E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	88
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 19x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f091vct7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.14.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for:

- input capture
- output compare
- PWM generation (edge or center-aligned modes)
- one-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining.

3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17)

There are six synchronizable general-purpose timers embedded in the STM32F091xB/xC devices (see *Table 7* for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base.

TIM2, TIM3

STM32F091xB/xC devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advancedcontrol timer via the Timer Link feature for synchronization or event chaining.

TIM2 and TIM3 both have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

TIM14

This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.

Its counter can be frozen in debug mode.

TIM15, TIM16 and TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

STM32F091xB STM32F091xC

	Pi	in nui	mber	s						Pin functions	
UFBGA100	LQFP100	UFBGA64	LQFP64	WLCSP64	LQFP48/UFQFPN48	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
A10	76	A7	49	В3	37	PA14	I/O	I/O FT ⁽³⁾ USART2_TX, SWCLK		-	
A9	77	A6	50	A2	38	PA15	I/O	FT ⁽³⁾ SPI1_NSS, I2S1_WS, USART2_RX, USART4_RTS, TIM2_CH1_ETR, EVENTOUT		-	
B11	78	B7	51	A3	-	PC10	I/O	FT	FT ⁽³⁾ USART3_TX, USART4_TX		-
C10	79	B6	52	C4	-	PC11	I/O	FT	(3)	USART3_RX, USART4_RX	-
B10	80	C5	53	B4	-	PC12	I/O	FT	(3)	USART3_CK, USART4_CK, USART5_TX	-
C9	81	-	-	-	-	PD0	I/O	FT	(3)	SPI2_NSS, I2S2_WS, CAN_RX	-
B9	82	-	-	-	-	PD1	I/O	FT	(3)	SPI2_SCK, I2S2_CK CAN_TX	-
C8	83	B5	54	A4	-	PD2	I/O	FT	(3)	USART3_RTS, TIM3_ETR, USART5_RX	-
B8	84	-	-	-	-	PD3	I/O	FT		SPI2_MISO, I2S2_MCK, USART2_CTS	-
B7	85	-	-	-	-	PD4	I/O	FT	FT SPI2_MOSI, I2S2_SD, USART2_RTS		-
A6	86	-	-	-	-	PD5	I/O	FT USART2_TX		-	
B6	87	-	-	-	-	PD6	I/O	0 FT USART2_RX		-	
A5	88	-	-	-	-	PD7	I/O	0 FT USART2_CK		-	
A8	89	A5	55	D4	39	PB3	I/O	FT		SPI1_SCK, I2S1_CK, TIM2_CH2, TSC_G5_IO1, EVENTOUT, USART5_TX	-
A7	90	A4	56	D5	40	PB4	I/O	FT		SPI1_MISO, I2S1_MCK, TIM17_BKIN, TIM3_CH1, TSC_G5_IO2, EVENTOUT, USART5_RX	-

Table 13. STM32F091xB/xC pin definitions (continued)

