

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	88
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 19x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA
Supplier Device Package	100-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f091vch6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary	1
Table 2.	STM32F091xB/xC family device features and peripheral counts	11
Table 3.	Temperature sensor calibration values.	18
Table 4.	Internal voltage reference calibration values	19
Table 5.	Capacitive sensing GPIOs available on STM32F091xB/xC devices	20
Table 6.	Number of capacitive sensing channels available	
	on STM32F091xB/xC devices	21
Table 7.	Timer feature comparison	21
Table 8.	Comparison of I ² C analog and digital filters	24
Table 9.	STM32F091xB/xC I ² C implementation	25
Table 10.	STM32F091xB/xC USART implementation	25
Table 11.	STM32F091xB/xC SPI/I ² S implementation	26
Table 12.	Legend/abbreviations used in the pinout table	33
Table 13.	STM32F091xB/xC pin definitions	34
Table 14.	Alternate functions selected through GPIOA AFR registers for port A	41
Table 15.	Alternate functions selected through GPIOB AFR registers for port B	42
Table 16.	Alternate functions selected through GPIOC AFR registers for port C	43
Table 17.	Alternate functions selected through GPIOD AFR registers for port D	43
Table 18.	Alternate functions selected through GPIOE AFR registers for port E	44
Table 19.	Alternate functions selected through GPIOF AFR registers for port F.	44
Table 20.	STM32F091xB/xC peripheral register boundary addresses	46
Table 21.	Voltage characteristics	
Table 22.	Current characteristics	
Table 23.	Thermal characteristics.	
Table 24.	General operating conditions	54
Table 25.	Operating conditions at power-up / power-down	55
Table 26.	Embedded reset and power control block characteristics.	55
Table 27.	Programmable voltage detector characteristics	55
Table 28.	Embedded internal reference voltage	56
Table 29.	Typical and maximum current consumption from $V_{\Box O}$ supply at $V_{\Box O}$ = 3.6 V	58
Table 30.	Typical and maximum current consumption from the V	59
Table 31.	Typical and maximum consumption in Stop and Standby modes	60
Table 32.	Typical and maximum current consumption from the V_{PAT} supply.	61
Table 33.	Typical current consumption, code executing from Flash memory.	
	running from HSE 8 MHz crystal	62
Table 34.	Switching output I/O current consumption	64
Table 35.	Peripheral current consumption	65
Table 36.	Low-power mode wakeup timings	67
Table 37.	High-speed external user clock characteristics.	67
Table 38.	Low-speed external user clock characteristics	68
Table 39.	HSE oscillator characteristics	
Table 40.	$I SE oscillator characteristics (f_{LSE} = 32.768 kHz)$	
Table 41	HSL oscillator characteristics	72
Table 42	HSI14 oscillator characteristics	73
Table 43	HSI48 oscillator characteristics	
Table 44	I SI oscillator characteristics	75
Table 45	PLL characteristics	
Table 46	Flash memory characteristics	75

2 Description

The STM32F091xB/xC microcontrollers incorporate the high-performance ARM[®] Cortex[®]-M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories (up to 256 Kbytes of Flash memory and 32 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. The device offers standard communication interfaces (two I²Cs, two SPIs/one I²S, one HDMI CEC and up to eight USARTs), one CAN, one 12-bit ADC, one 12-bit DAC with two channels, seven 16-bit timers, one 32-bit timer and an advanced-control PWM timer.

The STM32F091xB/xC microcontrollers operate in the -40 to +85 °C and -40 to +105 °C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

The STM32F091xB/xC microcontrollers include devices in seven different packages ranging from 48 pins to 100 pins with a die form also available upon request. Depending on the device chosen, different sets of peripherals are included.

These features make the STM32F091xB/xC microcontrollers suitable for a wide range of applications such as application control and user interfaces, hand-held equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.

3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 32 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 88 GPIOs can be connected to the 16 external interrupt lines.

