

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	52
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 19x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-UFBGA
Supplier Device Package	64-UFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f091rch7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		3.14.6	SysTick timer	. 23						
	3.15	Real-ti	me clock (RTC) and backup registers	23						
	3.16	Inter-in	ntegrated circuit interface (I ² C) 24							
	3.17	Univer	rsal synchronous/asynchronous receiver/transmitter (USART) 25							
	3.18	Serial p	peripheral interface (SPI) / Inter-integrated sound interface (I ² S) .	26						
	3.19	-	efinition multimedia interface (HDMI) - consumer							
		-	nics control (CEC)	27						
	3.20	Contro	ller area network (CAN)	27						
	3.21	Clock r	ecovery system (CRS)	27						
	3.22	Serial	wire debug port (SW-DP)	27						
4	Pino	uts and	pin descriptions	28						
5	Mem	ory ma	oping	45						
6	Elect	rical ch	aracteristics	49						
	6.1	Param	eter conditions	49						
		6.1.1	Minimum and maximum values	. 49						
		6.1.2	Typical values	. 49						
		6.1.3	Typical curves	. 49						
		6.1.4	Loading capacitor	. 49						
		6.1.5	Pin input voltage	. 49						
		6.1.6	Power supply scheme	. 50						
		6.1.7	Current consumption measurement	. 51						
	6.2	Absolu	te maximum ratings	52						
	6.3	Operat	ing conditions	54						
		6.3.1	General operating conditions	. 54						
		6.3.2	Operating conditions at power-up / power-down	. 54						
		6.3.3	Embedded reset and power control block characteristics	. 55						
		6.3.4	Embedded reference voltage	. 56						
		6.3.5	Supply current characteristics	. 56						
		6.3.6	Wakeup time from low-power mode	. 67						
		6.3.7	External clock source characteristics	. 67						
		6.3.8	Internal clock source characteristics	. 71						
		6.3.9	PLL characteristics	. 75						
		6.3.10	Memory characteristics	. 75						

		6.3.11	EMC characteristics
		6.3.12	Electrical sensitivity characteristics77
		6.3.13	I/O current injection characteristics78
		6.3.14	I/O port characteristics
		6.3.15	NRST pin characteristics
		6.3.16	12-bit ADC characteristics
		6.3.17	DAC electrical specifications
		6.3.18	Comparator characteristics91
		6.3.19	Temperature sensor characteristics 93
		6.3.20	V _{BAT} monitoring characteristics93
		6.3.21	Timer characteristics
		6.3.22	Communication interfaces
7	Pack	age info	ormation
	7.1	UFBGA	A100 package information 100
	7.2	LQFP1	00 package information 103
	7.3	UFBG/	A64 package information
	7.4	WLCSI	P64 package information 109
	7.5	LQFP6	4 package information
	7.6	LQFP4	8 package information
	7.7	UFQFF	PN48 package information118
	7.8	Therma	al characteristics
		7.8.1	Reference document
		7.8.2	Selecting the product temperature range
8	Orde	ering inf	ormation
9	Revi	sion his	tory

3.14.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for:

- input capture
- output compare
- PWM generation (edge or center-aligned modes)
- one-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining.

3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17)

There are six synchronizable general-purpose timers embedded in the STM32F091xB/xC devices (see *Table 7* for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base.

TIM2, TIM3

STM32F091xB/xC devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advancedcontrol timer via the Timer Link feature for synchronization or event chaining.

TIM2 and TIM3 both have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

TIM14

This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.

Its counter can be frozen in debug mode.

TIM15, TIM16 and TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with TIM1 via the Timer Link feature for synchronization or event chaining.

TIM15 can be synchronized with TIM16 and TIM17.

TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation.

Their counters can be frozen in debug mode.

3.14.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases.

3.14.4 Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.14.5 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.14.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- a 24-bit down counter
- autoreload capability
- maskable system interrupt generation when the counter reaches 0
- programmable clock source (HCLK or HCLK/8)

3.15 Real-time clock (RTC) and backup registers

The RTC and the five backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are five 32-bit registers used to store 20 bytes of user application data when V_{DD} power is not present. They are not reset by a system or power reset, or at wake up from Standby mode.