S
-
2
ដ
Ň
- 11
0
Ģ
1
A
w
S
Ĥ
Z
3
Ň
Ť
Ö
9
<u></u>
ž
0

5		Table 1	14. Alternate fu	nctions selected	through GPI	DA_AFR registe	ers for port A		
	Pin name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Î	PA0	-	USART2_CTS	TIM2_CH1_ETR	TSC_G1_IO1	USART4_TX	-	-	COMP1_OUT
Ī	PA1	EVENTOUT	USART2_RTS	TIM2_CH2	TSC_G1_IO2	USART4_RX	TIM15_CH1N	-	-
	PA2	TIM15_CH1	USART2_TX	TIM2_CH3	TSC_G1_IO3	-	-	-	COMP2_OUT
	PA3	TIM15_CH2	USART2_RX	TIM2_CH4	TSC_G1_IO4	-	-	-	-
Ī	PA4	SPI1_NSS, I2S1_WS	USART2_CK	-	TSC_G2_IO1	TIM14_CH1	USART6_TX	-	-
Ī	PA5	SPI1_SCK, I2S1_CK	CEC	TIM2_CH1_ETR	TSC_G2_IO2	-	USART6_RX	-	-
	PA6	SPI1_MISO, I2S1_MCK	TIM3_CH1	TIM1_BKIN	TSC_G2_IO3	USART3_CTS	TIM16_CH1	EVENTOUT	COMP1_OUT
	PA7	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM1_CH1N	TSC_G2_IO4	TIM14_CH1	TIM17_CH1	EVENTOUT	COMP2_OUT
-	PA8	MCO	USART1_CK	TIM1_CH1	EVENTOUT	CRS_SYNC	-	-	-
	PA9	TIM15_BKIN	USART1_TX	TIM1_CH2	TSC_G4_IO1	I2C1_SCL	MCO	-	-
900	PA10	TIM17_BKIN	USART1_RX	TIM1_CH3	TSC_G4_IO2	I2C1_SDA	-	-	-
284	PA11	EVENTOUT	USART1_CTS	TIM1_CH4	TSC_G4_IO3	CAN_RX	I2C2_SCL	-	COMP1_OUT
Rev	PA12	EVENTOUT	USART1_RTS	TIM1_ETR	TSC_G4_IO4	CAN_TX	I2C2_SDA	-	COMP2_OUT
4	PA13	SWDIO	IR_OUT	-	-	-	-	-	-
Ī	PA14	SWCLK	USART2_TX	-	-	-	-	-	-
Ī	PA15	SPI1_NSS, I2S1_WS	USART2_RX	TIM2_CH1_ETR	EVENTOUT	USART4_RTS	-	-	-

41/128

Pin name	Pin name AF0		AF2
PC0	EVENTOUT	USART7_TX	USART6_TX
PC1	EVENTOUT	USART7_RX	USART6_RX
PC2	EVENTOUT	SPI2_MISO, I2S2_MCK	USART8_TX
PC3	EVENTOUT	SPI2_MOSI, I2S2_SD	USART8_RX
PC4	EVENTOUT	USART3_TX	-
PC5	TSC_G3_IO1	USART3_RX	-
PC6	TIM3_CH1	USART7_TX	-
PC7	TIM3_CH2	USART7_RX	-
PC8	TIM3_CH3	USART8_TX	-
PC9	TIM3_CH4	USART8_RX	-
PC10	USART4_TX	USART3_TX	-
PC11	USART4_RX	USART3_RX	-
PC12	USART4_CK	USART3_CK	USART5_TX
PC13	-	-	-
PC14	-	-	-
PC15	-	-	-

Table 16. Alternate functions selected through GPIOC_AFR registers for port C

Table 17. Alternate functions selected through GPIOD_AFR registers for port D

Pin name	AF0	AF1	AF2
PD0	CAN_RX	SPI2_NSS, I2S2_WS	-
PD1	CAN_TX	SPI2_SCK, I2S2_CK	-
PD2	TIM3_ETR	USART3_RTS	USART5_RX
PD3	USART2_CTS	SPI2_MISO, I2S2_MCK	-
PD4	USART2_RTS	SPI2_MOSI, I2S2_SD	-
PD5	PD5 USART2_TX -		-
PD6	USART2_RX	-	-
PD7	USART2_CK	-	-
PD8	USART3_TX	-	-
PD9	USART3_RX	-	-
PD10	USART3_CK	-	-
PD11	USART3_CTS	-	-
PD12	USART3_RTS	TSC_G8_IO1	USART8_CK_RTS
PD13	USART8_TX	TSC_G8_IO2	-
PD14	USART8_RX	TSC_G8_IO3	-
PD15	CRS_SYNC	TSC_G8_IO4	USART7_CK_RTS