3.10 Analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $\mathsf{V}_{\mathsf{SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address		
TS_CAL1	TS ADC raw data acquired at a temperature of 30 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7B8 - 0x1FFF F7B9		
TS_CAL2	TS ADC raw data acquired at a temperature of 110 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7C2 - 0x1FFF F7C3		

Table 3. Temperature sensor calibration values

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. The

precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Calibration value name	Description	Memory address		
VREFINT_CAL	Raw data acquired at a temperature of 30 °C (± 5 °C), V _{DDA} = 3.3 V (± 10 mV)	0x1FFF F7BA - 0x1FFF F7BB		

Table 4. Internal voltage reference calibration values

3.10.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC_IN18. As the V_{BAT} voltage may be higher than V_{DDA}, and thus outside the ADC input range, the V_{BAT} pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.11 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.

This digital Interface supports the following features:

- 8-bit or 12-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- External triggers for conversion

Six DAC trigger inputs are used in the device. The DAC is triggered through the timer trigger outputs and the DAC interface is generating its own DMA requests.

3.12 Comparators (COMP)

The device embeds two fast rail-to-rail low-power comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output pins
- Internal reference voltage or submultiple (1/4, 1/2, 3/4).Refer to *Table 28: Embedded internal reference voltage* for the value and precision of the internal reference voltage.

USART modes/features ⁽¹⁾	USART1 USART2 USART3	USART4	USART5 USART6 USART7 USART8
Single-wire half-duplex communication	Х	Х	Х
IrDA SIR ENDEC block	Х	-	-
LIN mode	Х	-	-
Dual clock domain and wakeup from Stop mode	Х	-	-
Receiver timeout interrupt	Х	-	-
Modbus communication	Х	-	-
Auto baud rate detection	Х	-	-
Driver Enable	Х	Х	Х

Table 10	STM32F091xB/xC	USART	implementation	(continued)	
			mpicmentation	(continucu)	

1. X = supported.

3.18 Serial peripheral interface (SPI) / Inter-integrated sound interface (I²S)

Two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

Two standard I²S interfaces (multiplexed with SPI1 and SPI2 respectively) supporting four different audio standards can operate as master or slave at half-duplex communication mode. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, they can output a clock for an external audio component at 256 times the sampling frequency.

SPI features ⁽¹⁾	SPI1 and SPI2
Hardware CRC calculation	Х
Rx/Tx FIFO	Х
NSS pulse mode	Х
I ² S mode	Х
TI mode	Х

Table 11. STM32F091xB/xC SPI/I²S implementation

1. X = supported.

STM32F091xB STM32F091xC

Pinouts and pin descriptions

Figure 5. UFBGA64 package pinout

Figure 7. WLCSP64 package pinout

1. The above figure shows the package in top view, changing from bottom view in the previous document versions.

Figure 8. LQFP48 package pinout

DocID026284 Rev 4

5 Memory mapping

To the difference of STM32F091xC memory map in *Figure 10*, the two bottom code memory spaces of STM32F091xB end at 0x0001 FFFF and 0x0801 FFFF, respectively.

DocID026284 Rev 4

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3.3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 11*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 12*.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled f_{PCLK} = f_{HCLK}

The parameters given in *Table 29* to *Table 32* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

1. Data based on characterization results, not tested in production unless otherwise specified.

	er	Conditions (1)		V _{DDA} = 2.4 V				V _{DDA} = 3.6 V					
Symbol	a-met		, f _{HCLK}		Max @ T _A ⁽²⁾				Max @ T _A ⁽²⁾			Unit	
	Para			Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C		
		HSI48	48 MHz	312	333	338	347	316	334	341	350		
Supply current i Run or		HSE	48 MHz	147	168	178	181	160	181	192	197		
	Supply	oly bypass, it in PLL on or	32 MHz	101	119	125	127	109	127	135	138		
	Run or		24 MHz	80	96	98	100	87	101	106	109		
	Sleep mode.	e HSE	8 MHz	2.8	3.5	3.7	3.9	3.7	4.3	4.6	4.7		
I _{DDA}	code	bypass, PLL off	1 MHz	2.7	3.2	3.5	3.8	3.3	3.9	4.4	4.7	μA	
	from		48 MHz	214	243	254	259	235	262	275	281		
n c	Flash memorv	Flash Flash	HSI clock, PLL on	32 MHz	166	193	203	204	185	207	216	220	
	or RAM		24 MHz	144	171	177	178	161	180	187	190		
		HSI clock, PLL off	8 MHz	65	83	85	86	77	90	92	93		

Table 30. Typical and maximum current consumption from the $\rm V_{\rm E}$	_{DDA} supply
--	-----------------------

 Current consumption from the V_{DDA} supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, I_{DDA} is independent from the frequency.

