
Microchip Technology - ATMEGA169P-16MCHR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity SPI, UART/USART, USI

Peripherals Brown-out Detect/Reset, LCD, POR, PWM, WDT

Number of I/O 54

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-VQFN Dual Rows, Exposed Pad

Supplier Device Package 64-QFN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega169p-16mchr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega169p-16mchr-4408743
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ATmega169P
The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

The ATmega169P provides the following features: 16 Kbytes of In-System Programmable Flash
with Read-While-Write capabilities, 512 bytes EEPROM, 1 Kbyte SRAM, 53 general purpose I/O
lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip
Debugging support and programming, a complete On-chip LCD controller with internal step-up
voltage, three flexible Timer/Counters with compare modes, internal and external interrupts, a
serial programmable USART, Universal Serial Interface with Start Condition Detector, an 8-
channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, an SPI serial
port, and five software selectable power saving modes. The Idle mode stops the CPU while
allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The
Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip
functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous
timer and the LCD controller continues to run, allowing the user to maintain a timer base and
operate the LCD display while the rest of the device is sleeping. The ADC Noise Reduction
mode stops the CPU and all I/O modules except asynchronous timer, LCD controller and ADC,
to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator
Oscillator is running while the rest of the device is sleeping. This allows very fast start-up com-
bined with low-power consumption.

The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot pro-
gram running on the AVR core. The Boot program can use any interface to download the
application program in the Application Flash memory. Software in the Boot Flash section will
continue to run while the Application Flash section is updated, providing true Read-While-Write
operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a
monolithic chip, the Atmel ATmega169P is a powerful microcontroller that provides a highly flex-
ible and cost effective solution to many embedded control applications.

The ATmega169P AVR is supported with a full suite of program and system development tools
including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators,
and Evaluation kits.
5
8018P–AVR–08/10

ATmega169P
2.2.7 Port E (PE7:PE0)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port E also serves the functions of various special features of the ATmega169P as listed on
”Alternate Functions of Port E” on page 81.

2.2.8 Port F (PF7:PF0)

Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have sym-
metrical drive characteristics with both high sink and source capability. As inputs, Port F pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port F
pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will
be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface, see ”Alternate Functions of Port F” on
page 83.

2.2.9 Port G (PG5:PG0)

Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port G output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port G pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port G also serves the functions of various special features of the ATmega169P as listed on
page 85.

2.2.10 RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 28-4 on page
333. Shorter pulses are not guaranteed to generate a reset.

2.2.11 XTAL1

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

2.2.12 XTAL2

Output from the inverting Oscillator amplifier.

2.2.13 AVCC

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally con-
nected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC

through a low-pass filter.
7
8018P–AVR–08/10

ATmega169P
7.3 EEPROM Data Memory

The ATmega169P contains 512 bytes of data EEPROM memory. It is organized as a separate
data space, in which single bytes can be read and written. The EEPROM has an endurance of at
least 100,000 write/erase cycles. This section describes the access between the EEPROM and
the CPU, specifying the EEPROM Address Registers, the EEPROM Data Register, and the
EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM, see
”Serial Downloading” on page 310, ”Programming via the JTAG Interface” on page 316, and
”Parallel Programming Parameters, Pin Mapping, and Commands” on page 299 respectively.

7.3.1 EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 7-1 on page 24. A self-timing function,
however, lets the user software detect when the next byte can be written. If the user code con-
tains instructions that write the EEPROM, some precautions must be taken. In heavily filtered
power supplies, VCC is likely to rise or fall slowly on power-up/down. This causes the device for
some period of time to run at a voltage lower than specified as minimum for the clock frequency
used. See ”Preventing EEPROM Corruption” on page 27 for details on how to avoid problems in
these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

The following procedure should be followed when writing the EEPROM (the order of steps 3 and
4 is not essential). See ”EEPROM Register Description” on page 28 for supplementary descrip-
tion for each register bit:

1. Wait until EEWE becomes zero.

2. Wait until SPMEN in SPMCSR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.

6. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See ”Boot Loader
Support – Read-While-Write Self-Programming” on page 280 for details about Boot
programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the
interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared
during all the steps to avoid these problems.
23
8018P–AVR–08/10