The RTC is an independent BCD timer/counter. Its main features are the following:

- calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format
- automatic correction for 28, 29 (leap year), 30, and 31 day of the month
- programmable alarm with wake up from Stop and Standby mode capability
- Periodic wakeup unit with programmable resolution and period.
- on-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize the RTC with a master clock
- digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy
- Three anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection
- timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection
- reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision

The RTC clock sources can be:

- a 32.768 kHz external crystal
- a resonator or oscillator
- the internal low-power RC oscillator (typical frequency of 40 kHz)
- the high-speed external clock divided by 32

3.16 Inter-integrated circuit interface (I²C)

Up to two I²C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive on most of the associated I/Os.

Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). They also include programmable analog and digital noise filters.

Aspect	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2Cx peripheral clocks
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements Stable length
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.

Table 8. Comparison of I ² C	analog and digital filters

In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts

USART modes/features ⁽¹⁾	USART1 USART2 USART3	USART4	USART5 USART6 USART7 USART8					
Single-wire half-duplex communication	Х	Х	Х					
IrDA SIR ENDEC block	Х	-	-					
LIN mode	Х	-	-					
Dual clock domain and wakeup from Stop mode	Х	-	-					
Receiver timeout interrupt	Х	-	-					
Modbus communication	Х	-	-					
Auto baud rate detection	Х	-	-					
Driver Enable	Х	Х	Х					

Table 10. STM32F091xB/xC USART implementation (continued)

1. X = supported.

3.18 Serial peripheral interface (SPI) / Inter-integrated sound interface (I²S)

Two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

Two standard I²S interfaces (multiplexed with SPI1 and SPI2 respectively) supporting four different audio standards can operate as master or slave at half-duplex communication mode. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, they can output a clock for an external audio component at 256 times the sampling frequency.

SPI features ⁽¹⁾	SPI1 and SPI2
Hardware CRC calculation	Х
Rx/Tx FIFO	Х
NSS pulse mode	Х
I ² S mode	Х
TI mode	Х

Table 11. STM32F091xB/xC SPI/I²S implementation

1. X = supported.

4 Pinouts and pin descriptions

Тор	Top view											
F	1	2	3	4	5	6	7	8	9	10	11	12
A	(PE3)	(PE1)	(PB8)	(PF11-) BOOT0	(PD7)	(PD5)	(РВ4)	(РВЗ)	(PA15)	PA14	PA13	PA12
в	(PE4)	(PE2)	(PB9)	(PB7)	(PB6)	(PD6)	(PD4)	(PD3)	(PD1)	PC12	PC10	PA11
с	(PC13)	(PE5)	PEO		(PB5)			PD2	PD0	PC11	PF6	PA10
D	PC14- OSC32	PE6	vss							PA9	PA8	PC9
Е	OSC32	VBAT	NC							PC8	PC7	PC6
F	(PF0- OSC_) IN_	PF9									vss	vss
G	(OSC_)	(PF10)									VDDIO2	VDD
н	PC0									(PD15)	(PD14)	(PD13)
J	PF2	(PC1)	PC2							(PD12)	(PD11)	(PD10)
к	(VSSA)	(PC3)	(PA2)	(PA5)	(PC4)			(PD9)	(PD8)	(PB15)	(PB14)	(PB13)
L	(PF3)	PA0	(PA3)	PA6	(PC5)	(PB2)	(PE8)	(PE10)	(PE12)	(PB10)	(PB11)	(PB12)
М	(VDDA)	(PA1)	(PA4)	(PA7)	РВО	(РВ1)	(PE7)	(PE9)	(PE11)	(PE13)	(PE14)	(PE15)
	UFBGA100											

