E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	88
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 19x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f091vbt7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary	1
Table 2.	STM32F091xB/xC family device features and peripheral counts	11
Table 3.	Temperature sensor calibration values.	18
Table 4.	Internal voltage reference calibration values	19
Table 5.	Capacitive sensing GPIOs available on STM32F091xB/xC devices	20
Table 6.	Number of capacitive sensing channels available	
	on STM32F091xB/xC devices	21
Table 7.	Timer feature comparison	21
Table 8.	Comparison of I ² C analog and digital filters	24
Table 9.	STM32F091xB/xC I ² C implementation	25
Table 10.	STM32F091xB/xC USART implementation	25
Table 11.	STM32F091xB/xC SPI/I ² S implementation	26
Table 12.	Legend/abbreviations used in the pinout table	33
Table 13.	STM32F091xB/xC pin definitions	34
Table 14.	Alternate functions selected through GPIOA AFR registers for port A	41
Table 15.	Alternate functions selected through GPIOB AFR registers for port B	42
Table 16.	Alternate functions selected through GPIOC AFR registers for port C	43
Table 17.	Alternate functions selected through GPIOD AFR registers for port D	43
Table 18.	Alternate functions selected through GPIOE AFR registers for port E	44
Table 19.	Alternate functions selected through GPIOF AFR registers for port F.	44
Table 20.	STM32F091xB/xC peripheral register boundary addresses	46
Table 21.	Voltage characteristics	
Table 22.	Current characteristics	
Table 23.	Thermal characteristics.	
Table 24.	General operating conditions	54
Table 25.	Operating conditions at power-up / power-down	55
Table 26.	Embedded reset and power control block characteristics.	55
Table 27.	Programmable voltage detector characteristics	55
Table 28.	Embedded internal reference voltage	56
Table 29.	Typical and maximum current consumption from $V_{\Box O}$ supply at $V_{\Box O}$ = 3.6 V	58
Table 30.	Typical and maximum current consumption from the V	59
Table 31.	Typical and maximum consumption in Stop and Standby modes	60
Table 32.	Typical and maximum current consumption from the V_{PAT} supply.	61
Table 33.	Typical current consumption, code executing from Flash memory.	
	running from HSE 8 MHz crystal	62
Table 34.	Switching output I/O current consumption	64
Table 35.	Peripheral current consumption	65
Table 36.	Low-power mode wakeup timings	67
Table 37.	High-speed external user clock characteristics.	67
Table 38.	Low-speed external user clock characteristics	68
Table 39.	HSE oscillator characteristics	
Table 40.	$I SE oscillator characteristics (f_{LSE} = 32.768 kHz)$	
Table 41	HSL oscillator characteristics	72
Table 42	HSI14 oscillator characteristics	73
Table 43	HSI48 oscillator characteristics	
Table 44	I SI oscillator characteristics	75
Table 45	PLL characteristics	
Table 46	Flash memory characteristics	75

3 Functional overview

Figure 1 shows the general block diagram of the STM32F091xB/xC devices.

3.1 ARM[®]-Cortex[®]-M0 core

The ARM[®] Cortex[®]-M0 is a generation of ARM 32-bit RISC processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM[®] Cortex[®]-M0 processors feature exceptional code-efficiency, delivering the high performance expected from an ARM core, with memory sizes usually associated with 8- and 16-bit devices.

The STM32F091xB/xC devices embed ARM core and are compatible with all ARM tools and software.

3.2 Memories

The device has the following features:

- 32 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for fail-critical applications.
- The non-volatile memory is divided into two arrays:
 - up to 256 Kbytes of embedded Flash memory for programs and data
 - Option bytes

The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (Cortex[®]-M0 serial wire) and boot in RAM selection disabled

3.3 Boot modes

At startup, the boot pin and boot selector option bits are used to select one of the three boot options:

- boot from User Flash memory
- boot from System Memory
- boot from embedded SRAM

The boot pin is shared with the standard GPIO and can be disabled through the boot selector option bits. The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15 or PA9/PA10 or I²C on pins PB6/PB7.

DocID026284 Rev 4

Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL input source. This oscillator can be automatically fine-trimmed by the means of the CRS peripheral using the external synchronization.

