
Microchip Technology - ATMEGA169PV-8AU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 8MHz

Connectivity SPI, UART/USART, USI

Peripherals Brown-out Detect/Reset, LCD, POR, PWM, WDT

Number of I/O 54

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-TQFP

Supplier Device Package 64-TQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega169pv-8au

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega169pv-8au-4391728
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ATmega169P
7.5 General Purpose I/O Registers

The ATmega169P contains three General Purpose I/O Registers. These registers can be used
for storing any information, and they are particularly useful for storing global variables and Sta-
tus Flags. General Purpose I/O Registers within the address range 0x00 - 0x1F are directly bit-
accessible using the SBI, CBI, SBIS, and SBIC instructions.

7.5.1 GPIOR2 – General Purpose I/O Register 2

7.5.2 GPIOR1 – General Purpose I/O Register 1

7.5.3 GPIOR0 – General Purpose I/O Register 0

7.6 EEPROM Register Description

7.6.1 EEARH and EEARL – EEPROM Address Register

• Bits 15:9 – Res: Reserved Bits
These bits are reserved and will always read as zero.

• Bits 8:0 – EEAR8:0: EEPROM Address
The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address in the
512 bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and
511. The initial value of EEAR is undefined. A proper value must be written before the EEPROM
may be accessed.

Bit 7 6 5 4 3 2 1 0

0x2B (0x4B) MSB LSB GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x2A (0x4A) MSB LSB GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1E (0x3E) MSB LSB GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

0x22 (0x42) – – – – – – – EEAR8 EEARH

0x21 (0x41) EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

X X X X X X X X
28
8018P–AVR–08/10

ATmega169P
9.2 Idle Mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle
mode, stopping the CPU but allowing LCD controller, the SPI, USART, Analog Comparator,
ADC, USI, Timer/Counters, Watchdog, and the interrupt system to continue operating. This
sleep mode basically halts clkCPU and clkFLASH, while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register – ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.

9.3 ADC Noise Reduction Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, the USI
start condition detection, Timer/Counter2, LCD Controller, and the Watchdog to continue operat-
ing (if enabled). This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the
other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart form the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out
Reset, an LCD controller interrupt, USI start condition interrupt, a Timer/Counter2 interrupt, an
SPM/EEPROM ready interrupt, an external level interrupt on INT0 or a pin change interrupt can
wake up the MCU from ADC Noise Reduction mode.

9.4 Power-down Mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the external Oscillator is stopped, while the external interrupts, the
USI start condition detection, and the Watchdog continue operating (if enabled). Only an Exter-
nal Reset, a Watchdog Reset, a Brown-out Reset, USI start condition interrupt, an external level
interrupt on INT0, or a pin change interrupt can wake up the MCU. This sleep mode basically
halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to ”External Interrupts” on page 61
for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
Reset Time-out period, as described in ”Clock Sources” on page 31.
41
8018P–AVR–08/10

ATmega169P
Figure 10-1. Reset Logic

10.2.1 Power-on Reset

A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level
is defined in ”System and Reset Characteristics” on page 333. The POR is activated whenever
VCC is below the detection level. The POR circuit can be used to trigger the start-up Reset, as
well as to detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the
Power-on Reset threshold voltage invokes the delay counter, which determines how long the
device is kept in RESET after VCC rise. The RESET signal is activated again, without any delay,
when VCC decreases below the detection level.

Figure 10-2. MCU Start-up, RESET Tied to VCC

MCU Status
Register (MCUSR)

Brown-out
Reset CircuitBODLEVEL [2..0]

Delay Counters

CKSEL[3:0]

CK
TIMEOUT

W
D

R
F

B
O

R
F

E
X

T
R

F

P
O

R
F

DATA BUS

Clock
Generator

SPIKE
FILTER

Pull-up Resistor

JT
R

F

JTAG Reset
Register

Watchdog
Oscillator

SUT[1:0]

Power-on Reset
Circuit

V

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

CC
48
8018P–AVR–08/10

ATmega169P
low. When the SPI is enabled as a Master, the data direction of this pin is controlled by DDB0.
When the pin is forced to be an input, the pull-up can still be controlled by the PORTB0 bit.