2. Data based on characterization results, not tested in production unless otherwise specified.

6.3.6 Wakeup time from low-power mode

The wakeup times given in *Table 36* are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture.

The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.

The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode. The wakeup source from Standby mode is the WKUP1 pin (PA0).

All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

Symbol	Paramotor	Conditions	Typ @Vdd = Vdda					Max	Unit
Symbol	Falameter		= 2.0 V	= 2.4 V	= 2.7 V	= 3 V	= 3.3 V	IVIAX	Unit
Wakeup from Stop		Regulator in run mode	3.2	3.1	2.9	2.9	2.8	5	
IWUSTOP	mode	Regulator in low power mode	7.0	5.8	5.2	4.9	4.6	9	
t _{WUSTANDBY}	Wakeup from Standby mode	-	60.4	55.6	53.5	52	51	-	μο
twusleep	Wakeup from Sleep mode	-		4 S)	SCLK cy	cles		-	

 Table 36. Low-power mode wakeup timings

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in *Figure 15: High-speed external clock source AC timing diagram*.

Symbol	Parameter ⁽¹⁾	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	-	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V _{HSEL}	OSC_IN input pin low level voltage	V _{SS}	-	0.3 V _{DDIOx}	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	15	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time	-	-	20	113

Tahlo	37	High-speed	ovtornal	lisor	clock	characteristics
lane	J/.	nigii-speeu	external	usei	LIULK	Characteristics

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 39*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	8.5	
I _{DD}		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 10 pF@8 MHz	-	0.4	-	
		V _{DD} = 3.3 V, Rm = 45 Ω, CL = 10 pF@8 MHz	-	0.5	-	
	HSE current consumption	V _{DD} = 3.3 V, Rm = 30 Ω, CL = 5 pF@32 MHz	-	0.8	-	mA
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 10 pF@32 MHz	-	1	-	
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 20 pF@32 MHz	-	1.5	-	
9 _m	Oscillator transconductance	Startup	10	-	-	mA/V
$t_{SU(HSE)}^{(4)}$	Startup time	V_{DD} is stabilized	-	2	-	ms

Table 39.	HSE	oscillator	characteristics

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by design, not tested in production.

3. This consumption level occurs during the first 2/3 of the $t_{\mbox{SU(HSE)}}$ startup time

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Figure 18. Typical application with a 32.768 kHz crystal

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.8 Internal clock source characteristics

The parameters given in *Table 41* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*. The provided curves are characterization results, not tested in production.

Figure 22. TC and TTa I/O input characteristics

Figure 23. Five volt tolerant (FT and FTf) I/O input characteristics

57

DocID026284 Rev 4

Equation 1: R_{AIN} max formula

$$R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 58. R_{AIN} max for f_{ADC} = 14 MHz					
T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ) ⁽¹⁾			
1.5	0.11	0.4			
7.5	0.54	5.9			
13.5	0.96	11.4			
28.5	2.04	25.2			
41.5	2.96	37.2			
55.5	3.96	50			
71.5	5.11	NA			
239.5	17.1	NA			