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.

The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.8 Direct memory access controller (DMA)

The 12-channel general-purpose DMAs (seven channels for DMA1 and five channels for DMA2) manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers.

The DMAs support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers (except TIM14), DAC and ADC.

3.9 Interrupts and events

3.9.1 Nested vectored interrupt controller (NVIC)

The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of $Cortex^{\mathbb{R}}$ -M0) and 4 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at a temperature of 30 °C (± 5 °C), V _{DDA} = 3.3 V (± 10 mV)	0x1FFF F7BA - 0x1FFF F7BB

Table 4. Internal voltage reference calibration values

3.10.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC_IN18. As the V_{BAT} voltage may be higher than V_{DDA}, and thus outside the ADC input range, the V_{BAT} pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.11 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.

This digital Interface supports the following features:

- 8-bit or 12-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- External triggers for conversion

Six DAC trigger inputs are used in the device. The DAC is triggered through the timer trigger outputs and the DAC interface is generating its own DMA requests.

3.12 Comparators (COMP)

The device embeds two fast rail-to-rail low-power comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output pins
- Internal reference voltage or submultiple (1/4, 1/2, 3/4).Refer to *Table 28: Embedded internal reference voltage* for the value and precision of the internal reference voltage.

verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C peripherals can be served by the DMA controller.

Refer to *Table 9* for the differences between I2C1 and I2C2.

Table 9.	STM32F091xB/xC I ²	^{2}C	implementation
		0	implementation

I ² C features ⁽¹⁾	I2C1	I2C2
7-bit addressing mode	Х	Х
10-bit addressing mode	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х
Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive I/Os	Х	Х
Independent clock	Х	-
SMBus	Х	-
Wakeup from STOP	Х	-

1. X = supported.

3.17 Universal synchronous/asynchronous receiver/transmitter (USART)

The device embeds up to eight universal synchronous/asynchronous receivers/transmitters (USART1, USART2, USART3, USART4, USART5, USART6, USART7, USART8) which communicate at speeds of up to 6 Mbit/s.

They provide hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1, USART2 and USART3 support also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and have a clock domain independent of the CPU clock, allowing to wake up the MCU from Stop mode.

The USART interfaces can be served by the DMA controller.

USART modes/features ⁽¹⁾	USART1 USART2 USART3	USART4	USART5 USART6 USART7 USART8
Hardware flow control for modem	Х	Х	-
Continuous communication using DMA	Х	Х	Х
Multiprocessor communication	Х	Х	Х
Synchronous mode	Х	Х	Х
Smartcard mode	Х	-	-

Table 10. STM32F091xB/xC USART implementation

	Pi	n nui	mber	S						Pin functions	
UFBGA100	LQFP100	UFBGA64	LQFP64	WLCSP64	LQFP48/UFQFPN48	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
B2	1	-	-	-	-	PE2	I/O	FT		TSC_G7_IO1, TIM3_ETR	-
A1	2	-	-	-	-	PE3	I/O	FT		TSC_G7_IO2, TIM3_CH1	-
B1	3	-	-	-	-	PE4	I/O	FT		TSC_G7_IO3, TIM3_CH2	-
C2	4	-	-	-	-	PE5	I/O	FT		TSC_G7_IO4, TIM3_CH3	-
D2	5	-	-	-	-	PE6	I/O	FT		TIM3_CH4	WKUP3, RTC_TAMP3
E2	6	B2	1	B8	1	VBAT	S	-	-	Backup power s	upply
C1	7	A2	2	B7	2	PC13	I/O	тс	(1) (2)	-	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT
D1	8	A1	3	C8	3	PC14- OSC32_IN (PC14)	I/O	тс	(1) (2)	-	OSC32_IN
E1	9	B1	4	C7	4	PC15- OSC32_OUT (PC15)	I/O	тс	(1) (2)	-	OSC32_OUT
F2	10	-	-	-	-	PF9	I/O	FT		TIM15_CH1, USART6_TX	-
G2	11	-	-	-	-	PF10	I/O	FT		TIM15_CH2, USART6_RX	-
F1	12	C1	5	D8	5	PF0-OSC_IN (PF0)	I/O	FTf		CRS_SYNC, I2C1_SDA	OSC_IN
G1	13	D1	6	E8	6	PF1-OSC_OUT (PF1)	I/O	FTf		I2C1_SCL	OSC_OUT
H2	14	E1	7	D7	7	NRST	I/O	RST		Device reset input / internal reset ou (active low)	
H1	15	E3	8	E7	-	PC0	I/O	ТТа	Fa EVENTOUT, USART6_TX, USART7_TX		ADC_IN10
J2	16	E2	9	F8	-	PC1	I/O	ТТа		EVENTOUT, USART6_RX, USART7_RX	ADC_IN11
J3	17	F2	10	D6	-	PC2	I/O	ТТа		SPI2_MISO, I2S2_MCK, EVENTOUT, USART8_TX	ADC_IN12
K2	18	G1	11	E6	-	PC3	I/O	ТТа		SPI2_MOSI, I2S2_SD, EVENTOUT, USART8_RX	ADC_IN13