				А	II periphe	erals ena	bled	All	periphe	rals disa	abled	
mbol	imete	Conditions	fhclk		N	ax @ T ₄	(1)		м	ax @ T _A	(1)	Unit
Syı	Para			Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
		HSI48	48 MHz	26.9	29.5	30.3	30.6	14.7	16.1	16.3	16.4	
un mode ash memory		48 MHz	26.7	29.2	30.1	30.3	14.6	16.0	16.2	16.2		
	HSE bypass, PLL on	32 MHz	18.0	20.4	20.8	21.0	10.1	10.8	10.9	11.0		
		24 MHz	14.0	15.7	16.1	16.2	8.5	9.0	9.2	9.4		
	n Ru H	HSE bypass,	8 MHz	4.8	5.3	5.5	5.9	3.0	3.2	3.3	3.5	
	ent fror	PLL off	1 MHz	1.3	1.5	1.6	1.9	1.0	1.1	1.2	1.4	
	curr uting		48 MHz	26.8	29.4	30.2	30.5	14.7	16.1	16.3	16.3	
	ipply exec	HSI clock, PLL on	32 MHz	18.1	20.5	20.9	21.2	10.2	10.9	11.0	11.1	
	Su ode e		24 MHz	14.1	15.9	16.2	16.4	8.6	9.1	9.2	9.5	
	8	HSI clock, PLL off	8 MHz	4.9	5.4	5.6	5.9	3.1	3.2	3.4	3.5	m۸
n Run mode, J from RAM		HSI48	48 MHz	26.3	28.7	29.5	29.7	14.0	15.3	15.5	15.7	ШA
	HSE bypass, PLL on	48 MHz	26.0	28.4	29.2	29.4	13.9	15.2	15.4	15.6		
		32 MHz	17.4	19.5	19.9	20.1	9.6	10.3	10.4	10.5		
	£∂ ⊑ E		24 MHz	13.3	15.1	15.5	15.6	7.6	8.2	8.4	8.5	
	HSE bypass,	8 MHz	4.4	4.9	5.1	5.3	2.4	2.6	2.8	2.9		
I _{DD}	ent i utinç	PLL off	1 MHz	0.9	0.9	1.0	1.2	0.5	0.6	0.7	0.8	
	curr exec		48 MHz	26.1	28.5	29.3	29.5	13.9	15.3	15.5	15.6	
Supply code e	HSI clock, PLL on	32 MHz	17.5	19.6	20.0	20.3	9.7	10.4	10.5	10.6		
		24 MHz	13.3	15.3	15.7	15.8	7.7	8.2	8.5	8.6		
	HSI clock, PLL off	8 MHz	4.6	5.0	5.2	5.4	2.5	2.7	2.9	3.0		
		HSI48	48 MHz	17.0	18.7	19.1	19.4	3.2	3.5	3.6	3.7	
Sleep mode	0		48 MHz	16.9	18.5	19.0	19.3	3.1	3.5	3.5	3.6	
	HSE bypass, PLL on	32 MHz	11.3	12.6	12.8	13.1	2.2	2.4	2.5	2.6		
	eb u	-	24 MHz	8.6	9.8	10.0	10.1	1.7	1.9	2.0	2.0	
	l Sle	HSE bypass,	8 MHz	2.9	3.2	3.4	3.7	0.8	0.9	0.9	1.0	
	ent ir	PLL off	1 MHz	0.4	0.6	0.6	0.7	0.3	0.4	0.4	0.5	mA
	curre		48 MHz	17.0	18.6	19.0	19.4	3.1	3.5	3.6	3.7	
	, ylqc	HSI clock, PLL on	32 MHz	11.4	12.7	13.0	13.2	2.3	2.5	2.6	2.7	
	Sup		24 MHz	8.7	9.9	10.1	10.2	1.8	2.0	2.1	2.2	
		HSI clock, PLL off	8 MHz	3.0	3.3	3.5	3.8	0.8	0.9	1.0	1.1	

	Table 29. Typical and maximum	current consumption from	V_{DD} supply at V_{DD} = 3.6 V
--	-------------------------------	--------------------------	-------------------------------------

trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously (see *Table 35: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDIOx} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DDIOx} is the I/O supply voltage

 $\rm f_{SW}$ is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

 C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 39*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	8.5	
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 10 pF@8 MHz	-	0.4	-	
		V _{DD} = 3.3 V, Rm = 45 Ω, CL = 10 pF@8 MHz	-	0.5	-	
I _{DD}	HSE current consumption	V _{DD} = 3.3 V, Rm = 30 Ω, CL = 5 pF@32 MHz	-	0.8	-	mA
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 10 pF@32 MHz	-	1	-	
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 20 pF@32 MHz	-	1.5	-	
9 _m	Oscillator transconductance	Startup	10	-	-	mA/V
$t_{SU(HSE)}^{(4)}$	Startup time	V_{DD} is stabilized	-	2	-	ms

Table	39.	HSE	oscillator	characteristics
I GINIO			ooomator	01101 00101 101100

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by design, not tested in production.

