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ATmega169P
10.3 Internal Voltage Reference

ATmega169P features an internal bandgap reference. This reference is used for Brown-out
Detection, and it can be used as an input to the Analog Comparator or the ADC.

10.3.1 Voltage Reference Enable Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in ”System and Reset Characteristics” on page 333. To save power, the
reference is not always turned on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2..0] Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting the 
ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or
ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering Power-down mode.

10.4 Watchdog Timer

The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1 MHz. This is
the typical value at VCC = 5V. See characterization data for typical values at other VCC levels. By
controlling the Watchdog Timer prescaler, the Watchdog Reset interval can be adjusted as
shown in Table 10-2 on page 55. The WDR – Watchdog Reset – instruction resets the Watch-
dog Timer. The Watchdog Timer is also reset when it is disabled and when a Chip Reset occurs.
Eight different clock cycle periods can be selected to determine the reset period. If the reset
period expires without another Watchdog Reset, the ATmega169P resets and executes from the
Reset Vector. For timing details on the Watchdog Reset, refer to Table 10-2 on page 55.

To prevent unintentional disabling of the Watchdog or unintentional change of time-out period,
two different safety levels are selected by the fuse WDTON as shown in Table 10-1 Refer to
”Timed Sequences for Changing the Configuration of the Watchdog Timer” on page 52 for
details.

Table 10-1. WDT Configuration as a Function of the Fuse Settings of WDTON

WDTON
Safety 
Level

WDT Initial 
State

How to Disable the 
WDT

How to Change Time-
out

Unprogrammed 1 Disabled Timed sequence Timed sequence

Programmed 2 Enabled Always enabled Timed sequence
51
8018P–AVR–08/10
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14.5.3 Using the Output Compare Unit

Since writing TCNT0 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT0 when using the Output Compare unit,
independently of whether the Timer/Counter is running or not. If the value written to TCNT0
equals the OCR0A value, the compare match will be missed, resulting in incorrect waveform
generation. Similarly, do not write the TCNT0 value equal to BOTTOM when the counter is down
counting.

The setup of the OC0A should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC0A value is to use the Force Output Com-
pare (FOC0A) strobe bits in Normal mode. The OC0A Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM0A1:0 bits are not double buffered together with the compare value.
Changing the COM0A1:0 bits will take effect immediately.

14.6 Compare Match Output Unit

The Compare Output mode (COM0A1:0) bits have two functions. The Waveform Generator
uses the COM0A1:0 bits for defining the Output Compare (OC0A) state at the next compare
match. Also, the COM0A1:0 bits control the OC0A pin output source. Figure 14-4 shows a sim-
plified schematic of the logic affected by the COM0A1:0 bit setting. The I/O Registers, I/O bits,
and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control regis-
ters (DDR and PORT) that are affected by the COM0A1:0 bits are shown. When referring to the
OC0A state, the reference is for the internal OC0A Register, not the OC0A pin. If a System
Reset occur, the OC0A Register is reset to “0”.

Figure 14-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC0A) from the Waveform
Generator if either of the COM0A1:0 bits are set. However, the OC0A pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC0A pin (DDR_OC0A) must be set as output before the OC0A value is vis-
ible on the pin. The port override function is independent of the Waveform Generation mode.
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Figure 19-6. Sampling of Data and Parity Bit

The decision of the logic level of the received bit is taken by doing a majority voting of the logic
value to the three samples in the center of the received bit. The center samples are emphasized
on the figure by having the sample number inside boxes. The majority voting process is done as
follows: If two or all three samples have high levels, the received bit is registered to be a logic 1.
If two or all three samples have low levels, the received bit is registered to be a logic 0. This
majority voting process acts as a low pass filter for the incoming signal on the RxD pin. The
recovery process is then repeated until a complete frame is received. Including the first stop bit.
Note that the Receiver only uses the first stop bit of a frame.

Figure 19-7 shows the sampling of the stop bit and the earliest possible beginning of the start bit
of the next frame.

