1	± 2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₃₀	Voltage at 30 °C (± 5 °C) ⁽²⁾	1.34	1.43	1.52	V
t _{START} ⁽¹⁾	ADC_IN16 buffer startup time	-	-	10	μs
t _{S_temp} ⁽¹⁾	ADC compliant time when reading the		-	-	μs

1. Guaranteed by design, not tested in production.

2. Measured at V_{DDA} = 3.3 V ± 10 mV. The V_{30} ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3: Temperature sensor calibration values.

6.3.20 V_{BAT} monitoring characteristics

Symbol	Parameter		Тур	Мах	Unit
R	Resistor bridge for V _{BAT}		2 x 50	-	kΩ
Q	Ratio on V _{BAT} measurement		2	-	-
Er ⁽¹⁾	Error on Q		-	+1	%
t _{S_vbat} ⁽¹⁾	ADC sampling time when reading the V_{BAT}	4	-	-	μs

Table 63. V_{BAT} monitoring characteristics

1. Guaranteed by design, not tested in production.

6.3.21 Timer characteristics

The parameters given in the following tables are guaranteed by design.

Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{ere} (TIM)	Timer resolution time	-	-	1	-	t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time	f _{TIMxCLK} = 48 MHz	-	20.8	-	ns
f	Timer external clock	-	-	f _{TIMxCLK} /2	-	MHz
f _{EXT}	frequency on CH1 to CH4	f _{TIMxCLK} = 48 MHz	-	24	-	MHz
	16-bit timer maximum	-	-	2 ¹⁶	-	t _{TIMxCLK}
t	period	f _{TIMxCLK} = 48 MHz	-	1365	-	μs
t _{MAX_COUNT}	32-bit counter maximum period	-	-	2 ³²	-	t _{TIMxCLK}
		f _{TIMxCLK} = 48 MHz	-	89.48	-	S

Table 64. TIMx characteristics

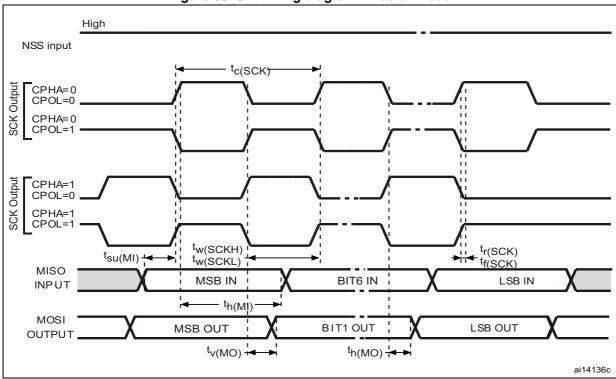


Figure 30. SPI timing diagram - master mode

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

Table 69. I²S characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{CK} 1/t _{c(CK)}	I ² S clock frequency	Master mode (data: 16 bits, Audio frequency = 48 kHz)	1.597	1.601	MHz
		Slave mode	0	6.5	
t _{r(CK)}	I ² S clock rise time	Capacitive load C _L = 15 pF	-	10	
t _{f(CK)}	I ² S clock fall time	Capacitive load CL - 15 pr	-	12	
t _{w(CKH)}	I ² S clock high time	Master f _{PCLK} = 16 MHz, audio	306	-	
t _{w(CKL)}	I ² S clock low time	frequency = 48 kHz	312	-	ns
t _{v(WS)}	WS valid time	Master mode	2	-	115
t _{h(WS)}	WS hold time	Master mode	2	-	
t _{su(WS)}	WS setup time	Slave mode	7	-	
t _{h(WS)}	WS hold time	Slave mode	0	-	
DuCy(SCK)	I ² S slave input clock duty cycle	Slave mode	25	75	%