Table 13. STM32F091xB/xC pin definitions

	Table Let operating	contaitionic at portor a	p / ponoi	aomi	
Symbol	Parameter	Conditions	Min	Max	Unit
+	V _{DD} rise time rate		0	8	
۱۷DD	V _{DD} fall time rate	-	20	8	ue\/
t _{VDDA}	V _{DDA} rise time rate		0	8	μ5/ ν
	V _{DDA} fall time rate	-	20	8	

 Table 25. Operating conditions at power-up / power-down

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 26* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

 Table 26. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{\text{DOD}(\text{DDD}}(1)$	Power on/power down	Falling edge ⁽²⁾	1.80	1.88	1.96 ⁽³⁾	V
POR/PDR	reset threshold	Rising edge	1.84 ⁽³⁾	1.92	2.00	V
V _{PDRhyst}	PDR hysteresis	-	-	40	-	mV
t _{RSTTEMPO} ⁽⁴⁾	Reset temporization	-	1.50	2.50	4.50	ms

1. The PDR detector monitors V_{DD} and also V_{DDA} (if kept enabled in the option bytes). The POR detector monitors only $V_{DD}.$

2. The product behavior is guaranteed by design down to the minimum $V_{\text{POR/PDR}}$ value.

3. Data based on characterization results, not tested in production.

4. Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	D\/D threehold 0	Rising edge	2.1	2.18	2.26	V
V _{PVD0}		Falling edge	2	2.08	2.16	V
V _{PVD1}	D\/D threehold 1	Rising edge	2.19	2.28	2.37	V
		Falling edge	2.09	2.18	2.27	V
V _{PVD2}	D\/D threehold 2	Rising edge	2.28	2.38	2.48	V
		Falling edge	2.18	2.28	2.38	V
V _{PVD3}	D\/D threehold 2	Rising edge	2.38	2.48	2.58	V
		Falling edge	2.28	2.38	2.48	V
V _{PVD4}	D\/D threehold 4	Rising edge	2.47	2.58	2.69	V
		Falling edge	2.37	2.48	2.59	V
V _{PVD5}	D\/D threehold 5	Rising edge	2.57	2.68	2.79	V
		Falling edge	2.47	2.58	2.69	V