ATmega169P
13.2.6 Unconnected Pins

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even
though most of the digital inputs are disabled in the deep sleep modes as described above, float-
ing inputs should be avoided to reduce current consumption in all other modes where the digital
inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up.
In this case, the pull-up will be disabled during reset. If low power consumption during reset is
important, it is recommended to use an external pull-up or pull-down. Connecting unused pins
directly to VCC or GND is not recommended, since this may cause excessive currents if the pin is
accidentally configured as an output.
70
8018P–AVR–08/10

ATmega169P
• OC1B/PCINT14, Bit 6
OC1B, Output Compare Match B output: The PB6 pin can serve as an external output for the
Timer/Counter1 Output Compare B. The pin has to be configured as an output (DDB6 set (one))
to serve this function. The OC1B pin is also the output pin for the PWM mode timer function.

PCINT14, Pin Change Interrupt Source 14: The PB6 pin can serve as an external interrupt
source.

• OC1A/PCINT13, Bit 5
OC1A, Output Compare Match A output: The PB5 pin can serve as an external output for the
Timer/Counter1 Output Compare A. The pin has to be configured as an output (DDB5 set (one))
to serve this function. The OC1A pin is also the output pin for the PWM mode timer function.

PCINT13, Pin Change Interrupt Source 13: The PB5 pin can serve as an external interrupt
source.

• OC0A/PCINT12, Bit 4
OC0A, Output Compare Match A output: The PB4 pin can serve as an external output for the
Timer/Counter0 Output Compare A. The pin has to be configured as an output (DDB4 set (one))
to serve this function. The OC0A pin is also the output pin for the PWM mode timer function.

PCINT12, Pin Change Interrupt Source 12: The PB4 pin can serve as an external interrupt
source.

• MISO/PCINT11 – Port B, Bit 3
MISO: Master Data input, Slave Data output pin for SPI. When the SPI is enabled as a Master,
this pin is configured as an input regardless of the setting of DDB3. When the SPI is enabled as
a Slave, the data direction of this pin is controlled by DDB3. When the pin is forced to be an
input, the pull-up can still be controlled by the PORTB3 bit.

PCINT11, Pin Change Interrupt Source 11: The PB3 pin can serve as an external interrupt
source.

• MOSI/PCINT10 – Port B, Bit 2
MOSI: SPI Master Data output, Slave Data input for SPI. When the SPI is enabled as a Slave,
this pin is configured as an input regardless of the setting of DDB2. When the SPI is enabled as
a Master, the data direction of this pin is controlled by DDB2. When the pin is forced to be an
input, the pull-up can still be controlled by the PORTB2 bit.

PCINT10, Pin Change Interrupt Source 10: The PB2 pin can serve as an external interrupt
source.

• SCK/PCINT9 – Port B, Bit 1
SCK: Master Clock output, Slave Clock input pin for SPI. When the SPI is enabled as a Slave,
this pin is configured as an input regardless of the setting of DDB1. When the SPI is enabled as
a Master, the data direction of this pin is controlled by DDB1. When the pin is forced to be an
input, the pull-up can still be controlled by the PORTB1 bit.

PCINT9, Pin Change Interrupt Source 9: The PB1 pin can serve as an external interrupt source.

• SS/PCINT8 – Port B, Bit 0
SS: Slave Port Select input. When the SPI is enabled as a Slave, this pin is configured as an
input regardless of the setting of DDB0. As a Slave, the SPI is activated when this pin is driven
75
8018P–AVR–08/10

ATmega169P
15.8.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COM1x1:0 = 0 tells the Waveform Generator that no action on the
OC1x Register is to be performed on the next compare match. For compare output actions in the
non-PWM modes refer to Table 15-1 on page 128. For fast PWM mode refer to Table 15-2 on
page 128, and for phase correct and phase and frequency correct PWM refer to Table 15-3 on
page 129.

A change of the COM1x1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC1x strobe bits.

15.9 Modes of Operation

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins,
is defined by the combination of the Waveform Generation mode (WGM13:0) and Compare Out-
put mode (COM1x1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM1x1:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COM1x1:0 bits control whether the output should be set, cleared or toggle at a compare
match. (See ”Compare Match Output Unit” on page 117.)

For detailed timing information refer to ”Timer/Counter Timing Diagrams” on page 126.

