

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CSI, EBI/EMI, I ² C, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	128
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	60K x 8
Voltage - Supply (Vcc/Vdd)	2.85V ~ 3.6V
Data Converters	A/D 16x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3746gj-gae-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

22.2	Regist	ers to Check Reset Source	
22.3	Operat	tion	
	22.3.1	Reset operation via RESET pin	
	22.3.2	Reset operation by watchdog timer 2	
	22.3.3	Reset operation by low-voltage detector	717
	22.3.4	Operation after reset release	718
	22.3.5	Reset function operation flow	719
CHAPTER	23 CI	LOCK MONITOR	
23.1	Functi	ons	
23.2	Config	juration	
23.3	Regist	er	
23.4	Operat	tion	
		DW-VOLTAGE DETECTOR (LVI)	
24.1		ons	
24.2		juration	
24.3	•	ers	
24.4	•	tion	
	24.4.1	To use for internal reset signal	
	24.4.2	To use for interrupt	
24.5		Retention Voltage Detection Operation	
24.6	Emula	tion Function	
CHAPTER	25 CI	RC FUNCTION	
25.1		ons	
25.2		juration	
25.3		ers	
25.4	-	tion	
25.5	•	Method	
_0.0	Cougo		
CHAPTER	26 RI	EGULATOR	
26.1	Overvi	ew	
26.2	Operat	tion	
	07 51	ASH MEMORY	700
27.1			
27.1		ry Configuration	
27.2		onal Outline	
27.3		ing by Dedicated Flash Programmer	
27.4	27.4.1		
		Programming environment	
	27.4.2	Communication mode	
	27.4.3	Flash memory control	
	27.4.4	Selection of communication mode	
	27.4.5	Communication commands	-
<u></u>	27.4.6	Pin connection	
27.5		ing by Self Programming	
	27.5.1	Overview	
	27.5.2	Features	
	27.5.3	Standard self programming flow	
	27.5.4	Flash functions	

(3) Port 8 mode control register (PMC8)

	7	R/W	Address: F	4	3	2	1	0		
PMC8	0	0	0	0	0	0	PMC81	PMC80		
				· · · · · · · · · · · · · · · · · · ·			•		1	
	PMC81	IC81 Specification of P81 pin operation mode								
	0	0 I/O port								
	1	TXDA3 output								
	PMC80		Specification of P80 pin operation mode							
	0	I/O port	/O port							
	1	RXDA3 ir	nput/INTP8 ^N	^{lote} input						
detection	of the ed	ge of the	INTP8 pi		NTF80 b	it = 0 ar	id INTR8.I	NTR80 bit	3 pin, disal t = 0). Wh 0).	

(4) Port 8 function register (PF8)

	PF80		1	3	4	5	6	/	
	1100	PF81	0	0	0	0	0	0	PF8
		•	•						
PF8n Control of normal output or N-ch open-drain output (n = 0, 1	Control of normal output or N-ch open-drain output $(n = 0, 1)$								
0 Normal output (CMOS output)	Normal output (CMOS output)							0	
1 N-ch open-drain output	1 N-ch open-drain output							1	

I	<
I	$\overline{\mathbf{m}}$
I	ы Сп
	Š.
I	Ĭ
I	Ś
	2
	<u>ب</u>
I	ω

R01UT0016EJ0400 Rev.4.00 Sep 30, 2010

Pin Name		Function	Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCnx Bit of PMCn Register	PFCEnx Bit of PFCEn Register	PFCnx Bit of PFCn Register	Other Bits (Registers)
	Name	I/O	FILLE		FINICIT REGISTER			(negisiers)
PCM0	WAIT	Input	PCM0 = Setting not required	PMCM0 = Setting not required	PMCCM0 = 1	-	-	
PCM1	CLKOUT	Output	PCM1 = Setting not required	PMCM1 = Setting not required	PMCCM1 = 1	_	-	
PCM2	HLDAK	Output	PCM2 = Setting not required	PMCM2 = Setting not required	PMCCM2 = 1	_	-	
PCM3	HLDRQ	Input	PCM3 = Setting not required	PMCM3 = Setting not required	PMCCM3 = 1	-	-	
PCT0	WR0	Output	PCT0 = Setting not required	PMCT0 = Setting not required	PMCCT0 = 1	-	-	
PCT1	WR1	Output	PCT1 = Setting not required	PMCT1 = Setting not required	PMCCT1 = 1	-	-	
PCT4	RD	Output	PCT4 = Setting not required	PMCT4 = Setting not required	PMCCT4 = 1	-	_	
PCT6	ASTB	Output	PCT6 = Setting not required	PMCT6 = Setting not required	PMCCT6 = 1	-	-	
PDH0	A16	Output	PDH0 = Setting not required	PMDH0 = Setting not required	PMCDH0 = 1	-	_	
PDH1	A17	Output	PDH1 = Setting not required	PMDH1 = Setting not required	PMCDH1 = 1	-	-	
PDH2	A18	Output	PDH2 = Setting not required	PMDH2 = Setting not required	PMCDH2 = 1	_	-	
PDH3	A19	Output	PDH3 = Setting not required	PMDH3 = Setting not required	PMCDH3 = 1	-	-	
PDH4	A20	Output	PDH4 = Setting not required	PMDH4 = Setting not required	PMCDH4 = 1	_	-	
PDH5	A21	Output	PDH5 = Setting not required	PMDH5 = Setting not required	PMCDH5 = 1	_	-	
PDH6	A22	Output	PDH6 = Setting not required	PMDH6 = Setting not required	PMCDH6 = 1	-	-	
PDH7	A23	Output	PDH7 = Setting not required	PMDH7 = Setting not required	PMCDH7 = 1	_	-	
PDL0	AD0	I/O	PDL0 = Setting not required	PMDL0 = Setting not required	PMCDL0 = 1	_	-	
PDL1	AD1	I/O	PDL1 = Setting not required	PMDL1 = Setting not required	PMCDL1 = 1	_	_	
PDL2	AD2	I/O	PDL2 = Setting not required	PMDL2 = Setting not required	PMCDL2 = 1	_	-	
PDL3	AD3	I/O	PDL3 = Setting not required	PMDL3 = Setting not required	PMCDL3 = 1	_	_	
PDL4	AD4	I/O	PDL4 = Setting not required	PMDL4 = Setting not required	PMCDL4 = 1	_	_	
PDL5	AD5	I/O	PDL5 = Setting not required	PMDL5 = Setting not required	PMCDL5 = 1	_	_	
	FLMD1 ^{Note}	Input	PDL5 = Setting not required	PMDL5 = Setting not required	PMCDL5 = Setting not required	_	_	
PDL6	AD6	I/O	PDL6 = Setting not required	PMDL6 = Setting not required	PMCDL6 = 1	_	_	
PDL7	AD7	I/O	PDL7 = Setting not required	PMDL7 = Setting not required	PMCDL7 = 1	_	_	
Since t	his pin is :	set in the	flash memory progra	mming mode, it doe	s not need to be mai	nipulated with the p	ort control register. For	details, see CHAPTER 27 FL