PCINT8, Pin Change Interrupt Source 8: The PB0 pin can serve as an external interrupt source.

Table 13-7 and Table 13-8 on page 77 relate the alternate functions of Port B to the overriding
signals shown in Figure 13-5 on page 71. SPI MSTR INPUT and SPI SLAVE OUTPUT consti-
tute the MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

Table 13-7. Overriding Signals for Alternate Functions in PB7..PB4

Signal
Name

PB7/OC2A/
PCINT15

PB6/OC1B/
PCINT14

PB5/OC1A/
PCINT13

PB4/OC0A/
PCINT12

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC2A ENABLE OC1B ENABLE OC1A ENABLE OC0A ENABLE

PVOV OC2A OC1B OC1A OC0A

PTOE – – – –

DIEOE PCINT15 • PCIE1 PCINT14 • PCIE1 PCINT13 • PCIE1 PCINT12 • PCIE1

DIEOV 1 1 1 1

DI PCINT15 INPUT PCINT14 INPUT PCINT13 INPUT PCINT12 INPUT

AIO – – – –
76
8018P–AVR–08/10

ATmega169P
• SEG4 – Port G, Bit 2
SEG4, LCD front plane 4

• SEG13 – Port G, Bit 1
SEG13, Segment driver 13

• SEG14 – Port G, Bit 0
SEG14, LCD front plane 14

Table 13-21 on page 85 and Table 13-22 relates the alternate functions of Port G to the overrid-
ing signals shown in Figure 13-5 on page 71.

Table 13-22. Overriding Signals for Alternate Functions in PG4

Signal
Name PG4/T0/SEG23

PUOE LCDEN • (LCDPM>5)

PUOV 0

DDOE LCDEN • (LCDPM>5)

DDOV 1

PVOE 0

PVOV 0

PTOE – – – –

DIEOE LCDEN • (LCDPM>5)

DIEOV 0

DI T0 INPUT

AIO SEG23
86
8018P–AVR–08/10

ATmega169P
The double buffered Output Compare Register (OCR0A) is compared with the Timer/Counter
value at all times. The result of the compare can be used by the Waveform Generator to gener-
ate a PWM or variable frequency output on the Output Compare pin (OC0A). See ”Output
Compare Unit” on page 93. for details. The compare match event will also set the Compare Flag
(OCF0A) which can be used to generate an Output Compare interrupt request.

14.2.2 Definitions

Many register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 0. A lower case “x” replaces the Output Com-
pare unit number, in this case unit A. However, when using the register or bit defines in a
program, the precise form must be used, that is, TCNT0 for accessing Timer/Counter0 counter
value and so on.

The definitions in Table 14-1 are also used extensively throughout the document.

14.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits
located in the Timer/Counter Control Register (TCCR0A). For details on clock sources and pres-
caler, see ”Timer/Counter0 and Timer/Counter1 Prescalers” on page 135.

14.4 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
14-2 shows a block diagram of the counter and its surroundings.

Figure 14-2. Counter Unit Block Diagram

Table 14-1. Timer/Counter Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value 0xFF
(MAX) or the value stored in the OCR0A Register. The assignment is dependent
on the mode of operation.

DATA BUS

TCNTn Control Logic

count

TOVn
(Int.Req.)

Clock Select

top

Tn
Edge

Detector

(From Prescaler)

clkTn

bottom

direction

clear
92
8018P–AVR–08/10

ATmega169P
When OC0A is connected to the pin, the function of the COM0A1:0 bits depends on the
WGM01:0 bit setting. Table 14-3 shows the COM0A1:0 bit functionality when the WGM01:0 bits
are set to a normal or CTC mode (non-PWM).

Table 14-4 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at BOTTOM. See ”Fast PWM Mode” on
page 97 for more details.

Table 14-5 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to phase cor-
rect PWM mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on
page 99 for more details.

• Bit 2:0 – CS02:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter.