Figure 3. UFBGA100 package pinout

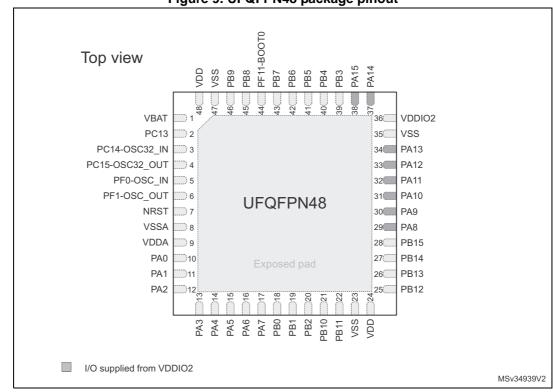


Figure 9. UFQFPN48 package pinout

Table 12. Legend/abbreviations used in the pinout table

Na	me	Abbreviation	Definition			
Pin r	name	Unless otherwise specified in brackets below the pin name, the pin function during ar after reset is the same as the actual pin name				
		S	Supply pin			
Pin	type	I/O	Input / output pin			
		FT	5 V-tolerant I/O			
		FTf 5 V-tolerant I/O, FM+ capable				
I/O str	ucture	TTa 3.3 V-tolerant I/O directly connected to ADC				
		TC	Standard 3.3 V I/O			
		RST Bidirectional reset pin with embedded weak pull-up resistor				
Notes Unless otherwise specified by a note, all I/Os are set as floatin reset.		specified by a note, all I/Os are set as floating inputs during and after				
Pin	Alternate functions Functions selected through GPIOx_AFR registers					
functions Additional functions directly selected/enabled through peripheral registers						

S
-
\leq
ω
<u>N</u>
ž
ž
×
ω
ŝ
Ч
z
2
Ň
Ţ
Ö
2
×
Ô

	Table 1	14. Alternate fu	nctions selected	l through GPIC	DA_AFR registe	ers for port A		
Pin name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA0	-	USART2_CTS	TIM2_CH1_ETR	TSC_G1_IO1	USART4_TX	-	-	COMP1_OU
PA1	EVENTOUT	USART2_RTS	TIM2_CH2	TSC_G1_IO2	USART4_RX	TIM15_CH1N	-	-
PA2	TIM15_CH1	USART2_TX	TIM2_CH3	TSC_G1_IO3	-	-	-	COMP2_OU
PA3	TIM15_CH2	USART2_RX	TIM2_CH4	TSC_G1_IO4	-	-	-	-
PA4	SPI1_NSS, I2S1_WS	USART2_CK	-	TSC_G2_IO1	TIM14_CH1	USART6_TX	-	-
PA5	SPI1_SCK, I2S1_CK	CEC	TIM2_CH1_ETR	TSC_G2_IO2	-	USART6_RX	-	-
PA6	SPI1_MISO, I2S1_MCK	TIM3_CH1	TIM1_BKIN	TSC_G2_IO3	USART3_CTS	TIM16_CH1	EVENTOUT	COMP1_OL
PA7	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM1_CH1N	TSC_G2_IO4	TIM14_CH1	TIM17_CH1	EVENTOUT	COMP2_OL
PA8	MCO	USART1_CK	TIM1_CH1	EVENTOUT	CRS_SYNC	-	-	-
PA9	TIM15_BKIN	USART1_TX	TIM1_CH2	TSC_G4_IO1	I2C1_SCL	MCO	-	-
PA10	TIM17_BKIN	USART1_RX	TIM1_CH3	TSC_G4_IO2	I2C1_SDA	-	-	-
PA11	EVENTOUT	USART1_CTS	TIM1_CH4	TSC_G4_IO3	CAN_RX	I2C2_SCL	-	COMP1_OL
PA12	EVENTOUT	USART1_RTS	TIM1_ETR	TSC_G4_IO4	CAN_TX	I2C2_SDA	-	COMP2_OL
PA13	SWDIO	IR_OUT	-	-	-	-	-	-
PA14	SWCLK	USART2_TX	-	-	-	-	-	-
PA15	SPI1_NSS, I2S1_WS	USART2_RX	TIM2_CH1_ETR	EVENTOUT	USART4_RTS	-	-	-

41/128

Bus	Boundary address	Size	Peripheral
	0x4800 1800 - 0x5FFF FFFF	~384 MB	Reserved
	0x4800 1400 - 0x4800 17FF	1 KB	GPIOF
	0x4800 1000 - 0x4800 13FF	1 KB	GPIOE
AHB2	0x4800 0C00 - 0x4800 0FFF	1 KB	GPIOD
AND2	0x4800 0800 - 0x4800 0BFF	1 KB	GPIOC
	0x4800 0400 - 0x4800 07FF	1 KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1 KB	GPIOA
	0x4002 4400 - 0x47FF FFFF	~128 MB	Reserved
	0x4002 4000 - 0x4002 43FF	1 KB	TSC
	0x4002 3400 - 0x4002 3FFF	3 KB	Reserved
	0x4002 3000 - 0x4002 33FF	1 KB	CRC
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved
AHB1	0x4002 2000 - 0x4002 23FF	1 KB	Flash memory interface
	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved
	0x4002 1000 - 0x4002 13FF	1 KB	RCC
	0x4002 0400 - 0x4002 0FFF	3 KB	Reserved
	0x4002 0000 - 0x4002 03FF	1 KB	DMA
	0x4001 8000 - 0x4001 FFFF	32 KB	Reserved