Figure 19-7. Stop Bit Sampling and Next Start Bit Sampling

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop
bit is registered to have a logic 0 value, the Frame Error (FEn) Flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after the last of
the bits used for majority voting. For Normal Speed mode, the first low level sample can be at
point marked (A) in Figure 19-7. For Double Speed mode the first low level must be delayed to
(B). (C) marks a stop bit of full length. The early start bit detection influences the operational
range of the Receiver.

19.8.3 Asynchronous Operational Range

The operational range of the Receiver is dependent on the mismatch between the received bit
rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too
slow bit rates, or the internally generated baud rate of the Receiver does not have a similar (see
Table 19-2 on page 187) base frequency, the Receiver will not be able to synchronize the
frames to the start bit.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

BIT n

1 2 3 4 5 6 7 8 1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

1 2 3 4 5 6 7 8 9 10 0/1 0/1 0/1

STOP 1

1 2 3 4 5 6 0/1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

(A) (B) (C)
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19.11 USART Register Description

19.11.1 UDRn – USART I/O Data Register

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the
same I/O address referred to as USART Data Register or UDRn. The Transmit Data Buffer Reg-
ister (TXB) will be the destination for data written to the UDRn Register location. Reading the
UDRn Register location will return the contents of the Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to
zero by the Receiver.

The transmit buffer can only be written when the UDREn Flag in the UCSRnA Register is set.
Data written to UDRn when the UDREn Flag is not set, will be ignored by the USART Transmit-
ter. When data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter
will load the data into the Transmit Shift Register when the Shift Register is empty. Then the
data will be serially transmitted on the TxD pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-Modify-
Write instructions (SBI and CBI) on this location. Be careful when using bit test instructions
(SBIC and SBIS), since these also will change the state of the FIFO.

19.11.2 UCSRnA – USART Control and Status Register A

• Bit 7 – RXCn: USART Receive Complete n
This flag bit is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (that is, does not contain any unread data). If the Receiver is disabled, the
receive buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag
can be used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

• Bit 6 – TXCn: USART Transmit Complete n
This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer (UDRn). The TXC Flag bit is auto-
matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing
a one to its bit location. The TXC Flag can generate a Transmit Complete interrupt (see descrip-
tion of the TXCIE bit).

• Bit 5 – UDREn: USART Data Register Empty n

The UDREn Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn
is one, the buffer is empty, and therefore ready to be written. The UDREn Flag can generate a
Data Register Empty interrupt (see description of the UDRIEn bit).

Bit 7 6 5 4 3 2 1 0

(0xC6)
RXB[7:0] UDRn (Read)

TXB[7:0] UDRn (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xC0) RXCn TXCn UDREn FEn DORn UPEn U2Xn MPCMn UCSRnA

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0
194
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Receiver will generate a parity value for the incoming data and compare it to the UPM0n setting.
If a mismatch is detected, the UPEn Flag in UCSRnA will be set.

• Bit 3 – USBSn: Stop Bit Select
This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores
this setting.

• Bit 2:1 – UCSZn[1:0]: Character Size

The UCSZn[1:0] bits combined with the UCSZn2 bit in UCSRnB sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use.

• Bit 0 – UCPOLn: Clock Polarity
This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is
used. The UCPOLn bit sets the relationship between data output change and data input sample,
and the synchronous clock (XCK).

Table 19-9. UPM Bits Settings

UPMn1 UPMn0 Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity

Table 19-10. USBSn Bit Settings

USBSn Stop Bit(s)

0 1-bit

1 2-bit

Table 19-11. UCSZ Bits Settings

UCSZn2 UCSZn1 UCSZn0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

Table 19-12. UCPOLn Bit Settings

UCPOLn
Transmitted Data Changed
(Output of TxD Pin)

Received Data Sampled (Input on RxD 
Pin)

0 Rising XCK Edge Falling XCK Edge

1 Falling XCK Edge Rising XCK Edge
197
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rjmp SPITransfer_loop

lds r16,USIDR

ret

The code is size optimized using only eight instructions (+ ret). The code example assumes that
the DO and USCK pins are enabled as output in the DDRE Register. The value stored in register
r16 prior to the function is called is transferred to the Slave device, and when the transfer is com-
pleted the data received from the Slave is stored back into the r16 Register.