Table 4-19. Using Port Pins as Alternate-Function Pins (7/8)

6.3 Registers

(1) Processor clock control register (PCC)

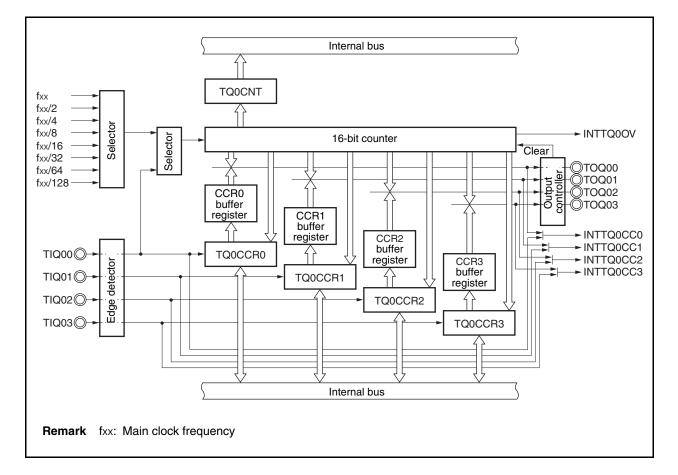
The PCC register is a special register. Data can be written to this register only in combination of specific sequences (see **3.4.7 Special registers**).

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 03H.

After re	set: 00H	R/W	Address: 7	POCTL1	FFFFF59	1H, TP1CTL	1 FFFFF	5A1H,		
			٦	P2CTL1	FFFFF5B	1H, TP3CTL	1 FFFFF	5C1H,		
			٦	FP4CTL1	FFFFF5D	1H, TP5CTI	_1 FFFFF	5E1H,		
			٦	P6CTL1	FFFFF5F	1H, TP7CTL	1 FFFFF	601H,		
			٦	FP8CTL1	FFFFF61	1H				
	7	<6>	<5>	4	3	2	1	0		
TPnCTL1	0	TPnEST	TPnEEE	0	0	TPnMD2	TPnMD1	TPnMD0		
(n = 0 to 8)										
	TPnEST			Softw	are trigge	r control				
	0				-					
	1	 In one-s 	Generate a valid signal for external trigger input. In one-shot pulse output mode: A one-shot pulse is output with writing 1 to the TPnEST bit as the trigger. In external trigger pulse output mode: A PWM waveform is output with writing 1 to the TPnEST bit as the trigger.							
	TPnEEE			Cour	nt clock se					
	0	Disable or	peration wit							
	0	(Perform o	Disable operation with external event count input. Perform counting with the count clock selected by the TPnCTL0.TPnCK0 D TPnCK2 bits.)							
	1		peration with counting at			int input. e external ev	vent count	input		
	TPnMD2	TPnMD1	TPnMD0		Tim	ner mode sel	action			
	0	0	0	Interval	timer moc		COLIDIT			
	0	0	1		event co	-				
	0	1	0			ulse output n	node			
	0	1	1			utput mode				
	1	0	0		Itput mod	•				
	1	0	1		ning time					
	1	1	0		•	urement mo	de			
	1	1	1	Setting	prohibited					
	Cautions	mode to thi 2. Exter mode 3. Set TPnC	e or one-s s bit is ig nal event regardle the TPn CTL0.TPn(whot puls nored. t count i ss of the EEE ar CE bit =	e outpu nput is value o nd TPn 0. (The	t mode. I selected of the TPnE MD2 to same val	n any ot in the ex EE bit. TPnMD ue can b uarantee	rigger pulse ou her mode, writi xternal event c 0 bits when be written wher d when rewritir		
				ь. н. —			e	ng was mistak		

RENESAS


8.3 Configuration

TMQ0 includes the following hardware.