Table 27. Programmable voltage detector characteristics

		Conditions		All peripherals enabled					All peripherals disabled			
mbol	imete		fucir		Max @ T _A ⁽¹⁾				м	(1)	Unit	
Syı	Para			Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
		HSI48	48 MHz	26.9	29.5	30.3	30.6	14.7	16.1	16.3	16.4	
	lory		48 MHz	26.7	29.2	30.1	30.3	14.6	16.0	16.2	16.2	
	nem	HSE bypass, PLL on	32 MHz	18.0	20.4	20.8	21.0	10.1	10.8	10.9	11.0	
	un m ash r		24 MHz	14.0	15.7	16.1	16.2	8.5	9.0	9.2	9.4	
	n Ru H	HSE bypass,	8 MHz	4.8	5.3	5.5	5.9	3.0	3.2	3.3	3.5	
	ent fror	PLL off	1 MHz	1.3	1.5	1.6	1.9	1.0	1.1	1.2	1.4	
	curr uting		48 MHz	26.8	29.4	30.2	30.5	14.7	16.1	16.3	16.3	
	ipply exec	HSI clock, PLL on	32 MHz	18.1	20.5	20.9	21.2	10.2	10.9	11.0	11.1	
	Su ode e		24 MHz	14.1	15.9	16.2	16.4	8.6	9.1	9.2	9.5	
	8	HSI clock, PLL off	8 MHz	4.9	5.4	5.6	5.9	3.1	3.2	3.4	3.5	m۸
ode,		HSI48	48 MHz	26.3	28.7	29.5	29.7	14.0	15.3	15.5	15.7	ШA
		HSE bypass, PLL on	48 MHz	26.0	28.4	29.2	29.4	13.9	15.2	15.4	15.6	
	ode, 4M		32 MHz	17.4	19.5	19.9	20.1	9.6	10.3	10.4	10.5	
	£∂ ⊑ E		24 MHz	13.3	15.1	15.5	15.6	7.6	8.2	8.4	8.5	
	n Ru g froi	HSE bypass, PLL off	8 MHz	4.4	4.9	5.1	5.3	2.4	2.6	2.8	2.9	
I _{DD}	ent i utinç		1 MHz	0.9	0.9	1.0	1.2	0.5	0.6	0.7	0.8	
	curr exec	HSI clock, PLL on	48 MHz	26.1	28.5	29.3	29.5	13.9	15.3	15.5	15.6	
	pply ode (32 MHz	17.5	19.6	20.0	20.3	9.7	10.4	10.5	10.6	
	Sul		24 MHz	13.3	15.3	15.7	15.8	7.7	8.2	8.5	8.6	
		HSI clock, PLL off	8 MHz	4.6	5.0	5.2	5.4	2.5	2.7	2.9	3.0	
		HSI48	48 MHz	17.0	18.7	19.1	19.4	3.2	3.5	3.6	3.7	
	0		48 MHz	16.9	18.5	19.0	19.3	3.1	3.5	3.5	3.6	
	abon	HSE bypass, PLL on	32 MHz	11.3	12.6	12.8	13.1	2.2	2.4	2.5	2.6	
	eb u	-	24 MHz	8.6	9.8	10.0	10.1	1.7	1.9	2.0	2.0	
	l Sle	HSE bypass,	8 MHz	2.9	3.2	3.4	3.7	0.8	0.9	0.9	1.0	
	ent ir	PLL off	1 MHz	0.4	0.6	0.6	0.7	0.3	0.4	0.4	0.5	mA
	curre		48 MHz	17.0	18.6	19.0	19.4	3.1	3.5	3.6	3.7	
	, ylqc	HSI clock, PLL on	32 MHz	11.4	12.7	13.0	13.2	2.3	2.5	2.6	2.7	
	Sup		24 MHz	8.7	9.9	10.1	10.2	1.8	2.0	2.1	2.2	
		HSI clock, PLL off	8 MHz	3.0	3.3	3.5	3.8	0.8	0.9	1.0	1.1	

	Table 29. Typical and maximum	current consumption from	V_{DD} supply at V_{DD} = 3.6 V
--	-------------------------------	--------------------------	-------------------------------------

			Typ @ V _{BAT}				Max ⁽¹⁾					
Symbol	Parameter	Conditions	1.65 V	1.8 V	2.4 V	2.7 V	3.3 V	3.6 V	Т _А = 25 °С	T _A = 85 °C	T _A = 105 °C	Unit
	RTC domain	LSE & RTC ON; "Xtal mode": lower driving capability; LSEDRV[1:0] = '00'	0.5	0.5	0.6	0.7	0.9	1.0	1.0	1.3	1.8	
IDD_VBAT supply current	LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1:0] = '11'	0.8	0.8	0.9	1.0	1.2	1.3	1.4	1.7	2.2		

Table 32. Typical and maximum current consumption from the $\rm V_{BAT}$ supply

1. Data based on characterization results, not tested in production.

Typical current consumption

The MCU is placed under the following conditions:

- V_{DD} = V_{DDA} = 3.3 V
- All I/O pins are in analog input configuration
- The Flash memory access time is adjusted to f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled, f_{PCLK} = f_{HCLK}
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively

Symbol	Devementer	£	Typical con Run ו	sumption in mode	Typical con Sleep	Unit	
Symbol	Falameter	IHCLK	Peripherals enabled	Peripherals disabled	Peripherals enabled	Peripherals disabled	Unit
		48 MHz	26.7	15.1	16.4	3.8	
		36 MHz	20.4	11.8	12.7	3.3	
		32 MHz	18.5	11.0	11.4	3.0	
	Current	24 MHz	14.6	8.7	9.0	2.3	
I	consumption	16 MHz	10.2	6.1	6.4	1.8	mA
'DD	from V _{DD}	8 MHz	5.1	3.3	3.2	1.2	
	зирріу	4 MHz	3.3	2.2	2.3	1.1	
		2 MHz	2.2	1.7	1.7	1.1	
		1 MHz	1.6	1.4	1.4	1.1	
		500 kHz	1.4	1.2	1.2	1.0	
		48 MHz		17	72		
		36 MHz	131				
		32 MHz	119				
	Current	24 MHz		9	3		μA
I	consumption	16 MHz		6	7		
'DDA	from V _{DDA}	8 MHz		2	.7		
	Suppry	4 MHz		2	.7		
		2 MHz		2	.7		
		1 MHz		2	.7		
		500 kHz		2	.7		

Table 33. Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 53: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit	
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycle	
t _{RET} Da		1 kcycle ⁽²⁾ at T _A = 85 °C	30		
	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Year	
		10 kcycle ⁽²⁾ at T _A = 55 °C	20		

 Table 47. Flash memory endurance and data retention

1. Data based on characterization results, not tested in production.

2. Cycling performed over the whole temperature range.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 48*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25 °C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25°C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-4	4B

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Figure 22. TC and TTa I/O input characteristics

Figure 23. Five volt tolerant (FT and FTf) I/O input characteristics

57

DocID026284 Rev 4

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 24* and *Table 55*, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit	
	f _{max(IO)out} Maximum frequency ⁽³⁾			-	2	MHz	
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} ≥ 2 V	-	125	ns	
хO	t _{r(IO)out}	Output rise time		-	125		
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	1	MHz	
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} < 2 V	-	125	ne	
	t _{r(IO)out}	Output rise time		-	125	115	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	10	MHz	
	t _{f(IO)out}	Output fall time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2 \text{ V}$	-	25	ns	
01	t _{r(IO)out}	Output rise time		-	25		
01	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	4	MHz	
	t _{f(IO)out}	Output fall time	C_L = 50 pF, V_{DDIOx} < 2 V	-	62.5	00	
	t _{r(IO)out}	Output rise time		-	62.5	113	
	f _{max(IO)out}		C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	50	— MHz	
		Maximum frequency ⁽³⁾	C_L = 50 pF, $V_{DDIOx} \ge 2.7 V$	-	30		
			C_L = 50 pF, 2 V ≤ V_{DDIOx} < 2.7 V	-	20		
			C_L = 50 pF, V_{DDIOx} < 2 V	-	10		
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	5	_	
11	town	Output fall time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8		
	۲f(IO)out		C_L = 50 pF, 2 V \leq V _{DDIOx} $<$ 2.7 V	-	12		
			C _L = 50 pF, V _{DDIOx} < 2 V	-	25		
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	5	2 NS	
	+	Output rise time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8		
	чr(IO)out		$C_{L} = 50 \text{ pF}, 2 \text{ V} \le \text{V}_{\text{DDIOx}} < 2.7 \text{ V}$	-	12		
			$C_L = 50 \text{ pF}, V_{DDIOx} < 2 \text{ V}$	-	25		

Table 55. I/O AC characteristics⁽¹⁾⁽²⁾

		•	š.	, <i>i</i>		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	100 ⁽¹⁾	ns
V	NPST input not filtered pulse	$2.7 < V_{DD} < 3.6$	300 ⁽³⁾	-	-	ne
VNF(NRST)	ningar input not ilitered puise	2.0 < V _{DD} < 3.6	500 ⁽³⁾	-	-	115

Table 56. NRST pin characteristics (continued)

1. Data based on design simulation only. Not tested in production.

The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10% order).