The second and third instructions clears the USI Counter Overflow Flag and the USI counter
value. The fourth and fifth instruction set Three-wire mode, positive edge Shift Register clock,
count at USITC strobe, and toggle USCK. The loop is repeated 16 times.

The following code demonstrates how to use the USI module as a SPI Master with maximum
speed (fsck = fck/4):

SPITransfer_Fast:

sts USIDR,r16

ldi r16,(1<<USIWM0)|(0<<USICS0)|(1<<USITC)

ldi r17,(1<<USIWM0)|(0<<USICS0)|(1<<USITC)|(1<<USICLK)

sts USICR,r16 ; MSB

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16 ; LSB

sts USICR,r17

lds r16,USIDR

ret
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Table 20-2 shows the relationship between the USICS1:0 and USICLK setting and clock source
used for the Shift Register and the 4-bit counter.

• Bit 1 – USICLK: Clock Strobe
Writing a one to this bit location strobes the Shift Register to shift one step and the counter to
increment by one, provided that the USICS1..0 bits are set to zero and by doing so the software
clock strobe option is selected. The output will change immediately when the clock strobe is exe-
cuted, that is, in the same instruction cycle. The value shifted into the Shift Register is sampled
the previous instruction cycle. The bit will be read as zero.

When an external clock source is selected (USICS1 = 1), the USICLK function is changed from
a clock strobe to a Clock Select Register. Setting the USICLK bit in this case will select the
USITC strobe bit as clock source for the 4-bit counter (see Table 20-2).

• Bit 0 – USITC: Toggle Clock Port Pin
Writing a one to this bit location toggles the USCK/SCL value either from 0 to 1, or from 1 to 0.
The toggling is independent of the setting in the Data Direction Register, but if the PORT value is
to be shown on the pin the DDRE4 must be set as output (to one). This feature allows easy clock
generation when implementing master devices. The bit will be read as zero.

When an external clock source is selected (USICS1 = 1) and the USICLK bit is set to one, writ-
ing to the USITC strobe bit will directly clock the 4-bit counter. This allows an early detection of
when the transfer is done when operating as a master device.

Table 20-2. Relations between the USICS1:0 and USICLK Setting

USICS1 USICS0 USICLK Shift Register Clock Source 4-bit Counter Clock Source

0 0 0 No Clock No Clock

0 0 1
Software clock strobe 
(USICLK)

Software clock strobe 
(USICLK)

0 1 X
Timer/Counter0 Compare 
Match

Timer/Counter0 Compare 
Match

1 0 0 External, positive edge External, both edges

1 1 0 External, negative edge External, both edges

1 0 1 External, positive edge Software clock strobe (USITC)

1 1 1 External, negative edge Software clock strobe (USITC)
211
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• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched 
onto the parallel output from the Shift Register path in the Update-IR state. The Exit-IR, Pause-
IR, and Exit2-IR states are only used for navigating the state machine.

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift Data 
Register – Shift-DR state. While in this state, upload the selected Data Register (selected by 
the present JTAG instruction in the JTAG Instruction Register) from the TDI input at the rising 
edge of TCK. In order to remain in the Shift-DR state, the TMS input must be held low during 
input of all bits except the MSB. The MSB of the data is shifted in when this state is left by 
setting TMS high. While the Data Register is shifted in from the TDI pin, the parallel inputs to 
the Data Register captured in the Capture-DR state is shifted out on the TDO pin.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data 
Register has a latched parallel-output, the latching takes place in the Update-DR state. The 
Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting
JTAG instruction and using Data Registers, and some JTAG instructions may select certain
functions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.

Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be 
entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in ”Bibliography”
on page 258.