Table 20. STM32F091xB/xC	peripheral reg	jister boundary	addresses

Bus	Boundary address	Size	Peripheral
	0x4000 7C00 - 0x4000 7FFF	1 KB	Reserved
	0x4000 7800 - 0x4000 7BFF	1 KB	CEC
	0x4000 7400 - 0x4000 77FF	1 KB	DAC
	0x4000 7000 - 0x4000 73FF	1 KB	PWR
	0x4000 6C00 - 0x4000 6FFF	1 KB	CRS
	0x4000 6800 - 0x4000 6BFF	1 KB	Reserved
	0x4000 6400 - 0x4000 67FF	1 KB	BxCAN
	0x4000 6100 - 0x4000 63FF	768 B	Reserved
	0x4000 6000 - 0x4000 60FF	256 B	CAN RAM
	0x4000 5C00 - 0x4000 5FFF	1 KB	Reserved
	0x4000 5800 - 0x4000 5BFF	1 KB	I2C2
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1
	0x4000 5000 - 0x4000 53FF	1 KB	USART5
_	0x4000 4C00 - 0x4000 4FFF	1 KB	USART4
	0x4000 4800 - 0x4000 4BFF	1 KB	USART3
	0x4000 4400 - 0x4000 47FF	1 KB	USART2
	0x4000 3C00 - 0x4000 43FF	2 KB	Reserved
APB	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
	0x4000 2400 - 0x4000 27FF	1 KB	Reserved
	0x4000 2000 - 0x4000 23FF	1 KB	TIM14
	0x4000 1800 - 0x4000 1FFF	2 KB	Reserved
	0x4000 1400 - 0x4000 17FF	1 KB	TIM7
	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
	0x4000 0800 - 0x4000 0FFF	2 KB	Reserved
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

Table 20. STM32F091xB/xC peripheral register boundary addresses (continued)

Sym-	Para-						V _{DD} = \		•		Max ⁽¹⁾				
bol	-		Conditions		2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit		
	Supply current in	mod	julator in run de, all illators OFF	14.6	14.8	14.9	15.1	15.4	15.8	18	51	97			
I _{DD}	Stop mode	pow	ulator in low- ver mode, all illators OFF	3.3	3.4	3.6	3.8	4.1	4.4	11	53	106			
	Supply current in	LSI ON	ON and IWDG	0.9	1.0	1.1	1.2	1.3	1.4	2.3	2.7	3.6			
	Standby mode	LSI OFF	OFF and IWDG =	0.6	0.7	0.8	0.9	1.0	1.1	1.9	2.3	3.0			
	Supply current in	NO	Regulator in run mode, all oscillators OFF	1.9	2.0	2.2	2.3	2.4	2.6	3.8	4.2	4.6			
	Stop mode	Stop	V _{DDA} monitoring O	Regulator in low-power mode, all oscillators OFF	1.9	2.0	2.2	2.3	2.4	2.6	3.8	4.2	4.6	μA	
	Supply current in	V _{DC}	LSI ON and IWDG ON	2.3	2.5	2.7	2.8	3.0	3.3	3.8	4.2	4.8			
I _{DDA}	Standby mode	-	mode		LSI OFF and IWDG OFF	1.8	1.9	2.0	2.2	2.3	2.5	3.6	3.9	4.2	
JDA	Supply	OFF	Regulator in run mode, all oscillators OFF	1.2	1.2	1.3	1.3	1.4	1.4	-	-	-			
	current in Stop mode	V _{DDA} monitoring Of	Regulator in low-power mode, all oscillators OFF	1.2	1.2	1.3	1.3	1.4	1.4	-	-	-			
	Supply current in	V _{DD}	LSI ON and IWDG ON	1.6	1.7	1.8	1.9	2.0	2.1	-	-	-			
	Standby mode		LSI OFF and IWDG OFF	1.1	1.1	1.1	1.2	1.3	1.3	-	-	-			