Table 14-3. Compare Output Mode, non-PWM Mode

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC0A on compare match

1 0 Clear OC0A on compare match

1 1 Set OC0A on compare match

Table 14-4. Compare Output Mode, Fast PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Reserved

1 0
Clear OC0A on compare match, set OC0A at BOTTOM
(non-inverting mode)

1 1
Set OC0A on compare match, clear OC0A at BOTTOM
(inverting mode)

Table 14-5. Compare Output Mode, Phase Correct PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Reserved

1 0
Clear OC0A on compare match when up-counting. Set OC0A on
compare match when down counting.

1 1
Set OC0A on compare match when up-counting. Clear OC0A on
compare match when down counting.
103
8018P–AVR–08/10

ATmega169P
15.3 Accessing 16-bit Registers

The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via
the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.
Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit
access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a
16-bit register is written by the CPU, the high byte stored in the temporary register, and the low
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of
a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the tempo-
rary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16-
bit registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCR1A/B and ICR1 Registers. Note that when using “C”, the compiler handles the 16-bit
access.

Note: 1. See ”About Code Examples” on page 10.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit Timer Regis-
ters, then the result of the access outside the interrupt will be corrupted. Therefore, when both

Assembly Code Examples(1)

...

; Set TCNT1 to 0x01FF
ldi r17,0x01

ldi r16,0xFF

out TCNT1H,r17
out TCNT1L,r16
; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
...

C Code Examples(1)

unsigned int i;

...

/* Set TCNT1 to 0x01FF */
TCNT1 = 0x1FF;
/* Read TCNT1 into i */
i = TCNT1;
...
109
8018P–AVR–08/10

ATmega169P
The Timer/Counter Overflow Flag (TOV1) is set according to the mode of operation selected by
the WGM13:0 bits. TOV1 can be used for generating a CPU interrupt.

15.6 Input Capture Unit

The Timer/Counter incorporates an Input Capture unit that can capture external events and give
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICP1 pin or alternatively, via the analog-comparator unit. The
time-stamps can then be used to calculate frequency, duty-cycle, and other features of the sig-
nal applied. Alternatively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 15-3. The elements of
the block diagram that are not directly a part of the Input Capture unit are gray shaded. The
small “n” in register and bit names indicates the Timer/Counter number.

Figure 15-3. Input Capture Unit Block Diagram

When a change of the logic level (an event) occurs on the Input Capture pin (ICP1), alternatively
on the Analog Comparator output (ACO), and this change confirms to the setting of the edge
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter
(TCNT1) is written to the Input Capture Register (ICR1). The Input Capture Flag (ICF1) is set at
the same system clock as the TCNT1 value is copied into ICR1 Register. If enabled (ICIE1 = 1),
the Input Capture Flag generates an Input Capture interrupt. The ICF1 Flag is automatically
cleared when the interrupt is executed. Alternatively the ICF1 Flag can be cleared by software
by writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the low
byte (ICR1L) and then the high byte (ICR1H). When the low byte is read the high byte is copied
into the high byte temporary register (TEMP). When the CPU reads the ICR1H I/O location it will
access the TEMP Register.

The ICR1 Register can only be written when using a Waveform Generation mode that utilizes
the ICR1 Register for defining the counter’s TOP value. In these cases the Waveform Genera-

ICFn (Int.Req.)

Analog
Comparator

WRITE ICRn (16-bit Register)

ICRnH (8-bit)

Noise
Canceler

ICPn

Edge
Detector

TEMP (8-bit)

DATA BUS (8-bit)

ICRnL (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

ACIC* ICNC ICESACO*
113
8018P–AVR–08/10

ATmega169P
17. 8-bit Timer/Counter2 with PWM and Asynchronous Operation

Timer/Counter2 is a general purpose, single compare unit, 8-bit Timer/Counter module. The
main features are:

• Single Compare Unit Counter
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Frequency Generator
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV2 and OCF2A)
• Allows Clocking from External 32 kHz Watch Crystal Independent of the I/O Clock

17.1 Overview

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 17-1. For the actual
placement of I/O pins, refer to Figure 1-1 on page 2. CPU accessible I/O Registers, including I/O
bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations are listed
in the Section 17.10 ”8-bit Timer/Counter Register Description” on page 153.