15.9.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM13:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOV1) will be set in
the same timer clock cycle as the TCNT1 becomes zero. The TOV1 Flag in this case behaves
like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOV1 Flag, the timer resolution can be increased by soft-
ware. There are no special cases to consider in the Normal mode, a new counter value can be
written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum
interval between the external events must not exceed the resolution of the counter. If the interval
between events are too long, the timer overflow interrupt or the prescaler must be used to
extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

15.9.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM13:0 = 4 or 12), the OCR1A or ICR1 Register
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNT1) matches either the OCR1A (WGM13:0 = 4) or the ICR1 (WGM13:0 =
12). The OCR1A or ICR1 define the top value for the counter, hence also its resolution. This
mode allows greater control of the compare match output frequency. It also simplifies the opera-
tion of counting external events.
118
8018P–AVR–08/10

ATmega169P
15.9.4 Phase Correct PWM Mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 = 1, 2, 3,
10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-
slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from
TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is
cleared on the compare match between TCNT1 and OCR1x while upcounting, and set on the
compare match while down counting. In inverting Output Compare mode, the operation is
inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-bit, 9-bit, or 10-bit, or
defined by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set
to 0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM reso-
lution in bits can be calculated by using the following equation:

In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 1, 2, or 3), the value in ICR1
(WGM13:0 = 10), or the value in OCR1A (WGM13:0 = 11). The counter has then reached the
TOP and changes the count direction. The TCNT1 value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 15-8. The figure
shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1
value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The
diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on
the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The OC1x Inter-
rupt Flag will be set when a compare match occurs.

Figure 15-8. Phase Correct PWM Mode, Timing Diagram

RPCPWM
TOP 1+()log

2()log
-----------------------------------=

OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TOVn Interrupt Flag Set
(Interrupt on Bottom)

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)
122
8018P–AVR–08/10

ATmega169P
16.4 Register Description

16.4.1 GTCCR – General Timer/Counter Control Register

• Bit 7 – TSM: Timer/Counter Synchronization Mode
Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the
value that is written to the PSR2 and PSR10 bits is kept, hence keeping the corresponding pres-
caler reset signals asserted. This ensures that the corresponding Timer/Counters are halted and
can be configured to the same value without the risk of one of them advancing during configura-
tion. When the TSM bit is written to zero, the PSR2 and PSR10 bits are cleared by hardware,
and the Timer/Counters start counting simultaneously.

• Bit 0 – PSR10: Prescaler Reset Timer/Counter1 and Timer/Counter0
When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is nor-
mally cleared immediately by hardware, except if the TSM bit is set. Note that Timer/Counter1
and Timer/Counter0 share the same prescaler and a reset of this prescaler will affect both
timers.

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – PSR2 PSR10 GTCCR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
137
8018P–AVR–08/10

ATmega169P
19.11.5 UBRRLn and UBRRHn – USART Baud Rate Registers

• Bit 15:12 – Reserved Bits
These bits are reserved for future use. For compatibility with future devices, these bit must be
written to zero when UBRRHn is written.

• Bit 11:0 – UBRR11:0: USART Baud Rate Register
This is a 12-bit register which contains the USART baud rate. The UBRRHn contains the four
most significant bits, and the UBRRLn contains the eight least significant bits of the USART
baud rate. Ongoing transmissions by the Transmitter and Receiver will be corrupted if the baud
rate is changed. Writing UBRRLn will trigger an immediate update of the baud rate prescaler.

Bit 15 14 13 12 11 10 9 8

(0xC5) – – – – UBRRn[11:8] UBRRHn

(0xC4) UBRRn[7:0] UBRRLn

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
198
8018P–AVR–08/10

ATmega169P
Note: 1. The DI and USCK pins are renamed to Serial Data (SDA) and Serial Clock (SCL) respectively
to avoid confusion between the modes of operation.

• Bit 3:2 – USICS1:0: Clock Source Select

These bits set the clock source for the Shift Register and counter. The data output latch ensures
that the output is changed at the opposite edge of the sampling of the data input (DI/SDA) when
using external clock source (USCK/SCL). When software strobe or Timer/Counter0 Compare
Match clock option is selected, the output latch is transparent and therefore the output is
changed immediately. Clearing the USICS1..0 bits enables software strobe option. When using
this option, writing a one to the USICLK bit clocks both the Shift Register and the counter. For
external clock source (USICS1 = 1), the USICLK bit is no longer used as a strobe, but selects
between external clocking and software clocking by the USITC strobe bit.