Item	Configuration
Timer register	16-bit counter
Registers	TMQ0 capture/compare registers 0 to 3 (TQ0CCR0 to TQ0CCR3) TMQ0 counter read buffer register (TQ0CNT) CCR0 to CCR3 buffer registers
Timer inputs	4 (TIQ00 ^{Note 1} to TIQ03 pins)
Timer outputs	4 (TOQ00 to TOQ03 pins)
Control registers ^{Note 2}	TMQ0 control registers 0, 1 (TQ0CTL0, TQ0CTL1) TMQ0 I/O control registers 0 to 2 (TQ0IOC0 to TQ0IOC2) TMQ0 option register 0 (TQ0OPT0)

Table 8-1. Configuration of TMQ0

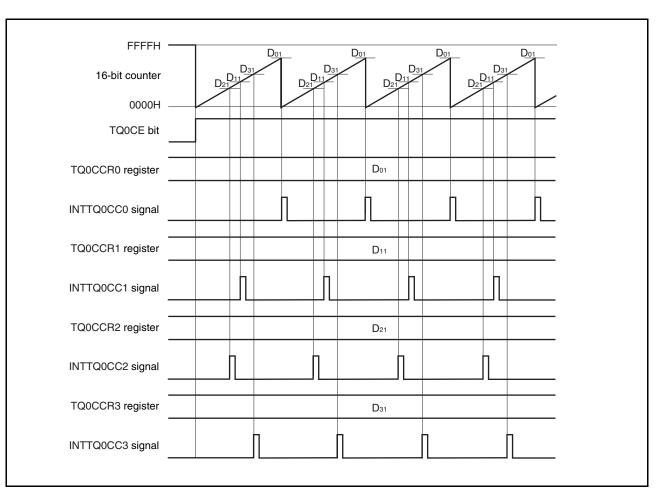
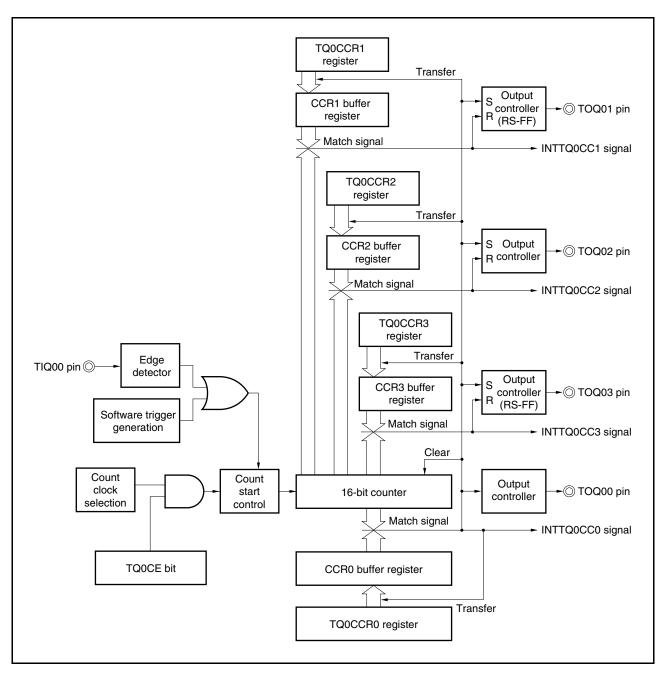

- **Notes 1.** The TIQ00 pin functions alternately as a capture trigger input signal, external event count input signal, and external trigger input signal.
 - 2. When using the functions of the TIQ00 to TIQ03 and TOQ00 to TOQ03 pins, see Table 4-19 Using Port Pins as Alternate-Function Pins.

Figure	8-1.	Block	Diagram	of TMQ0
				••••••

If the set value of the TQ0CCRk register is smaller than the set value of the TQ0CCR0 register, the INTTQ0CCk signal is generated once per cycle.

Remark k = 1 to 3

Figure 8-14. Timing Chart When $D_{01} \ge D_{k1}$



8.5.3 External trigger pulse output mode (TQ0MD2 to TQ0MD0 bits = 010)

In the external trigger pulse output mode, 16-bit timer/event counter Q waits for a trigger when the TQ0CTL0.TQ0CE bit is set to 1. When the valid edge of an external trigger input signal is detected, 16-bit timer/event counter Q starts counting, and outputs a PWM waveform from the TOQ01 to TOQ03 pins.

Pulses can also be output by generating a software trigger instead of using the external trigger. When using a software trigger, a square wave that has one cycle of the PWM waveform as half its cycle can also be output from the TOQ00 pin.

CHAPTER 13 A/D CONVERTER

13.1 Overview

The A/D converter converts analog input signals into digital values, has a resolution of 10 bits, and can handle 16 analog input signal channels (ANI0 to ANI15).

The A/D converter has the following features.