Figure 17-1. 8-bit Timer/Counter Block Diagram

17.1.1 Registers

The Timer/Counter (TCNT2) and Output Compare Register (OCR2A) are 8-bit registers. Inter-
rupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register

Timer/Counter

D
AT

A
 B

U
S

=

TCNTn

Waveform
Generation

OCnx

= 0

Control Logic

= 0xFF

TOPBOTTOM

count

clear

direction

TOVn
(Int.Req.)

OCnx
(Int.Req.)

Synchronization Unit

OCRnx

TCCRnx

ASSRn
Status flags

clkI/O

clkASY

Synchronized Status flags

asynchronous mode
select (ASn)

TOSC1

T/C
Oscillator

TOSC2

Prescaler

clkTn

clkI/O
138
8018P–AVR–08/10

ATmega169P
For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16
Registers.

Note: 1. See ”About Code Examples” on page 10.

More advanced initialization routines can be made that include frame format as parameters, dis-
able interrupts and so on. However, many applications use a fixed setting of the baud and
control registers, and for these types of applications the initialization code can be placed directly
in the main routine, or be combined with initialization code for other I/O modules.

Assembly Code Example(1)

USART_Init:

; Set baud rate

sts UBRRH0, r17

sts UBRRL0, r16

; Enable receiver and transmitter

ldi r16, (1<<RXEN0)|(1<<TXEN0)

sts UCSR0B,r16

; Set frame format: 8data, 2stop bit

ldi r16, (1<<USBS0)|(3<<UCSZ00)

sts UCSR0C,r16

ret

C Code Example(1)

#define FOSC 1843200// Clock Speed

#define BAUD 9600

#define MYUBRR FOSC/16/BAUD-1

void main(void)

{

...

USART_Init (MYUBRR);

...

}

void USART_Init(unsigned int ubrr)

{

/* Set baud rate */

UBRRH0 = (unsigned char)(ubrr>>8);

UBRRL0 = (unsigned char)ubrr;

/* Enable receiver and transmitter */

UCSR0B = (1<<RXEN0)|(1<<TXEN0);

/* Set frame format: 8data, 2stop bit */

UCSRnC = (1<<USBS0)|(3<<UCSZ00);

}

176
8018P–AVR–08/10

ATmega169P
19.8 Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data
reception. The clock recovery logic is used for synchronizing the internally generated baud rate
clock to the incoming asynchronous serial frames at the RxD pin. The data recovery logic sam-
ples and low pass filters each incoming bit, thereby improving the noise immunity of the
Receiver. The asynchronous reception operational range depends on the accuracy of the inter-
nal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

19.8.1 Asynchronous Clock Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 19-5
illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16 times
the baud rate for Normal mode, and eight times the baud rate for Double Speed mode. The hor-
izontal arrows illustrate the synchronization variation due to the sampling process. Note the
larger time variation when using the Double Speed mode (U2Xn = 1) of operation. Samples
denoted zero are samples done when the RxD line is idle (that is, no communication activity).

Figure 19-5. Start Bit Sampling

When the clock recovery logic detects a high (idle) to low (start) transition on the RxD line, the
start bit detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in
the figure. The clock recovery logic then uses samples 8, 9, and 10 for Normal mode, and sam-
ples 4, 5, and 6 for Double Speed mode (indicated with sample numbers inside boxes on the
figure), to decide if a valid start bit is received. If two or more of these three samples have logical
high levels (the majority wins), the start bit is rejected as a noise spike and the Receiver starts
looking for the next high to low-transition. If however, a valid start bit is detected, the clock recov-
ery logic is synchronized and the data recovery can begin. The synchronization process is
repeated for each start bit.