3. Data based on design simulation only. Not tested in production.

- 1. The external capacitor protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 56: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.

6.3.16 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 57* are derived from tests performed under the conditions summarized in *Table 24: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage for ADC ON	-	2.4	-	3.6	V
I _{DDA (ADC)}	Current consumption of the ADC ⁽¹⁾	V _{DDA} = 3.3 V	-	0.9	-	mA
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz
f _S ⁽²⁾	Sampling rate	12-bit resolution	0.043	-	1	MHz

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit			
/4	0	0.1	409.6				
/8	1	0.2	819.2				
/16	2	0.4	1638.4				
/32	3	0.8	3276.8	ms			
/64	4	1.6	6553.6				
/128	5	3.2	13107.2				
/256	6 or 7	6.4	26214.4				

Table 65. IWDG min/max timeout period at 40 kHz (LSI)⁽¹⁾

1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0.0853	5.4613	
2	1	0.1706	10.9226	me
4	2	0.3413	21.8453	1115
8	3	0.6826	43.6906	

Table 66. WWDG min/max timeout value at 48 MHz (PCLK)

6.3.22 Communication interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I²C timings requirements are guaranteed by design when the I2Cx peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DDIOx} is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I²C I/Os characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 UFBGA100 package information

UFBGA100 is a 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra-fine-profile ball grid array package.

Figure 33. UFBGA100 package outline

1. Drawing is not to scale.

Table 70. UFBGA100	package mechanical data
--------------------	-------------------------

Symbol	millimeters			inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	-	-	0.600	-	-	0.0236
A1	-	-	0.110	-	-	0.0043
A2	-	0.450	-	-	0.0177	-
A3	-	0.130	-	-	0.0051	0.0094
A4	-	0.320	-	-	0.0126	-

			-	(1)			
Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.000	-	-	0.4724	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°	
ссс	-	-	0.080	-	-	0.0031	

Table 72. LQPF100 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.8 Thermal characteristics

The maximum chip junction temperature (T_J max) must never exceed the values given in *Table 24: General operating conditions*.

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $\mathsf{P}_{\mathsf{I}\!/\!\mathsf{O}}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma \; ((\mathsf{V}_{\mathsf{DDIOx}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
ΘյΑ	Thermal resistance junction-ambient UFBGA100 - 7 × 7 mm	55	
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm	42	
	Thermal resistance junction-ambient UFBGA64 - 5 × 5 mm / 0.5 mm pitch	65	
	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	44	°C/W
	Thermal resistance junction-ambient WLCSP64 - 0.4 mm pitch	53	
	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm	54	
	Thermal resistance junction-ambient UFQFPN48 - 7 × 7 mm	32	

Table 80. Package thermal characteristics

7.8.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.8.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Ordering information*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F091xB/xC at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL} = 1.3 V

P_{INTmax} = 50 mA × 3.5 V= 175 mW

P_{IOmax} = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax} = 175 + 272 = 447 mW

Using the values obtained in *Table 80* T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W

T_{Jmax} = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Section 8: Ordering information*).

Note: With this given P_{Dmax} we can find the T_{Amax} allowed for a given device temperature range (order code suffix 6 or 7).

Suffix 6: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 105\text{-}20.115 = 84.885^{\circ}C$ Suffix 7: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 125\text{-}20.115 = 104.885^{\circ}C$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum temperature $T_{Amax} = 100$ °C (measured according to JESD51-2), $I_{DDmax} = 20$ mA, $V_{DD} = 3.5$ V, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8$ mA, $V_{OL} = 0.4$ V $P_{INTmax} = 20$ mA × 3.5 V= 70 mW $P_{IOmax} = 20 \times 8$ mA × 0.4 V = 64 mW This gives: $P_{INTmax} = 70$ mW and $P_{IOmax} = 64$ mW: $P_{Dmax} = 70 + 64 = 134$ mW

Thus: P_{Dmax} = 134 mW

DocID026284 Rev 4