- 10-bit resolution
- 16 channels
- \bigcirc Successive approximation method
- Operating voltage: AVREF0 = 3.0 to 3.6 V
- Analog input voltage: 0 V to AVREF0
- \bigcirc The following functions are provided as operation modes.
 - Continuous select mode
 - Continuous scan mode
 - One-shot select mode
 - One-shot scan mode
- $\bigcirc\,$ The following functions are provided as trigger modes.
 - Software trigger mode
 - External trigger mode (external, 1)
 - Timer trigger mode
- Power-fail monitor function (conversion result compare function)

13.2 Functions

(1) 10-bit resolution A/D conversion

An analog input channel is selected from ANI0 to ANI15, and an A/D conversion operation is repeated at a resolution of 10 bits. Each time A/D conversion has been completed, an interrupt request signal (INTAD) is generated.

(2) Power-fail detection function

This function is used to detect a drop in the battery voltage. The result of A/D conversion (the value of the ADA0CRnH register) is compared with the value of the ADA0PFT register, and the INTAD signal is generated only when a specified comparison condition is satisfied (n = 0 to 15).

(1) Successive approximation register (SAR)

The SAR register compares the voltage value of the analog input signal with the output voltage (compare voltage) value of the compare voltage generation DAC, and holds the comparison result starting from the most significant bit (MSB).

When the comparison result has been held down to the least significant bit (LSB) (i.e., when A/D conversion is complete), the contents of the SAR register are transferred to the ADA0CRn register.

Remark n = 0 to 15

(2) A/D conversion result register n (ADA0CRn), A/D conversion result register nH (ADA0CRnH)

The ADA0CRn register is a 16-bit register that stores the A/D conversion result. ADA0ARn consist of 16 registers and the A/D conversion result is stored in the 10 higher bits of the AD0CRn register corresponding to analog input. (The lower 6 bits are fixed to 0.)

(3) A/D converter mode register 0 (ADA0M0)

This register specifies the operation mode and controls the conversion operation by the A/D converter.

(4) A/D converter mode register 1 (ADA0M1)

This register sets the conversion time of the analog input signal to be converted.

- (5) A/D converter mode register 2 (ADA0M2) This register sets the hardware trigger mode.
- (6) A/D converter channel specification register (ADA0S) This register sets the input port that inputs the analog voltage to be converted.

(7) Power-fail compare mode register (ADA0PFM)

This register sets the power-fail monitor mode.

(8) Power-fail compare threshold value register (ADA0PFT)

The ADA0PFT register sets a threshold value that is compared with the value of A/D conversion result register nH (ADA0CRnH). The 8-bit data set to the ADA0PFT register is compared with the higher 8 bits of the A/D conversion result register (ADA0CRnH).

(9) Controller

The controller compares the result of the A/D conversion (the value of the ADA0CRnH register) with the value of the ADA0PFT register when A/D conversion is completed or when the power-fail detection function is used, and generates the INTAD signal only when a specified comparison condition is satisfied.

(10) Sample & hold circuit

The sample & hold circuit samples each of the analog input signals selected by the input circuit and sends the sampled data to the voltage comparator. This circuit also holds the sampled analog input signal voltage during A/D conversion.

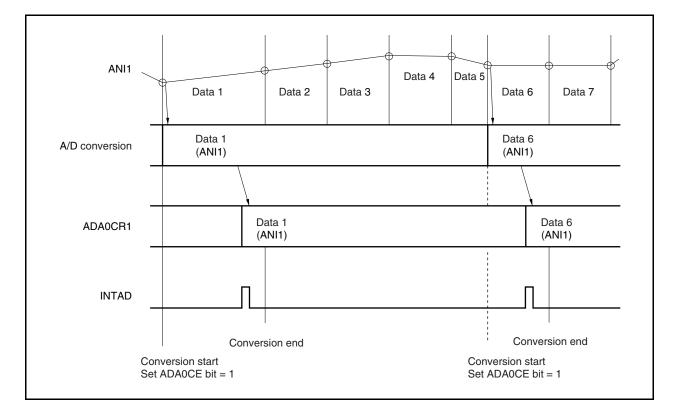
(11) Voltage comparator

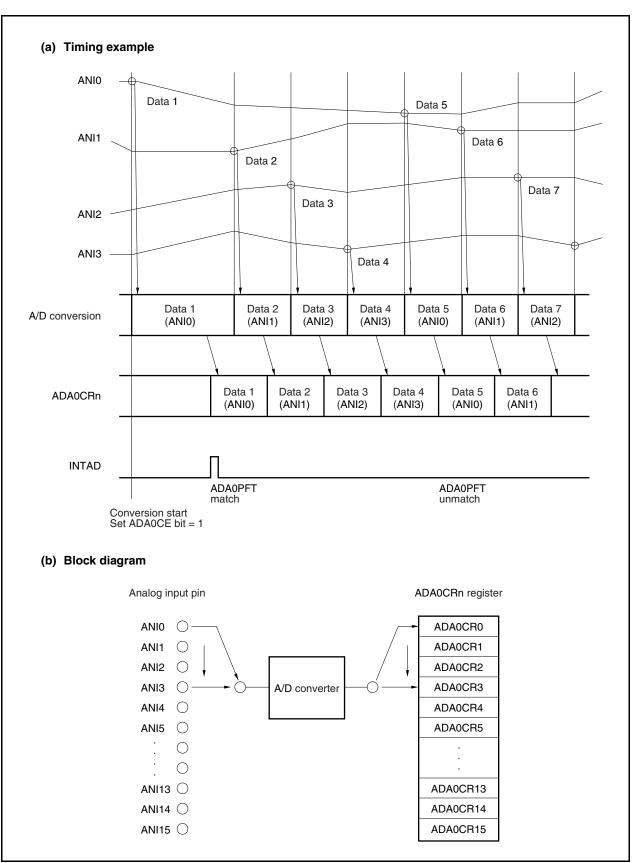
The voltage comparator compares a voltage value that has been sampled and held with the output voltage value of the compare voltage generation DAC.