19.8.2 Asynchronous Data Recovery

When the receiver clock is synchronized to the start bit, the data recovery can begin. The data
recovery unit uses a state machine that has 16 states for each bit in Normal mode and eight
states for each bit in Double Speed mode. Figure 19-6 on page 186 shows the sampling of the
data bits and the parity bit. Each of the samples is given a number that is equal to the state of
the recovery unit.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2

STARTIDLE

00

BIT 0

3

1 2 3 4 5 6 7 8 1 20

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)
185
8018P–AVR–08/10

ATmega169P
Table 22-4. Input Channel Selections

MUX4..0 Single Ended Input Positive Differential Input Negative Differential Input

00000 ADC0

N/A

00001 ADC1

00010 ADC2

00011 ADC3

00100 ADC4

00101 ADC5

00110 ADC6

00111 ADC7

01000

01001

01010

01011

01100

01101

01110

01111

10000 ADC0 ADC1

10001 ADC1 ADC1

10010 N/A ADC2 ADC1

10011 ADC3 ADC1

10100 ADC4 ADC1

10101 ADC5 ADC1

10110 ADC6 ADC1

10111 ADC7 ADC1

11000 ADC0 ADC2

11001 ADC1 ADC2

11010 ADC2 ADC2

11011 ADC3 ADC2

11100 ADC4 ADC2

11101 ADC5 ADC2

11110 1.1V (VBG)
N/A

11111 0V (GND)
230
8018P–AVR–08/10

ATmega169P
• Bit 0 – LCDBL: LCD Blanking
When this bit is written to one, the display will be blanked after completion of a frame. All seg-
ment and common pins will be driven to ground.

23.5.2 LCDCRB – LCD Control and Status Register B

• Bit 7 – LCDCS: LCD Clock Select
When this bit is written to zero, the system clock is used. When this bit is written to one, the
external asynchronous clock source is used. The asynchronous clock source is either
Timer/Counter Oscillator or external clock, depending on EXCLK in ASSR. See ”Asynchronous
operation of the Timer/Counter” on page 150 for further details.

• Bit 6 – LCD2B: LCD 1/2 Bias Select
When this bit is written to zero, 1/3 bias is used. When this bit is written to one, ½ bias is used.
Refer to the LCD Manufacture for recommended bias selection.

• Bit 5:4 – LCDMUX1:0: LCD Mux Select
The LCDMUX1:0 bits determine the duty cycle. Common pins that are not used are ordinary port
pins. The different duty selections are shown in Table 23-2.

Note: 1. 1/2 bias when LCD2B is written to one and 1/3 otherwise.

• Bit 3 – Res: Reserved Bit
This bit is reserved and will always read as zero.

• Bits 2:0 – LCDPM2:0: LCD Port Mask
The LCDPM2:0 bits determine the number of port pins to be used as segment drivers. The dif-
ferent selections are shown in Table 23-3. Unused pins can be used as ordinary port pins.

Bit 7 6 5 4 3 2 1 0

(0xE5) LCDCS LCD2B LCDMUX1 LCDMUX0 – LCDPM2 LCDPM1 LCDPM0 LCDCRB

Read/Write R/W R/W R/W R/W R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 23-2. LCD Duty Select

LCDMUX1 LCDMUX0 Duty Bias COM Pin I/O Port Pin

0 0 Static Static COM0 COM1:3

0 1 1/2 1/2 or 1/3(1) COM0:1 COM2:3

1 0 1/3 1/2 or 1/3(1) COM0:2 COM3

1 1 1/4 1/2 or 1/3(1) COM0:3 None

Table 23-3. LCD Port Mask

LCDPM2 LCDPM1 LCDPM0
I/O Port in Use as Segment

Driver
Maximum Number of

Segments

0 0 0 SEG0:12 13

0 0 1 SEG0:14 15

0 1 0 SEG0:16 17

0 1 1 SEG0:18 19
247
8018P–AVR–08/10

ATmega169P
• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched
onto the parallel output from the Shift Register path in the Update-IR state. The Exit-IR, Pause-
IR, and Exit2-IR states are only used for navigating the state machine.