Table 31. Typical and maximum consumption in Stop and Standby modes

1. Data based on characterization results, not tested in production unless otherwise specified.

	Peripheral	Typical consumption (continued	/ Unit
	APB-Bridge ⁽²⁾	3.6	
	ADC ⁽³⁾	4.3	
	CAN	12.4	
	CEC	0.4	
	CRS	0.0	
	DAC ⁽³⁾	4.2	
	DBG (MCU Debug Support)	0.2	
	12C1	2.9	
	12C2	2.4	
	PWR	0.6	
	SPI1	8.8	
	SPI2	7.8	
	SYSCFG and COMP	1.9	
	TIM1	15.2	
	TIM14	2.6	
	TIM15	8.7	
APB	TIM16	5.8	µA/MHz
	TIM17	7.0	
	TIM2	16.2	
	TIM3	11.9	
	TIM6	11.8	
	TIM7	2.5	
	USART1	17.6	
	USART2	16.3	
	USART3	16.2	
	USART4	4.7	
	USART5	4.4	
	USART6	5.5	
	USART7	5.2	
	USART8	5.1	
	00/11/10	1	
	WWDG	1.1	

 Table 35. Peripheral current consumption (continued)

1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).

2. The APB Bridge is automatically active when at least one peripheral is ON on the Bus.

 The power consumption of the analog part (I_{DDA}) of peripherals such as ADC, DAC, comparators, is not included. Refer to the tables of characteristics in the subsequent sections.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

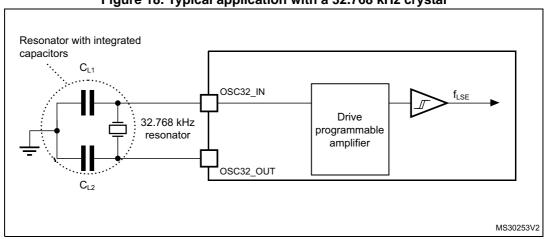


Figure 18. Typical application with a 32.768 kHz crystal

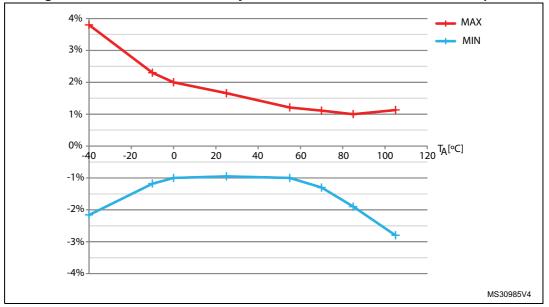
Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.8 Internal clock source characteristics

The parameters given in *Table 41* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*. The provided curves are characterization results, not tested in production.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSI}	Frequency	-	-	8	-	MHz
TRIM	HSI user trimming step	-	-	-	1 ⁽²⁾	%
DuCy _(HSI)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
		T _A = -40 to 105°C	-2.8 ⁽³⁾	-	3.8 ⁽³⁾	
	Accuracy of the HSI oscillator	T _A = -10 to 85°C	-1.9 ⁽³⁾	-	2.3 ⁽³⁾	%
		$T_A = 0$ to $85^{\circ}C$	-1.9 ⁽³⁾	-	2 ⁽³⁾	
ACC _{HSI}		$T_A = 0$ to $70^{\circ}C$	-1.3 ⁽³⁾	-	2 ⁽³⁾	
		$T_A = 0$ to 55°C	-1 ⁽³⁾	-	2 ⁽³⁾	
		$T_A = 25^{\circ}C^{(4)}$	-1	-	1	
t _{su(HSI)}	HSI oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs
I _{DDA(HSI)}	HSI oscillator power consumption	-	-	80	100 ⁽²⁾	μA


Table 41. HSI oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105°C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

4. Factory calibrated, parts not soldered.

Figure 19. HSI oscillator accuracy characterization results for soldered parts

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit		
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycle		
	Data retention	1 kcycle ⁽²⁾ at T _A = 85 °C	30			
t _{RET}		1 kcycle ⁽²⁾ at T _A = 105 °C	10	Year		
		10 kcycle ⁽²⁾ at T _A = 55 °C	20			

 Table 47. Flash memory endurance and data retention

1. Data based on characterization results, not tested in production.

2. Cycling performed over the whole temperature range.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 48*. They are based on the EMS levels and classes defined in application note AN1709.