(3) One-shot select mode

In this mode, the voltage on the analog input pin specified by the ADA0S register is converted into a digital value only once.

The conversion result is stored in the ADA0CRn register corresponding to the analog input pin. In this mode, an analog input pin and an ADA0CRn register correspond on a one-to-one basis. When A/D conversion has been completed once, the INTAD signal is generated. The A/D conversion operation is stopped after it has been completed (n = 0 to 15).




Figure 13-6. Timing Example of One-Shot Select Mode Operation (ADA0S Register = 01H)

(4) One-shot scan mode

In this mode, analog input pins are sequentially selected, from the ANIO pin to the pin specified by the ADAOS register, and their values are converted into digital values.

Each conversion result is stored in the ADA0CRn register corresponding to the analog input pin. When conversion of the analog input pin specified by the ADA0S register is complete, the INTAD signal is generated. A/D conversion is stopped after it has been completed (n = 0 to 15).

(4/4)

0		o condition trigger					
	Stop condition is not generated.	Stop condition is not generated.					
1	Stop condition is generated (termination of master device's transfer). After the SDA0n line goes to low level, either set the SCL0n line to high level or wait until the SCL0n pin goes to high level. Next, after the rated amount of time has elapsed, the SDA0n line is changed from low level to high level and a stop condition is generated.						
For master For master • Cannot b • The SPT • When the eight cloo The WTII SPTn bit	Can be set to 1 only when the A after the slave has been notified transmission: A stop condition cannot be gen 1 during the wait period that fo be set to 1 at the same time as the STTn bit. In bit can be set to 1 only when in master mode e WTIMn bit has been set to 0, if the SPTn bit is cks, note that a stop condition will be generated Mn bit should be changed from 0 to 1 during the should be set to 1 during the wait period that f	ACKEn bit has been set to 0 and during the wait period d of final reception. erated normally during the ACK reception period. Set to llows output of the ninth clock. a ^{Note} . is set to 1 during the wait period that follows output of d during the high-level period of the ninth clock. ne wait period following output of eight clocks, and the					
Condition f	or clearing (SPTn bit = 0)	Condition for setting (SPTn bit = 1)					
AutomationWhen the	by loss in arbitration cally cleared after stop condition is detected e LRELn bit = 1 (communication save) e IICEn bit = 0 (operation stop) et	Set by instruction					
ote Set t	-	wever, when the IICRSVn bit is 0, the SPTn bit mus e first stop condition is detected following the switc					

Remarks 1. The SPTn bit is 0 if it is read immediately after data setting. **2.** n = 0 to 2

impedance.