1. Guaranteed by design, not tested in production.

Table 59. ADC accuracy $^{(1)(2)(3)}$

Symbol	Parameter	rameter Test conditions		Max ⁽⁴⁾	Unit
ET	Total unadjusted error		±1.3	±2	
EO	Offset error	$f_{PCLK} = 48 \text{ MHz},$	±1	±1.5	
EG	Gain error	$T_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega$	±0.5	±1.5	LSB
ED	Differential linearity error	$T_A = 25 \text{ °C}$	±0.7	±1	
EL	Integral linearity error		±0.8	±1.5	
ET	Total unadjusted error	f _{PCLK} = 48 MHz, f _{ADC} = 14 MHz, R _{AIN} < 10 kΩ V _{DDA} = 2.7 V to 3.6 V T _A = - 40 to 105 °C	±3.3	±4	
EO	Offset error		±1.9	±2.8	
EG	Gain error		±2.8	±3	LSB
ED	Differential linearity error		±0.7	±1.3	
EL	Integral linearity error		±1.2	±1.7	
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	f _{PCLK} = 48 MHz,	±1.9	±2.8	
EG	Gain error	$t_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega$ VDDA = 2.4 V to 3.6 V	±2.8	±3	LSB
ED	Differential linearity error	T _A = 25 °C	±0.7	±1.3	
EL	Integral linearity error		±1.2	±1.7	

1. ADC DC accuracy values are measured after internal calibration.

Symbol	millimeters			inches ⁽¹⁾			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
b	0.240	0.290	0.340	0.0094	0.0114	0.0134	
D	6.850	7.000	7.150	0.2697	0.2756	0.2815	
D1	-	5.500	-	-	0.2165	-	
E	6.850	7.000	7.150	0.2697	0.2756	0.2815	
E1	-	5.500	-	-	0.2165	-	
е	-	0.500	-	-	0.0197	-	
Z	-	0.750	-	-	0.0295	-	
ddd	-	-	0.080	-	-	0.0031	
eee	-	-	0.150	-	-	0.0059	
fff	-	-	0.050	-	-	0.0020	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Table 71. UFBGA100 recommended PCB design rules

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the solder mask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.5 LQFP64 package information

LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.

Figure 45. LQFP64 package outline

1. Drawing is not to scale.

Table 77. LQFP64	package	mechanical	data
------------------	---------	------------	------

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-

Date	Revision	Changes
		Section 6: Electrical characteristics:
		 footnote for V_{IN} max value in Table 21: Voltage characteristics
		 Table 28: Embedded internal reference voltage: added t_{START} parameter and removal of -40°-to-85° condition for V_{REFINT} and associated note
		 Figure 18: Typical application with a 32.768 kHz crystal - correction of OSC_IN and OSC_OUT to OSC32_IN and OSC32_OUT and f_{HSE} to f_{LSE}
		- Table 50: ESD absolute maximum ratings updated
		 V_{DDIOx} replaced V_{DD} in Figure 22: TC and TTa I/O input characteristics and Figure 23: Five volt tolerant (FT and FTf) I/O input characteristics
		- Table 53: I/O static characteristics- note removed
		 Table 57: ADC characteristics - updated some parameter values, test conditions and added footnotes ⁽³⁾ and ⁽⁴⁾
	3 (continued)	 I_{DDA} max value (DAC DC current consumption) in Table 60: DAC characteristics
		 Table 61: Comparator characteristics - min value added for V_{DDA}
		 Table 62: TS characteristics: removed the minimum value for t_{START} symbol and updated parameter name
17-Dec-2015		 R parameter typical. value in Table 63: V_{BAT} monitoring characteristics
		 Table 64: TIMx characteristics: removed Res_{TM} parameter line and all values put in new Typ column, t_{COUNTER} substituted with t_{MAX_COUNT}, values defined as powers of two
		 Table 69: I²S characteristics reorganized and max value added for t_{v(SD_ST)}
		 Figure 32: I²S master timing diagram (Philips protocol) added definition of edge level references
		Section 7: Package information:
		 Figure 33: UFBGA100 package outline and associated Table 70 updated
		- Figure 34 and associated Table 71 updated
		 Figure 35: UFBGA100 package marking example and associated text updated
		 Figure 38: LQFP100 package marking example and associated text updated
		- Table 74: UFBGA64 recommended PCB design rules added
		 Figure 41: UFBGA64 package marking example added
		Section 8: Part numbering:
		 added tray packing to options