Table 48. EMS c	haracteristics
-----------------	----------------

Symb	ol Parameter	Conditions	Level/ Class
V _{FES}	Voltage limits to be applied on any I/O pi to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25 °C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-2	2B
V _{EFT}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25°C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-4	4B

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit		
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T_A = +25 °C, conforming to JESD22-A114	All	2	2000	V		
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \text{ °C}$, conforming to ANSI/ESD STM5.3.1	WLCSP64, LQFP100	C3	250	v		
		10 ANGI/EGD STMD.3.1	All others	C4	500			

Table 50. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 51. Electrical sensitivities

Symb	ol	Parameter	Conditions	Class
LU		Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in *Table 52*.

Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2:

- The sum of the currents sourced by all the I/Os on V_{DDIOx}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 21: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 21: Voltage characteristics*).

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*. All I/Os are CMOS- and TTL-compliant (FT, TTa or TC unless otherwise specified).

Symbol	Parameter	Conditions	Min	Max	Unit	
V _{OL}	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4		
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -0.4	-	V	
V _{OL}	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4		
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	2.4	-	V	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA	-	1.3	v	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -1.3	-	v	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 6 mA	-	0.4	V	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 2 V	V _{DDIOx} -0.4	-	v	
V _{OL} ⁽⁴⁾	Output low level voltage for an I/O pin	II I = 4 mA	-	0.4	V	
V _{OH} ⁽⁴⁾	Output high level voltage for an I/O pin	I _{IO} = 4 mA	V _{DDIOx} -0.4	-	V	
V _{OLFm+} ⁽³⁾	Output low level voltage for an FTf I/O pin in Fm+ mode	I _{IO} = 20 mA V _{DDIOx} ≥ 2.7 V	-	0.4	V	
		I _{IO} = 10 mA	-	0.4	V	

Table 54. Output voltage characteristics⁽¹⁾

 The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 21: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. Data based on characterization results. Not tested in production.

4. Data based on characterization results. Not tested in production.

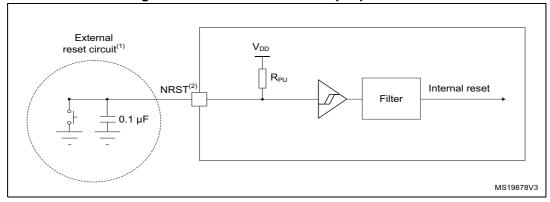

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	100 ⁽¹⁾	ns
V	NRST input not filtered pulse	$2.7 < V_{DD} < 3.6$	300 ⁽³⁾	-	_	ns
V _{NF(NRST)}		$2.0 < V_{DD} < 3.6$	500 ⁽³⁾	-	-	115

Table 56. NRST pin characteristics (continued)

1. Data based on design simulation only. Not tested in production.

 The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

3. Data based on design simulation only. Not tested in production.

- 1. The external capacitor protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 56: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.

6.3.16 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 57* are derived from tests performed under the conditions summarized in *Table 24: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Table 57. ADC c	haracteristics
-----------------	----------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DDA}	Analog supply voltage for ADC ON	-	2.4	-	3.6	V	
I _{DDA (ADC)}	Current consumption of the ADC ⁽¹⁾	V _{DDA} = 3.3 V	-	0.9	-	mA	
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz	
f _S ⁽²⁾	Sampling rate	12-bit resolution	0.043	-	1	MHz	

8 Ordering information

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

Table 81	Ordering	information	scheme
----------	----------	-------------	--------

Example:	STM32	F	091	R	C	T	6 x
Device family							
STM32 = ARM-based 32-bit microcontroller							
Product type							
F = General-purpose							
Sub-family							
091= STM32F091xx							
Dir court							
Pin count C = 48 pins							
R = 64 pins							
V = 100 pins							
User code memory size							
B = 128 Kbyte							
C = 256 Kbyte							
Deskews							
Package H = UFBGA							
T = LQFP							
U = UFQFPN							
Y = WLCSP							
T - WLCGF							
Temperature range							
6 = -40 to 85 °C							
7 = -40 to 105 °C							
Options							
xxx = code ID of programmed parts (includes parts)	ocking type)						

xxx = code ID of programmed parts (includes packing type)
TR = tape and reel packing
blank = tray packing