3. This consumption level occurs during the first 2/3 of the $t_{\mbox{SU(HSE)}}$ startup time

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Figure 17. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 40*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit	
		low drive capability	-	0.5	0.9		
I _{DD}	ISE current consumption	medium-low drive capability	-	-	1		
	LSE current consumption	medium-high drive capability	-	-	1.3	μΑ	
		high drive capability	-	-	1.6	L .	
		low drive capability	5	-	-		
a	Oscillator transconductance	medium-low drive capability	8	-	-		
9 _m		medium-high drive capability	15	-	-	μΑνν	
		high drive capability	25	-	-		
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DDIOx} is stabilized	-	2	-	S	

Table 40. LSE	oscillator	characteristics	$(f_{LSE} =$	32.768 kHz)
---------------	------------	-----------------	--------------	-------------

1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

2. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	8	-	MHz
TRIM	HSI user trimming step	-	-	-	1 ⁽²⁾	%
DuCy _(HSI)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
100		T _A = -40 to 105°C	-2.8 ⁽³⁾	-	3.8 ⁽³⁾	
	Accuracy of the HSI oscillator	T _A = -10 to 85°C	-1.9 ⁽³⁾	-	2.3 ⁽³⁾	%
		T _A = 0 to 85°C	-1.9 ⁽³⁾	-	2 ⁽³⁾	
ACCHSI		$T_A = 0$ to $70^{\circ}C$	-1.3 ⁽³⁾	-	2 ⁽³⁾	
		$T_A = 0$ to 55°C	-1 ⁽³⁾	-	2 ⁽³⁾	
		$T_A = 25^{\circ}C^{(4)}$	-1	-	1	
t _{su(HSI)}	HSI oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs
I _{DDA(HSI)}	HSI oscillator power _		-	80	100 ⁽²⁾	μA

Table 41. HSI oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105°C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

4. Factory calibrated, parts not soldered.

Figure 19. HSI oscillator accuracy characterization results for soldered parts

High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI14}	Frequency	-	-	14	-	MHz
TRIM	HSI14 user-trimming step	-	-	-	1 ⁽²⁾	%
DuCy _(HSI14)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
		$T_A = -40$ to 105 °C	-4.2 ⁽³⁾	-	5.1 ⁽³⁾	%
ACC _{HSI14}	Accuracy of the HSI14 oscillator (factory calibrated)	T _A = −10 to 85 °C	-3.2 ⁽³⁾	-	3.1 ⁽³⁾	%
		T _A = 0 to 70 °C	-2.5 ⁽³⁾	-	2.3 ⁽³⁾	%
		T _A = 25 °C	-1	-	1	%
t _{su(HSI14)}	HSI14 oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs
I _{DDA(HSI14)}	HSI14 oscillator power consumption	-	_	100	150 ⁽²⁾	μA

Table 42. HSI14 oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

Figure 20. HSI14 oscillator accuracy characterization results

			-			
Symbol	Ratings Conditions		Packages	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \degree C$, conforming to JESD22-A114	All	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage	$T_A = +25 ^{\circ}C$, conforming	WLCSP64, LQFP100	C3	250	v
		10 ANO/200 0110.0.1	All others	C4	500	

Table 50. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 51. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in *Table 52*.

Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
R _{PU}	Weak pull-up equivalent resistor (3)	V _{IN} = V _{SS}	25	40	55	kΩ	
R _{PD}	Weak pull-down equivalent resistor ⁽³⁾	V _{IN} = - V _{DDIOx}	25	40	55	kΩ	
C _{IO}	I/O pin capacitance	-	-	5	-	pF	

Table 53. I/O static characteristics (continued)

1. Data based on design simulation only. Not tested in production.

2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 52: I/O current injection susceptibility.

3. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 22* for standard I/Os, and in *Figure 23* for 5 V-tolerant I/Os. The following curves are design simulation results, not tested in production.

Figure 22. TC and TTa I/O input characteristics

Figure 23. Five volt tolerant (FT and FTf) I/O input characteristics

57

DocID026284 Rev 4

Electrical characteristics

ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input 2. pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC

accuracy.

- Better performance may be achieved in restricted V_{DDA}, frequency and temperature ranges. 3.
- 4. Data based on characterization results, not tested in production.

Figure 26. ADC accuracy characteristics

Figure 27. Typical connection diagram using the ADC

- Refer to Table 57: ADC characteristics for the values of R_{AIN} , R_{ADC} and C_{ADC} . 1.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 13: Power supply* scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

DocID026284 Rev 4

6.3.19 Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	± 1	± 2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₃₀	Voltage at 30 °C (± 5 °C) ⁽²⁾	1.34	1.43	1.52	V
t _{START} ⁽¹⁾	ADC_IN16 buffer startup time	-	-	10	μs
t _{S_temp} ⁽¹⁾	ADC sampling time when reading the temperature	4	-	-	μs

1. Guaranteed by design, not tested in production.

2. Measured at V_{DDA} = 3.3 V ± 10 mV. The V_{30} ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3: Temperature sensor calibration values.