24.4 Using the Boundary-scan Chain

A complete description of the Boundary-scan capabilities are given in the section ”IEEE 1149.1
(JTAG) Boundary-scan” on page 259.

24.5 Using the On-chip Debug System

As shown in Figure 24-1 on page 254, the hardware support for On-chip Debugging consists
mainly of:

• A scan chain on the interface between the internal AVR CPU and the internal peripheral units.

• Break Point unit.

• Communication interface between the CPU and JTAG system.

All read or modify/write operations needed for implementing the Debugger are done by applying
AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an I/O
memory mapped location which is part of the communication interface between the CPU and the
JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, two
Program Memory Break Points, and two combined Break Points. Together, the four Break
Points can be configured as either:

• 4 single Program Memory Break Points.

• 3 Single Program Memory Break Point + 1 single Data Memory Break Point.

• 2 single Program Memory Break Points + 2 single Data Memory Break Points.

• 2 single Program Memory Break Points + 1 Program Memory Break Point with mask (“range 
Break Point”).

• 2 single Program Memory Break Points + 1 Data Memory Break Point with mask (“range Break 
Point”).
256
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A debugger, like the AVR Studio, may however use one or more of these resources for its inter-
nal purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in ”On-chip Debug Specific JTAG
Instructions” on page 257.

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addition, the
OCDEN Fuse must be programmed and no Lock bits must be set for the On-chip debug system
to work. As a security feature, the On-chip debug system is disabled when either of the LB1 or
LB2 Lock bits are set. Otherwise, the On-chip debug system would have provided a back-door
into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR device with
On-chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR Instruction Set Simulator.
AVR Studio supports source level execution of Assembly programs assembled with Atmel Cor-
poration’s AVR Assembler and C programs compiled with third party vendors’ compilers.

AVR Studio runs under Microsoft® Windows® 95/98/2000, Windows NT® and Windows XP®.

For a full description of the AVR Studio, please refer to the AVR Studio User Guide. Only high-
lights are presented in this document.

All necessary execution commands are available in AVR Studio, both on source level and on
disassembly level. The user can execute the program, single step through the code either by
tracing into or stepping over functions, step out of functions, place the cursor on a statement and
execute until the statement is reached, stop the execution, and reset the execution target. In
addition, the user can have an unlimited number of code Break Points (using the BREAK
instruction) and up to two data memory Break Points, alternatively combined as a mask (range)
Break Point.

24.6 On-chip Debug Specific JTAG Instructions

The On-chip debug support is considered being private JTAG instructions, and distributed within
ATMEL and to selected third party vendors only. Instruction opcodes are listed for reference.

24.6.1 PRIVATE0; 0x8

Private JTAG instruction for accessing On-chip debug system.

24.6.2 PRIVATE1; 0x9

Private JTAG instruction for accessing On-chip debug system.

24.6.3 PRIVATE2; 0xA

Private JTAG instruction for accessing On-chip debug system.

24.6.4 PRIVATE3; 0xB

Private JTAG instruction for accessing On-chip debug system.
257
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Figure 25-2. Reset Register

25.3.4 Boundary-scan Chain

The Boundary-scan Chain has the capability of driving and observing the logic levels on the dig-
ital I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connections.

See ”Boundary-scan Chain” on page 262 for a complete description.

25.4 Boundary-scan Specific JTAG Instructions

The Instruction Register is 4-bit wide, supporting up to 16 instructions. Listed below are the
JTAG instructions useful for Boundary-scan operation. Note that the optional HIGHZ instruction
is not implemented, but all outputs with tri-state capability can be set in high-impedant state by
using the AVR_RESET instruction, since the initial state for all port pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text
describes which Data Register is selected as path between TDI and TDO for each instruction.

25.4.1 EXTEST; 0x0

Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for testing
circuitry external to the AVR package. For port-pins, Pull-up Disable, Output Control, Output
Data, and Input Data are all accessible in the scan chain. For Analog circuits having off-chip
connections, the interface between the analog and the digital logic is in the scan chain. The con-
tents of the latched outputs of the Boundary-scan chain is driven out as soon as the JTAG IR-
Register is loaded with the EXTEST instruction.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

• Shift-DR: The Internal Scan Chain is shifted by the TCK input.