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift Data
Register – Shift-DR state. While in this state, upload the selected Data Register (selected by
the present JTAG instruction in the JTAG Instruction Register) from the TDI input at the rising
edge of TCK. In order to remain in the Shift-DR state, the TMS input must be held low during
input of all bits except the MSB. The MSB of the data is shifted in when this state is left by
setting TMS high. While the Data Register is shifted in from the TDI pin, the parallel inputs to
the Data Register captured in the Capture-DR state is shifted out on the TDO pin.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data
Register has a latched parallel-output, the latching takes place in the Update-DR state. The
Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting
JTAG instruction and using Data Registers, and some JTAG instructions may select certain
functions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.

Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be
entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in ”Bibliography”
on page 258.

24.4 Using the Boundary-scan Chain

A complete description of the Boundary-scan capabilities are given in the section ”IEEE 1149.1
(JTAG) Boundary-scan” on page 259.

24.5 Using the On-chip Debug System

As shown in Figure 24-1 on page 254, the hardware support for On-chip Debugging consists
mainly of:

• A scan chain on the interface between the internal AVR CPU and the internal peripheral units.

• Break Point unit.

• Communication interface between the CPU and JTAG system.

All read or modify/write operations needed for implementing the Debugger are done by applying
AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an I/O
memory mapped location which is part of the communication interface between the CPU and the
JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, two
Program Memory Break Points, and two combined Break Points. Together, the four Break
Points can be configured as either:

• 4 single Program Memory Break Points.

• 3 Single Program Memory Break Point + 1 single Data Memory Break Point.

• 2 single Program Memory Break Points + 2 single Data Memory Break Points.

• 2 single Program Memory Break Points + 1 Program Memory Break Point with mask (“range
Break Point”).

• 2 single Program Memory Break Points + 1 Data Memory Break Point with mask (“range Break
Point”).
256
8018P–AVR–08/10

ATmega169P
26.7 Addressing the Flash During Self-Programming

The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see Table 27-7 on page 299), the Program Counter can
be treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is shown in Figure 26-3. Note that the Page Erase and Page Write operations are
addressed independently. Therefore it is of major importance that the Boot Loader software
addresses the same page in both the Page Erase and Page Write operation. Once a program-
ming operation is initiated, the address is latched and the Z-pointer can be used for other
operations.

The only SPM operation that does not use the Z-pointer is Setting the Boot Loader Lock bits.
The content of the Z-pointer is ignored and will have no effect on the operation. The LPM
instruction does also use the Z-pointer to store the address. Since this instruction addresses the
Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 26-3. Addressing the Flash During SPM(1)

Note: 1. The different variables used in Figure 26-3 are listed in Table 26-8 on page 293.

2. PCPAGE and PCWORD are listed in Table 27-7 on page 299.

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER
286
8018P–AVR–08/10

ATmega169P
Note: 1. For details about these two section, see ”NRWW – No Read-While-Write Section” on page
281 and ”RWW – Read-While-Write Section” on page 281.

Note: 1. Z15:Z14: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See ”Addressing the Flash During Self-Programming” on page 286 for details about the use of
Z-pointer during Self-Programming.

Table 26-7. Read-While-Write Limit(1)

Section Pages Address

Read-While-Write section (RWW) 112 0x0000 - 0x1BFF

No Read-While-Write section (NRWW) 16 0x1C00 - 0x1FFF

Table 26-8. Explanation of different variables used in Figure 26-3 on page 286 and the map-
ping to the Z-pointer(1)

Variable
Corresponding

Z-value Description

PCMSB 12
Most significant bit in the Program Counter. (The
Program Counter is 13 bits PC[12:0])

PAGEMSB 5
Most significant bit which is used to address the words
within one page (64 words in a page requires six bits PC
[5:0]).

ZPCMSB Z13
Bit in Z-register that is mapped to PCMSB. Because Z0
is not used, the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z6
Bit in Z-register that is mapped to PAGEMSB. Because
Z0 is not used, the ZPAGEMSB equals PAGEMSB + 1.