Table 20-1. Relations between USIWM1:0 and the USI Operation

USIWM1 USIWM0 Description

0 0
Outputs, clock hold, and start detector disabled. Port pins operates as
normal.

0 1

Three-wire mode. Uses DO, DI, and USCK pins.

The Data Output (DO) pin overrides the corresponding bit in the PORT
Register in this mode. However, the corresponding DDR bit still controls the
data direction. When the port pin is set as input the pins pull-up is controlled
by the PORT bit.

The Data Input (DI) and Serial Clock (USCK) pins do not affect the normal
port operation. When operating as master, clock pulses are software
generated by toggling the PORT Register, while the data direction is set to
output. The USITC bit in the USICR Register can be used for this purpose.

1 0

Two-wire mode. Uses SDA (DI) and SCL (USCK) pins(1).

The Serial Data (SDA) and the Serial Clock (SCL) pins are bi-directional and
uses open-collector output drives. The output drivers are enabled by setting
the corresponding bit for SDA and SCL in the DDR Register.

When the output driver is enabled for the SDA pin, the output driver will force
the line SDA low if the output of the Shift Register or the corresponding bit in
the PORT Register is zero. Otherwise the SDA line will not be driven (that is, it
is released). When the SCL pin output driver is enabled the SCL line will be
forced low if the corresponding bit in the PORT Register is zero, or by the start
detector. Otherwise the SCL line will not be driven.
The SCL line is held low when a start detector detects a start condition and
the output is enabled. Clearing the Start Condition Flag (USISIF) releases the
line. The SDA and SCL pin inputs is not affected by enabling this mode. Pull-
ups on the SDA and SCL port pin are disabled in Two-wire mode.

1 1

Two-wire mode. Uses SDA and SCL pins.
Same operation as for the Two-wire mode described above, except that the
SCL line is also held low when a counter overflow occurs, and is held low until
the Counter Overflow Flag (USIOIF) is cleared.
210
8018P–AVR–08/10

ATmega169P
Figure 22-12. Integral Non-linearity (INL)

• Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval
between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

Figure 22-13. Differential Non-linearity (DNL)

• Quantization Error: Due to the quantization of the input voltage into a finite number of codes, a
range of input voltages (1 LSB wide) will code to the same value. Always ±0.5 LSB.

• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared to
an ideal transition for any code. This is the compound effect of offset, gain error, differential
error, non-linearity, and quantization error. Ideal value: ±0.5 LSB.

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

IN
L

Output Code

0x3FF

0x000

0 VREF Input Voltage

DNL

1 LSB
226
8018P–AVR–08/10

ATmega169P
Table 22-4. Input Channel Selections

MUX4..0 Single Ended Input Positive Differential Input Negative Differential Input

00000 ADC0

N/A

00001 ADC1

00010 ADC2

00011 ADC3

00100 ADC4

00101 ADC5

00110 ADC6

00111 ADC7

01000

01001

01010

01011

01100

01101

01110

01111

10000 ADC0 ADC1

10001 ADC1 ADC1

10010 N/A ADC2 ADC1

10011 ADC3 ADC1

10100 ADC4 ADC1

10101 ADC5 ADC1

10110 ADC6 ADC1

10111 ADC7 ADC1

11000 ADC0 ADC2

11001 ADC1 ADC2

11010 ADC2 ADC2

11011 ADC3 ADC2

11100 ADC4 ADC2

11101 ADC5 ADC2

11110 1.1V (VBG)
N/A

11111 0V (GND)
230
8018P–AVR–08/10

ATmega169P
A debugger, like the AVR Studio, may however use one or more of these resources for its inter-
nal purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in ”On-chip Debug Specific JTAG
Instructions” on page 257.

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addition, the
OCDEN Fuse must be programmed and no Lock bits must be set for the On-chip debug system
to work. As a security feature, the On-chip debug system is disabled when either of the LB1 or
LB2 Lock bits are set. Otherwise, the On-chip debug system would have provided a back-door
into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR device with
On-chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR Instruction Set Simulator.
AVR Studio supports source level execution of Assembly programs assembled with Atmel Cor-
poration’s AVR Assembler and C programs compiled with third party vendors’ compilers.

AVR Studio runs under Microsoft® Windows® 95/98/2000, Windows NT® and Windows XP®.

For a full description of the AVR Studio, please refer to the AVR Studio User Guide. Only high-
lights are presented in this document.