• Update-DR: Data from the scan chain is applied to output pins.

25.4.2 IDCODE; 0x1

Optional JTAG instruction selecting the 32-bit ID-Register as Data Register. The ID-Register
consists of a version number, a device number and the manufacturer code chosen by JEDEC.
This is the default instruction after power-up.

D Q
From
TDI

ClockDR · AVR_RESET

To 
TDO

From Other Internal and
External Reset Sources

Internal reset
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26.5 Boot Loader Lock Bits

If no Boot Loader capability is needed, the entire Flash is available for application code. The
Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives
the user a unique flexibility to select different levels of protection.

The user can select:

• To protect the entire Flash from a software update by the MCU.

• To protect only the Boot Loader Flash section from a software update by the MCU.

• To protect only the Application Flash section from a software update by the MCU.

• Allow software update in the entire Flash.

See Table 26-2 and Table 26-3 for further details. The Boot Lock bits and general Lock bits can
be set in software and in Serial or Parallel Programming mode, but they can be cleared by a
Chip Erase command only. The general Write Lock (Lock Bit mode 2) does not control the pro-
gramming of the Flash memory by SPM instruction. Similarly, the general Read/Write Lock
(Lock Bit mode 1) does not control reading nor writing by LPM/SPM, if it is attempted.

Note: 1. “1” means unprogrammed, “0” means programmed

Note: 1. “1” means unprogrammed, “0” means programmed

Table 26-2. Boot Lock Bit0 Protection Modes (Application Section)(1)

BLB0 Mode BLB02 BLB01 Protection

1 1 1
No restrictions for SPM or LPM accessing the Application 
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and LPM 
executing from the Boot Loader section is not allowed to read 
from the Application section. If Interrupt Vectors are placed in 
the Boot Loader section, interrupts are disabled while executing 
from the Application section.

4 0 1

LPM executing from the Boot Loader section is not allowed to 
read from the Application section. If Interrupt Vectors are placed 
in the Boot Loader section, interrupts are disabled while 
executing from the Application section.

Table 26-3. Boot Lock Bit1 Protection Modes (Boot Loader Section)(1)

BLB1 Mode BLB12 BLB11 Protection

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader 
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and LPM 
executing from the Application section is not allowed to read 
from the Boot Loader section. If Interrupt Vectors are placed in 
the Application section, interrupts are disabled while executing 
from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed to 
read from the Boot Loader section. If Interrupt Vectors are 
placed in the Application section, interrupts are disabled while 
executing from the Boot Loader section.
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26.8.8 EEPROM Write Prevents Writing to SPMCSR

Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEWE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.

26.8.9 Reading the Fuse and Lock Bits from Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR. When an LPM instruc-
tion is executed within three CPU cycles after the BLBSET and SPMEN bits are set in SPMCSR,
the value of the Lock bits will be loaded in the destination register. The BLBSET and SPMEN
bits will auto-clear upon completion of reading the Lock bits or if no LPM instruction is executed
within three CPU cycles or no SPM instruction is executed within four CPU cycles. When BLB-
SET and SPMEN are cleared, LPM will work as described in the Instruction set Manual.

The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET
and SPMEN bits in SPMCSR. When an LPM instruction is executed within three cycles after the
BLBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB) will be
loaded in the destination register as shown below. Refer to Table 27-5 on page 298 for a
detailed description and mapping of the Fuse Low byte.

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM instruc-
tion is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR,
the value of the Fuse High byte (FHB) will be loaded in the destination register as shown below.
Refer to Table 27-4 on page 298 for detailed description and mapping of the Fuse High byte.