6.3.20 V_{BAT} monitoring characteristics

Symbol	Parameter		Тур	Мах	Unit
R	Resistor bridge for V _{BAT}		2 x 50	-	kΩ
Q	Ratio on V _{BAT} measurement		2	-	-
Er ⁽¹⁾	Error on Q		-	+1	%
t _{S_vbat} ⁽¹⁾	ADC sampling time when reading the V_{BAT}		-	-	μs

Table 63. V_{BAT} monitoring characteristics

1. Guaranteed by design, not tested in production.

6.3.21 Timer characteristics

The parameters given in the following tables are guaranteed by design.

Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{ere} (TINA)	Timer resolution time	-	-	1	-	t _{TIMxCLK}
res(TIM)		f _{TIMxCLK} = 48 MHz	-	20.8	-	ns
f	Timer external clock	-	-	f _{TIMxCLK} /2	-	MHz
IEXT	CH4	f _{TIMxCLK} = 48 MHz	-	24	-	MHz
	16-bit timer maximum	-	-	2 ¹⁶	-	t _{TIMxCLK}
t	period	f _{TIMxCLK} = 48 MHz	-	1365	-	μs
'MAX_COUNT	32-bit counter	-	-	2 ³²	-	t _{TIMxCLK}
maximum period		f _{TIMxCLK} = 48 MHz	-	89.48	-	S

Table 64. TIMx characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
t _{su(SD_MR)}	Data input satur timo	Master receiver	6	-	
t _{su(SD_SR)}		Slave receiver	2	-	
t _{h(SD_MR)} ⁽²⁾	Data input hold time	Master receiver	4	-	
t _{h(SD_SR)} ⁽²⁾		Slave receiver	0.5	-	ne
t _{v(SD_MT)} ⁽²⁾	Data output valid time	Master transmitter	-	4	115
t _{v(SD_ST)} ⁽²⁾		Slave transmitter	-	20	
t _{h(SD_MT)}	Data output hold time	Master transmitter	0	-	
t _{h(SD_ST)}		Slave transmitter	13	-	

 Table 69. I²S characteristics⁽¹⁾ (continued)

1. Data based on design simulation and/or characterization results, not tested in production.

2. Depends on f_{PCLK} . For example, if f_{PCLK} = 8 MHz, then T_{PCLK} = 1/ f_{PLCLK} = 125 ns.

Figure 31. I²S slave timing diagram (Philips protocol)

1. Measurement points are done at CMOS levels: 0.3 × V_{DDIOx} and 0.7 × V_{DDIOx}

2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
b ⁽²⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110	
D	3.312	3.347	3.382	0.1304	0.1318	0.1331	
E	3.550	3.585	3.620	0.1398	0.1411	0.1425	
е	-	0.400	-	-	0.0157	-	
e1	-	2.800	-	-	0.1102	-	
e2	-	2.800	-	-	0.1102	-	
F	-	0.2735	-	-	0.0108	-	
G	-	0.3925	-	-	0.0155	-	
aaa	-	-	0.100	-	-	0.0039	
bbb	-	-	0.100	-	-	0.0039	
CCC	-	-	0.100	-	-	0.0039	
ddd	-	-	0.050	-	-	0.0020	
eee	-	-	0.050	-	-	0.0020	

Table 75. WLCSP64 pac	age mechanical data (continued)
-----------------------	---------------------------------

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 43. Recommended footprint for WLCSP64 package

 Table 76. WLCSP64 recommended PCB design rules

Dimension	Recommended values		
Pitch	0.4		
Dpad	260 μm max. (circular)		
	220 µm recommended		
Dsm	300 μm min. (for 260 μm diameter pad)		
PCB pad design	Non-solder mask defined via underbump allowed.		

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Symbol	millimeters		inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 78. LQFP48	package	mechanical	data
------------------	---------	------------	------

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 49. Recommended footprint for LQFP48 package

1. Dimensions are expressed in millimeters.

DocID026284 Rev 4