Address	Register				E	Bit			
		<7>	<6>	5	4	3	2	1	0
FFFFF162H	UA0RIC/ CB4RIC	UA0RIF/ CB4RIF	UA0RMK/ CB4RMK	0	0	0	UA0RPR2/ CB4RPR2	UA0RPR1/ CB4RPR1	UA0RPR0/ CB4RPR0
FFFFF164H	UA0TIC/ CB4TIC	UA0TIF/ CB4TIF	UA0TMK/ CB4TMK	0	0	0	UA0TPR2/ CB4TPR2	UA0TPR1/ CB4TPR1	UA0TPR0/ CB4TPR0
FFFFF166H	UA1RIC/ IICIC2	UA1RIF/ IICIF2	UA1RMK/ IICMK2	0	0	0	UA1RPR2/ IICPR22	UA1RPR1/ IICPR21	UA1RPR0/ IICPR20
FFFFF168H	UA1TIC	UA1TIF	UA1TMK	0	0	0	UA1TPR2	UA1TPR1	UA1TPR0
FFFFF16AH	UA2RIC/ IICIC0	UA2RIF/ IICIF0	UA2RMK/ IICMK0	0	0	0	UA2RPR2/ IICPR02	UA2RPR1/ IICPR01	UA2RPR0/ IICPR00
FFFFF16CH	UA2TIC	UA2TIF	UA2TMK	0	0	0	UA2TPR2	UA2TPR1	UA2TPR0
FFFFF16EH	ADIC	ADIF	ADMK	0	0	0	ADPR2	ADPR1	ADPR0
FFFFF170H	DMAIC0	DMAIF0	DMAMK0	0	0	0	DMAPR02	DMAPR01	DMAPR00
FFFFF172H	DMAIC1	DMAIF1	DMAMK1	0	0	0	DMAPR12	DMAPR11	DMAPR10
FFFFF174H	DMAIC2	DMAIF2	DMAMK2	0	0	0	DMAPR22	DMAPR21	DMAPR20
FFFFF176H	DMAIC3	DMAIF3	DMAMK3	0	0	0	DMAPR32	DMAPR31	DMAPR30
FFFFF178H	KRIC	KRIF	KRMK	0	0	0	KRPR2	KRPR1	KRPR0
FFFFF17AH	WTIIC	WTIIF	WTIMK	0	0	0	WTIPR2	WTIPR1	WTIPR0
FFFFF17CH	WTIC	WTIF	WTMK	0	0	0	WTPR2	WTPR1	WTPR0
FFFFF18EH	PIC8	PIF8	PMK8	0	0	0	PPR82	PPR81	PPR80
FFFFF190H	TP6OVIC	TP6OVIF	TP6OVMK	0	0	0	TP6OVPR2	TP6OVPR1	TP6OVPR0
FFFFF192H	TP6CCIC0	TP6CCIF0	TP6CCMK0	0	0	0	TP6CCPR02	TP6CCPR01	TP6CCPR00
FFFFF194H	TP6CCIC1	TP6CCIF1	TP6CCMK1	0	0	0	TP6CCPR12	TP6CCPR11	TP6CCPR10
FFFFF196H	TP7OVIC	TP70VIF	TP7OVMK	0	0	0	TP7OVPR2	TP70VPR1	TP7OVPR0
FFFFF198H	TP7CCIC0	TP7CCIF0	TP7CCMK0	0	0	0	TP7CCPR02	TP7CCPR01	TP7CCPR00
FFFFF19AH	TP7CCIC1	TP7CCIF1	TP7CCMK1	0	0	0	TP7CCPR12	TP7CCPR11	TP7CCPR10
FFFFF19CH	TP8OVIC	TP8OVIF	TP8OVMK	0	0	0	TP8OVPR2	TP8OVPR1	TP8OVPR0
FFFFF19EH	TP8CCIC0	TP8CCIF0	TP8CCMK0	0	0	0	TP8CCPR02	TP8CCPR01	TP8CCPR00
FFFFF1A0H	TP8CCIC1	TP8CCIF1	TP8CCMK1	0	0	0	TP8CCPR12	TP8CCPR11	TP8CCPR10
FFFFF1A2H	CB5RIC	CB5RIF	CB5RMK	0	0	0	CB5RPR2	CB5RPR1	CB5RPR0
FFFFF1A4H	CB5TIC	CB5TIF	CB5TMK	0	0	0	CB5TPR2	CB5TPR1	CB5TPR0
FFFFF1A6H	UA3RIC	UA3RIF	UA3RMK	0	0	0	UA3RPR2	UA3RPR1	UA3RPR0
FFFFF1A8H	UA3TIC	UA3TIF	UA3TMK	0	0	0	UA3TPR2	UA3TPR1	UA3TPR0

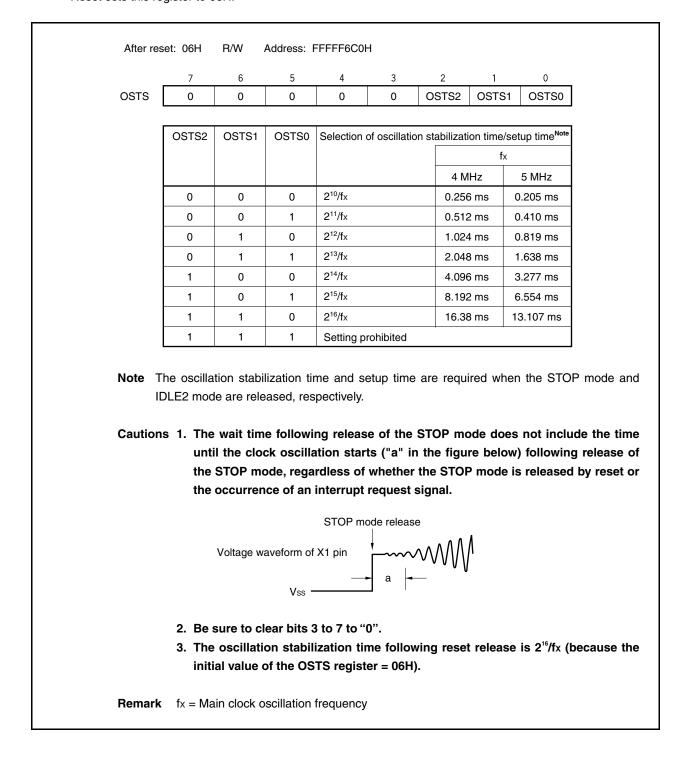
Table 19-2.	Interrupt Cor	ntrol Register	(xxICn) (2/2)
-------------	---------------	----------------	---------------

19.3.5 Interrupt mask registers 0 to 4 (IMR0 to IMR4)

The IMR0 to IMR4 registers set the interrupt mask state for the maskable interrupts. The xxMKn bit of the IMR0 to IMR4 registers is equivalent to the xxICn.xxMKn bit.

The IMRm register can be read or written in 16-bit units (m = 0 to 4).