When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an LPM instruction
is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the
value of the Extended Fuse byte (EFB) will be loaded in the destination register as shown below.
Refer to Table 27-3 on page 297 for detailed description and mapping of the Extended Fuse
byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd – – – – EFB3 EFB2 EFB1 EFB0
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27.7.7 Reading the EEPROM

The algorithm for reading the EEPROM memory is as follows (refer to ”Programming the Flash”
on page 302 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.

5. Set OE to “1”.

27.7.8 Programming the Fuse Low Bits

The algorithm for programming the Fuse Low bits is as follows (refer to ”Programming the Flash”
on page 302 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

27.7.9 Programming the Fuse High Bits

The algorithm for programming the Fuse High bits is as follows (refer to ”Programming the
Flash” on page 302 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high fuse byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

27.7.10 Programming the Extended Fuse Bits

The algorithm for programming the Extended Fuse bits is as follows (refer to ”Programming the
Flash” on page 302 for details on Command and Data loading):

1. 1. A: Load Command “0100 0000”.

2. 2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. 3. Set BS1 to “0” and BS2 to “1”. This selects extended fuse byte.

4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. 5. Set BS2 to “0”. This selects low data byte.
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27.9.4 PROG_COMMANDS (0x5)

The AVR specific public JTAG instruction for entering programming commands via the JTAG
port. The 15-bit Programming Command Register is selected as Data Register. The active
states are the following:

• Capture-DR: The result of the previous command is loaded into the Data Register.

• Shift-DR: The Data Register is shifted by the TCK input, shifting out the result of the previous 
command and shifting in the new command.

• Update-DR: The programming command is applied to the Flash inputs.

• Run-Test/Idle: One clock cycle is generated, executing the applied command (not always 
required, see Table 27-17 on page 321).

27.9.5 PROG_PAGELOAD (0x6)

The AVR specific public JTAG instruction to directly load the Flash data page via the JTAG port.
An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the 8 LSBs
of the Programming Command Register. The active states are the following:

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

• Update-DR: The content of the Flash Data Byte Register is copied into a temporary register. A 
write sequence is initiated that within 11 TCK cycles loads the content of the temporary 
register into the Flash page buffer. The AVR automatically alternates between writing the low 
and the high byte for each new Update-DR state, starting with the low byte for the first Update-
DR encountered after entering the PROG_PAGELOAD command. The Program Counter is 
pre-incremented before writing the low byte, except for the first written byte. This ensures that 
the first data is written to the address set up by PROG_COMMANDS, and loading the last 
location in the page buffer does not make the program counter increment into the next page.

27.9.6 PROG_PAGEREAD (0x7)

The AVR specific public JTAG instruction to directly capture the Flash content via the JTAG port.
An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the 8 LSBs
of the Programming Command Register. The active states are the following:

• Capture-DR: The content of the selected Flash byte is captured into the Flash Data Byte 
Register. The AVR automatically alternates between reading the low and the high byte for each 
new Capture-DR state, starting with the low byte for the first Capture-DR encountered after 
entering the PROG_PAGEREAD command. The Program Counter is post-incremented after 
reading each high byte, including the first read byte. This ensures that the first data is captured 
from the first address set up by PROG_COMMANDS, and reading the last location in the page 
makes the program counter increment into the next page.

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.
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Figure 29-20. Standby Supply Current vs. VCC (4 MHz Xtal, Watchdog Timer Disabled)

Figure 29-21. Standby Supply Current vs. VCC (6 MHz Resonator, Watchdog Timer Disabled)
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Figure 29-26. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)

Figure 29-27. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)
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Figure 29-50. Bandgap Voltage vs. VCC 

Figure 29-51. Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC = 5V)
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Figure 29-62. Analog Comparator Current vs. VCC 

Figure 29-63. Programming Current vs. VCC 
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29.13 Current Consumption in Reset and Reset Pulsewidth

Figure 29-64. Reset Supply Current vs. VCC (0.1 MHz - 1.0 MHz, Excluding Current Through 
The Reset Pull-up)

Figure 29-65. Reset Supply Current vs. VCC (1 MHz - 20 MHz, Excluding Current Through The 
Reset Pull-up)
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