All necessary execution commands are available in AVR Studio, both on source level and on
disassembly level. The user can execute the program, single step through the code either by
tracing into or stepping over functions, step out of functions, place the cursor on a statement and
execute until the statement is reached, stop the execution, and reset the execution target. In
addition, the user can have an unlimited number of code Break Points (using the BREAK
instruction) and up to two data memory Break Points, alternatively combined as a mask (range)
Break Point.

24.6 On-chip Debug Specific JTAG Instructions

The On-chip debug support is considered being private JTAG instructions, and distributed within
ATMEL and to selected third party vendors only. Instruction opcodes are listed for reference.

24.6.1 PRIVATE0; 0x8

Private JTAG instruction for accessing On-chip debug system.

24.6.2 PRIVATE1; 0x9

Private JTAG instruction for accessing On-chip debug system.

24.6.3 PRIVATE2; 0xA

Private JTAG instruction for accessing On-chip debug system.

24.6.4 PRIVATE3; 0xB

Private JTAG instruction for accessing On-chip debug system.
257
8018P–AVR–08/10

ATmega169P
193 COMP

ADC

192 ACLK

191 ACTEN

190 PRIVATE_SIGNAL1(1)

189 ADCBGEN

188 ADCEN

187 AMPEN

186 DAC_9

185 DAC_8

184 DAC_7

183 DAC_6

182 DAC_5

181 DAC_4

180 DAC_3

179 DAC_2

178 DAC_1

177 DAC_0

176 EXTCH

175 GNDEN

174 HOLD

173 IREFEN

172 MUXEN_7

171 MUXEN_6

170 MUXEN_5

169 MUXEN_4

168 MUXEN_3

ADC

167 MUXEN_2

166 MUXEN_1

165 MUXEN_0

164 NEGSEL_2

163 NEGSEL_1

162 NEGSEL_0

161 PASSEN

160 PRECH

159 ST

158 VCCREN

Table 25-5. ATmega169P Boundary-scan Order

Bit Number Signal Name Module
273
8018P–AVR–08/10

ATmega169P
132 PB0.Control

Port B

131 PB0.Pull-up_Enable

130 PB1.Data

129 PB1.Control

128 PB1.Pull-up_Enable

127 PB2.Data

126 PB2.Control

125 PB2.Pull-up_Enable

124 PB3.Data

123 PB3.Control

122 PB3.Pull-up_Enable

121 PB4.Data

120 PB4.Control

119 PB4.Pull-up_Enable

118 PB5.Data

117 PB5.Control

116 PB5.Pull-up_Enable

115 PB6.Data

114 PB6.Control

113 PB6.Pull-up_Enable

112 PB7.Data

111 PB7.Control

110 PB7.Pull-up_Enable

109 PG3.Data

Port G

108 PG3.Control

107 PG3.Pull-up_Enable

106 PG4.Data

105 PG4.Control

104 PG4.Pull-up_Enable

103 PG5 (Observe Only)

102 RSTT Reset Logic
(Observe-only)101 RSTHV

100 EXTCLKEN

Enable signals for main Clock/Oscillators
99 OSCON

98 RCOSCEN

97 OSC32EN

Table 25-5. ATmega169P Boundary-scan Order

Bit Number Signal Name Module
275
8018P–AVR–08/10

ATmega169P
26.6 Entering the Boot Loader Program

Entering the Boot Loader takes place by a jump or call from the application program. This may
be initiated by a trigger such as a command received via USART, or SPI interface. Alternatively,
the Boot Reset Fuse can be programmed so that the Reset Vector is pointing to the Boot Flash
start address after a reset. In this case, the Boot Loader is started after a reset. After the applica-
tion code is loaded, the program can start executing the application code. Note that the fuses
cannot be changed by the MCU itself. This means that once the Boot Reset Fuse is pro-
grammed, the Reset Vector will always point to the Boot Loader Reset and the fuse can only be
changed through the serial or parallel programming interface.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 26-4. Boot Reset Fuse(1)

BOOTRST Reset Address

1 Reset Vector = Application Reset (address 0x0000)

0 Reset Vector = Boot Loader Reset (see Table 26-6 on page 292)
285
8018P–AVR–08/10

ATmega169P
27.7.7 Reading the EEPROM

The algorithm for reading the EEPROM memory is as follows (refer to ”Programming the Flash”
on page 302 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.