If the higher 8 bits of the IMRm register are used as an IMRmH register and the lower 8 bits as an IMRmL register, these registers can be read or written in 8-bit or 1-bit units (m = 0 to 4).


Reset sets these registers to FFFFH.

Caution The device file defines the xxICn.xxMKn bit as a reserved word. If a bit is manipulated using the name of xxMKn, the contents of the xxICn register, instead of the IMRm register, are rewritten (as a result, the contents of the IMRm register are also rewritten).

(3) Oscillation stabilization time select register (OSTS)

The wait time until the oscillation stabilizes after the STOP mode is released or the wait time until the on-chip flash memory stabilizes after the IDLE2 mode is released is controlled by the OSTS register. The OSTS register can be read or written 8-bit units.

Reset sets this register to 06H.

23.4 Operation

This section explains the functions of the clock monitor. The start and stop conditions are as follows.

<Start condition>

Enabling operation by setting the CLM.CLME bit to 1

<Stop conditions>

- While oscillation stabilization time is being counted after STOP mode is released
- When the main clock is stopped (from when PCC.MCK bit = 1 during subclock operation to when PCC.CLS bit = 0 during main clock operation)
- When the sampling clock (internal oscillation clock) is stopped
- When the CPU operates using the internal oscillation clock

Table 23-2. Operation Status of Clock Monitor(When CLM.CLME Bit = 1, During Internal Oscillation Clock Operation)

CPU Operating Clock	Operation Mode	Status of Main Clock	Status of Internal Oscillation Clock	Status of Clock Monitor
Main clock	HALT mode	Oscillates	Oscillates ^{Note 1}	Operates ^{Note 2}
	IDLE1, IDLE2 modes	Oscillates	Oscillates ^{Note 1}	Operates ^{Note 2}
	STOP mode	Stops	Oscillates ^{Note 1}	Stops
Subclock (MCK bit of PCC register = 0)	Sub-IDLE mode	Oscillates	Oscillates ^{Note 1}	Operates ^{Note 2}
Subclock (MCK bit of PCC register = 1)	Sub-IDLE mode	Stops	Oscillates ^{Note 1}	Stops
Internal oscillation clock	-	Stops	Oscillates ^{Note 3}	Stops
During reset	_	Stops	Stops	Stops

Notes 1. The internal oscillator can be stopped by setting the RCM.RSTOP bit to 1.

- 2. The clock monitor is stopped while the internal oscillator is stopped.
- **3.** The internal oscillator cannot be stopped by software.

				Block 255 (4 KB)	000FFFF 000FF00
				:	000FEFF 000C100
				Block 192 (4 KB)	000C0FF 000C000
			Block 191 (4 KB)	Block 191 (4 KB)	000BFFI 000BF0
			:	:	000BEF
			Block 160 (4 KB)	Block 160 (4 KB)	000A0F
			Block 159 (4 KB)	Block 159 (4 KB)	0009FF
			:	:	0009EFI
			Block 128 (4 KB)	Block 128 (4 KB)	00080FI
		Block 127 (4 KB)	Block 127 (4 KB)	Block 127 (4 KB)	0007FF
		:	:	:	0007EF
		Block 96 (4 KB)	Block 96 (4 KB)	Block 96 (4 KB)	00060F
	Block 95 (4 KB)	0005FF			
	:	:	:		0005EFI
	Block 64 (4 KB)	00040FI			
	Block 63 (4 KB)	0003FF			
	:		:		0003EF
c	Block 32 (4 KB)	00020F			
	Block 31 (4 KB)	0001FFI			
ote 1 {	:		:	:	0001EF
	Block 17 (4 KB)	00011FI			
ļ	Block 16 (4 KB)	00010FI			
	Block 15 (4 KB)	0000FFI			
Note 2	:				0000EFF
	Block 1 (4 KB)	00001FF			
	Block 0 (4 KB)	00000FF			
	μPD70F3743 (384 KB)	μPD70F3744 (512 KB)	μPD70F3745 (768 KB)	μPD70F3746 (1024 KB)	

Figure 27-1. Flash Memory Mapping

2. Boot area

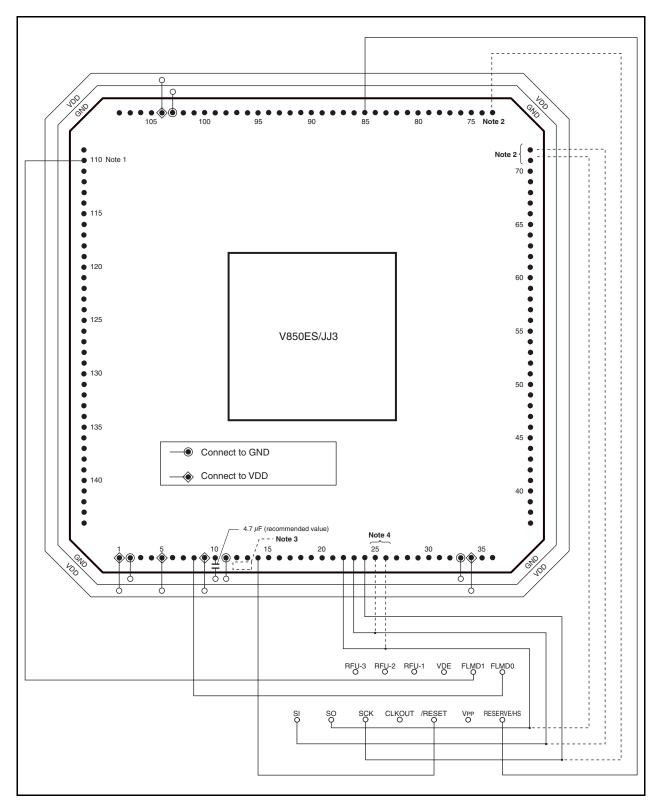


Figure 27-6. Example of Wiring of V850ES/JJ3 Flash Writing Adapter (FA-144GJ-UEN-A) (in CSIB0 + HS Mode) (1/2)