PCPAGE PC[12:6] Z13:Z7
Program Counter page address: Page select, for Page
Erase and Page Write

PCWORD PC[5:0] Z6:Z1
Program Counter word address: Word select, for filling
temporary buffer (must be zero during Page Write
operation)
293
8018P–AVR–08/10

ATmega169P
Figure 27-8. Parallel Programming Timing, Loading Sequence with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 27-7 on page 308 (that is, tDVXH, tXHXL, and tXLDX)
also apply to loading operation.

Figure 27-9. Parallel Programming Timing, Reading Sequence (within the Same Page) with
Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 27-7 on page 308 (that is, tDVXH, tXHXL, and tXLDX)
also apply to reading operation.

Table 27-13. Parallel Programming Characteristics, VCC = 5V ±10%

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 μA

XTAL1

PAGEL

tPLXHXLXHt tXLPH

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

LOAD DATA
(LOW BYTE)

LOAD DATA
(HIGH BYTE)

LOAD DATA LOAD ADDRESS
(LOW BYTE)

XTAL1

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

READ DATA
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ
309
8018P–AVR–08/10

ATmega169P
27.9.7 Data Registers

The Data Registers are selected by the JTAG instruction registers described in section ”Pro-
gramming Specific JTAG Instructions” on page 316. The Data Registers relevant for
programming operations are:

• Reset Register

• Programming Enable Register

• Programming Command Register

• Flash Data Byte Register

27.9.8 Reset Register

The Reset Register is a Test Data Register used to reset the part during programming. It is
required to reset the part before entering Programming mode.

A high value in the Reset Register corresponds to pulling the external reset low. The part is reset
as long as there is a high value present in the Reset Register. Depending on the Fuse settings
for the clock options, the part will remain reset for a Reset Time-out period (refer to ”Clock
Sources” on page 31) after releasing the Reset Register. The output from this Data Register is
not latched, so the reset will take place immediately, as shown in Figure 25-2 on page 261.

27.9.9 Programming Enable Register

The Programming Enable Register is a 16-bit register. The contents of this register is compared
to the programming enable signature, binary code 0b1010_0011_0111_0000. When the con-
tents of the register is equal to the programming enable signature, programming via the JTAG
port is enabled. The register is reset to 0 on Power-on Reset, and should always be reset when
leaving Programming mode.

Figure 27-14. Programming Enable Register

27.9.10 Programming Command Register

The Programming Command Register is a 15-bit register. This register is used to serially shift in
programming commands, and to serially shift out the result of the previous command, if any. The
JTAG Programming Instruction Set is shown in Table 27-17 on page 321. The state sequence
when shifting in the programming commands is illustrated in Figure 27-16 on page 324.

TDI

TDO

D
A
T
A

= D Q

ClockDR & PROG_ENABLE

Programming Enable
0xA370
319
8018P–AVR–08/10

ATmega169P
Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega169P is a com-
plex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN
and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.

0x1B (0x3B) Reserved – – – – – – – –

0x1A (0x3A) Reserved – – – – – – – –

0x19 (0x39) Reserved – – – – – – – –

0x18 (0x38) Reserved – – – – – – – –

0x17 (0x37) TIFR2 – – – – – – OCF2A TOV2 156

0x16 (0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1 134

0x15 (0x35) TIFR0 – – – – – – OCF0A TOV0 105

0x14 (0x34) PORTG – – PORTG5 PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 90

0x13 (0x33) DDRG – – DDG5 DDG4 DDG3 DDG2 DDG1 DDG0 90

0x12 (0x32) PING – – PING5 PING4 PING3 PING2 PING1 PING0 90

0x11 (0x31) PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 90

0x10 (0x30) DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 90

0x0F (0x2F) PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 90

0x0E (0x2E) PORTE PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 89

0x0D (0x2D) DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 89

0x0C (0x2C) PINE PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 90

0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 89

0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 89

0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 89

0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 89

0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 89

0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 89

0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 88

0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 88

0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 88

0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 88

0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 88

0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 88

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
376
8018P–AVR–08/10