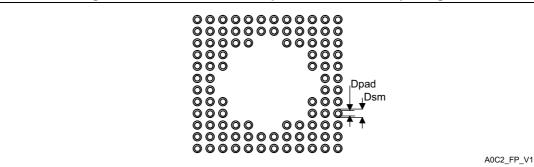
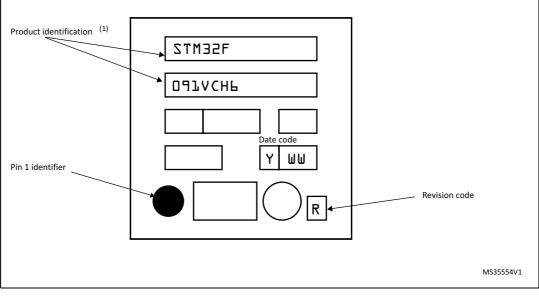


	Table 70. Of BOATOO package mechanical data (continued)					
Cumb al	millimeters		inches ⁽¹⁾			
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
b	0.240	0.290	0.340	0.0094	0.0114	0.0134
D	6.850	7.000	7.150	0.2697	0.2756	0.2815
D1	-	5.500	-	-	0.2165	-
E	6.850	7.000	7.150	0.2697	0.2756	0.2815
E1	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
Z	-	0.750	-	-	0.0295	-
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

Table 70. UFBGA100	package mechanical dat	a (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Table 71. UFBGA100 recommended PCB design rules

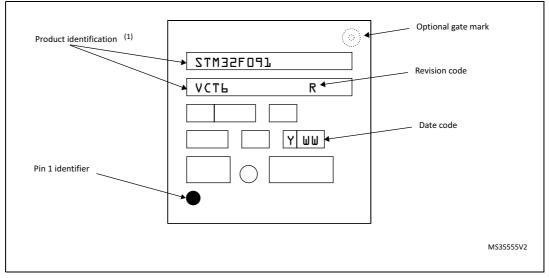

Dimension	Recommended values		
Pitch	0.5		
Dpad	0.280 mm		
Dsm	0.370 mm typ. (depends on the solder mask registration tolerance)		
Stencil opening	0.280 mm		
Stencil thickness	Between 0.100 mm and 0.125 mm		

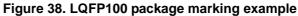
Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 35. UFBGA100 package marking example


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.



Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

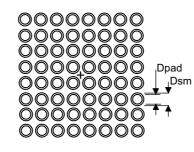


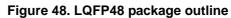
	Table For Di Derter package meenamen and (commund)					
millimeters		inches ⁽¹⁾				
Symbol	Min	Тур	Мах	Min	Тур	Max
А	0.460	0.530	0.600	0.0181	0.0209	0.0236
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

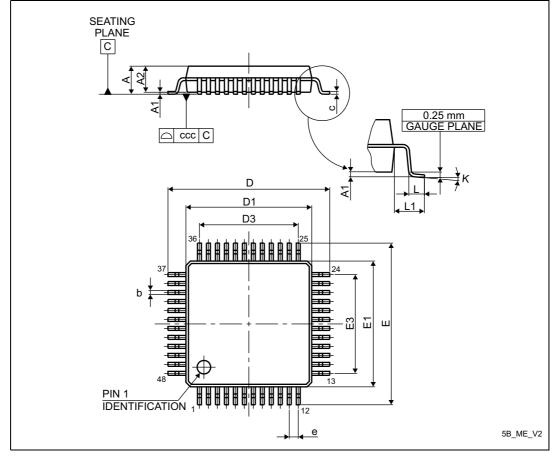
Table 73. UFBGA64 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 40. Recommended footprint for UFBGA64 package

A019_FP_V2


Table 74. UFBGA64 recommended PCB design rules


Dimension	Recommended values		
Pitch	0.5		
Dpad	0.280 mm		
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)		
Stencil opening	0.280 mm		
Stencil thickness	Between 0.100 mm and 0.125 mm		
Pad trace width	0.100 mm		

7.6 LQFP48 package information

LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.

1. Drawing is not to scale.