5. Set OE to “1”.

27.7.8 Programming the Fuse Low Bits

The algorithm for programming the Fuse Low bits is as follows (refer to ”Programming the Flash”
on page 302 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

27.7.9 Programming the Fuse High Bits

The algorithm for programming the Fuse High bits is as follows (refer to ”Programming the
Flash” on page 302 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high fuse byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

27.7.10 Programming the Extended Fuse Bits

The algorithm for programming the Extended Fuse bits is as follows (refer to ”Programming the
Flash” on page 302 for details on Command and Data loading):

1. 1. A: Load Command “0100 0000”.

2. 2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. 3. Set BS1 to “0” and BS2 to “1”. This selects extended fuse byte.

4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. 5. Set BS2 to “0”. This selects low data byte.
306
8018P–AVR–08/10

ATmega169P
Figure 29-28. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)

29.8 Pin Driver Strength

Figure 29-29. I/O Pin Source Current vs. Output Voltage, Ports A, C, D, E, F, G (VCC = 5V)

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VRESET (V)

I R
E

S
E

T
 (

µ
A

)

-40°C

25°C

85°C

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6

VOH (V)

I O
H
 (

m
A

)

85°C
25°C

-40°C
353
8018P–AVR–08/10

ATmega169P
35. Datasheet Revision History

Please note that the referring page numbers in this section are referring to this document. The
referring revision in this section are referring to the document revision.

35.1 Rev. 8018P 08/10

35.2 Rev. 8018O 10/09

35.3 Rev. 8018N 08/09

35.4 Rev. 8018M 07/09

35.5 Rev. L 08/08

35.6 Rev. K 06/08

1. Status changed to active
2. EEPROM minimum wait delay, Table 27-15 on page 312, has been changed from 9.0

ms to 3.6 ms
3. Datasheet layout and technical terminology updated

1. Changed datasheet status to “Mature”
2. Added Capacitance for Low-frequency Crystal Oscillator, Table 8-5 on page 33.

1. Updated ”Ordering Information” on page 380, MCU replaced by MCH.

1. Updated the last page with new Atmel’s addresses.

1. Updated package information in ”Features” on page 1.
2. Added ”Pinout - DRQFN” on page 3:

• The Staggered QFN is named Dual Row QFN (DRQFN).

1. Updated package information in ”Features” on page 1.
2. Removed “Disclaimer” from section ”Pin Configurations” on page 2
3. Added ”64MC (DRQFN) Pinout ATmega169P” on page 3
4. Added ”Data Retention” on page 9.
5. Updated ”Stack Pointer” on page 13.
6. Updated ”Low-frequency Crystal Oscillator” on page 34.
7. Updated ”USART Register Description” on page 194, register descriptions and tables.
8. Updated ”UCSRnB – USART Control and Status Register n B” on page 195.
9. Updated VIL2 in ”DC Characteristics” on page 329, by removing 0.2VCC from the table.
385
8018P–AVR–08/10

ATmega169P
17.9Timer/Counter Prescaler ...152

17.108-bit Timer/Counter Register Description ..153

18 SPI – Serial Peripheral Interface ... 158

18.1Features ..158

18.2Overview ...158

18.3SS Pin Functionality ..163

18.4Data Modes ...164

18.5Register Description ..165

19 USART ... 168

19.1Features ..168

19.2Overview ...168

19.3Clock Generation ...170

19.4Frame Formats ..173

19.5USART Initialization ..175

19.6Data Transmission – The USART Transmitter ..177

19.7Data Reception – The USART Receiver ...180

19.8Asynchronous Data Reception ..185

19.9Multi-processor Communication Mode ..188

19.10Examples of Baud Rate Setting ..190

19.11USART Register Description ...194

20 USI – Universal Serial Interface .. 199

20.1Overview ...199

20.2Functional Descriptions ...200

20.3Alternative USI Usage ...206

20.4USI Register Descriptions ...207

21 AC - Analog Comparator ... 212

21.1Analog Comparator Multiplexed Input ...213

21.2Analog Comparator Register Description ..214

22 ADC - Analog to Digital Converter ... 216

22.1Features ..216

22.2Overview ...216

22.3Operation ...217

22.4Starting a Conversion ..218

22.5Prescaling and Conversion Timing ..219
iv
8018O–AVR–10/09