RENESAS

Chapter

Chapter 4

Chapter 5 Soft

ы	Function	Details of	Cautions	Page	(6/3 e
 Classification		Function			-
Soft	Port functions	PFn.PFnm bit in port mode	In port mode, the PFn.PFnm bit is valid only in the output mode (PMn.PMnm bit = 0). In the input mode (PMnm bit = 1), the value of the PFnm bit is not reflected in the buffer.	p. 163	
		Cautions on bit manipulation instruction for port n register (Pn)	When a 1-bit manipulation instruction is executed on a port that provides both input and output functions, the value of the output latch of an input port that is not subject to manipulation may be written in addition to the targeted bit. Therefore, it is recommended to rewrite the output latch when switching a port from input mode to output mode.	p. 164	
Hard, soft		Cautions on on- chip debug pins	The following action must be taken if on-chip debugging is not used. • Clear the OCDM0 bit of the OCDM register (special register) (0) At this time, fix the P05/INTP2/DRST pin to low level from when reset by the RESET pin is released until the above action is taken. If a high level is input to the DRST pin before the above action is taken, it may cause a malfunction (CPU deadlock). Handle the P05 pin with the utmost care.	p. 165	
Hard			After reset by the WDT2RES signal, clock monitor (CLM), or low-voltage detector (LVI), the P05/INTP2/DRST pin is not initialized to function as an on-chip debug pin (DRST). The OCDM register holds the current value.	p. 165	
		Cautions on P05/INTP2/ DRST pin	The P05/INTP2/ \overline{DRST} pin has an internal pull-down resistor (30 k Ω TYP.). After a reset by the \overline{RESET} pin, a pulldown resistor is connected. The pull-down resistor is disconnected when the OCDM0 bit is cleared (0).	p. 165	
		Cautions on P53 pin when power is turned on	 When the power is turned on, the following pin may output an undefined level temporarily, even during reset. P53/SIB2/KR3/TIQ00/TOQ00/RTP03/DDO pin 	p. 165	
		Hysteresis characteristics	In port mode, the following port pins do not have hysteresis characteristics. P00 to P06 P31 to P35, P38, P39 P40 to P42 P50 to P55 P66, P68 to P610, P612, P613 P80 P90 to P97, P99, P910, P912 to P915	p. 165	
Soft	Bus control functions	Pin status when internal ROM	When a write access is performed to the internal ROM area, address, data, and control signals are activated in the same way as access to the external memory area.	p. 167	
		EXIMC register	Set the EXIMC register from the internal ROM or internal RAM area before making an external access. After setting the EXIMC register, be sure to insert a NOP instruction.	p. 169	
		BSC register	Write to the BSC register after reset, and then do not change the set values. Also, do not access an external memory area until the initial settings of the BSC register are complete.	p. 170	
			Be sure to set bits 14, 12, 10, and 8 to "1", and clear bits 15, 13, 11, 9, 7, 5, 3, and 1 to "0".	p. 170	
		DWC0 register	The internal ROM and internal RAM areas are not subject to programmable wait, and are always accessed without a wait state. The on-chip peripheral I/O area is also not subject to programmable wait, and only wait control from each peripheral function is performed.	p. 178	

function is performed.

(36/37)
()

		r	1		(36/37
Chapter	Classification	Function	Details of Function	Cautions	Pag	Э
Chapter 29	Hard	Electrical specifica- tions	Absolute maximum ratings	Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.	p. 784	
			Main clock oscillator characteristics	The oscillation frequency shown above indicates only oscillator characteristics. Use the V850ES/JJ3 so that the internal operation conditions do not exceed the ratings shown in AC Characteristics and DC Characteristics.	p. 786	
				Time required to set up the flash memory. Secure the setup time using the OSTS register.	p. 786	
				 When using the main clock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance. Keep the wiring length as short as possible. Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows. Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current 	p. 786	
				Do not globing the capacitor to a globing pattern through which a high current flows.Do not fetch signals from the oscillator.		
	Soft			When the main clock is stopped and the device is operating on the subclock, wait until the oscillation stabilization time has been secured by the program before switching back to the main clock.	p. 786	
	Hard	-		For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.	p. 786	
			Subclock oscillator characteristics	The oscillation frequency shown above indicates only oscillator characteristics. Use the V850ES/JJ3 so that the internal operation conditions do not exceed the ratings shown in AC Characteristics and DC Characteristics.	p. 788	
				 When using the subclock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance. Keep the wiring length as short as possible. Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows. Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows. Do not fetch signals from the oscillator. 	p. 788	