

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 16x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	24-DIP (0.300", 7.62mm)
Supplier Device Package	24-DIP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f330p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2. On-Chip Memory

The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data RAM, with the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general purpose RAM, and direct addressing accesses the 128 byte SFR address space. The lower 128 bytes of RAM are accessible via direct and indirect addressing. The first 32 bytes are addressable as four banks of general purpose registers, and the next 16 bytes can be byte addressable or bit addressable.

Program memory consists of 8k bytes of FLASH. This memory may be reprogrammed in-system in 512 byte sectors, and requires no special off-chip programming voltage. See Figure 1.5 for the MCU system memory map.

Figure 1.5. On-Board Memory Map

1.4. Programmable Digital I/O and Crossbar

C8051F330/1 devices include 17 I/O pins (two byte-wide Ports and one 1-bit-wide Port). The C8051F330/1 Ports behave like typical 8051 Ports with a few enhancements. Each Port pin may be configured as an analog input or a digital I/O pin. Pins selected as digital I/Os may additionally be configured for push-pull or open-drain output. The "weak pull-ups" that are fixed on typical 8051 devices may be globally disabled, providing power savings capabilities.

The Digital Crossbar allows mapping of internal digital system resources to Port I/O pins (See Figure 1.7). On-chip counter/timers, serial buses, HW interrupts, comparator output, and other digital signals in the controller can be configured to appear on the Port I/O pins specified in the Crossbar Control registers. This allows the user to select the exact mix of general purpose Port I/O and digital resources needed for the particular application.

Figure 1.7. Digital Crossbar Diagram

1.5. Serial Ports

The C8051F330/1 Family includes an SMBus/I²C interface, a full-duplex UART with enhanced baud rate configuration, and an Enhanced SPI interface. Each of the serial buses is fully implemented in hardware and makes extensive use of the CIP-51's interrupts, thus requiring very little CPU intervention.

1.9. 10-bit Current Output DAC

The C8051F330 device includes a 10-bit current-mode Digital-to-Analog Converter (IDA0). The maximum current output of the IDA0 can be adjusted for three different current settings; 0.5 mA, 1 mA, and 2 mA. IDA0 features a flexible output update mechanism which allows for seamless full-scale changes and supports jitter-free updates for waveform generation. Three update modes are provided, allowing IDA0 output updates on a write to IDA0H, on a Timer overflow, or on an external pin edge.

4. **PINOUT AND PACKAGE DEFINITIONS**

Table 4.1. Pin Definitions for the C8051F330/1

Name	Pin Numbers	Туре	Description
VDD	3		Power Supply Voltage.
GND	2		Ground.
/RST/	4	D I/O	Device Reset. Open-drain output of internal POR or VDD moni- tor. An external source can initiate a system reset by driving this pin low for at least 10 μ s.
C2CK		D I/O	Clock signal for the C2 Debug Interface.
P2.0/	5	D I/O	Port 3.0. See Section 14 for a complete description.
C2D		D I/O	Bi-directional data signal for the C2 Debug Interface.
P0.0/	1	D I/O or A In	Port 0.0. See Section 14 for a complete description.
VREF		A In	External VREF input. See Section 7 for a complete description.
P0.1	20	D I/O or A In	Port 0.1. See Section 14 for a complete description.
IDA0		AOut	IDA0 Output. See Section 6 for a complete description.
P0.2/	19	D I/O or A In	Port 0.2. See Section 14 for a complete description.
XTAL1		A In	External Clock Input. This pin is the external oscillator return for a crystal or resonator. See Section 13 for a complete description.
P0.3/	18	D I/O or A In	Port 0.3. See Section 14 for a complete description.
XTAL2		A I/O or D In	External Clock Output. For an external crystal or resonator, this pin is the excitation driver. This pin is the external clock input for CMOS, capacitor, or RC oscillator configurations. See Section 13 for a complete description.
P0.4	17	D I/O or A In	Port 0.4. See Section 14 for a complete description.
P0.5	16	D I/O or A In	Port 0.5. See Section 14 for a complete description.

Notes

R	R	R	R	R/W	R/W	R/W	R/W	Reset Value				
-	-	-	-	REFSL	TEMPE	BIASE	REFBE	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0xD1				
Bits7-4:	UNUSED. Read = 0000b; Write = don't care.											
Bit3:	REFSL: Volta	ige Referenc	e Select.									
	This bit select	ts the source	for the inter	nal voltage re	eference.							
	0: VREF pin u	used as volta	ge reference									
	1: VDD used	as voltage re	ference.									
Bit2:	TEMPE: Tem	perature Sen	sor Enable E	Bit.								
	0: Internal Ter	mperature Se	ensor off.									
	1: Internal Ter	mperature Se	ensor on.									
Bit1:	BIASE: Intern	nal Analog E	ias Generato	or Enable Bit	•							
	0: Internal Bia	as Generator	off.									
	1: Internal Bia	as Generator	on.									
Bit0:	REFBE: Inter	nal Referenc	e Buffer Ena	able Bit.								
	0: Internal Re	ference Buff	er disabled.									
	1: Internal Re	ference Buff	er enabled. I	Internal volta	ge reference	driven on th	e VREF pir	1.				

Figure 7.2. REF0CN: Reference Control Register

Table 7.1. Voltage Reference Electrical Characteristics

VDD = 3.0 V; -40°C TO +85°C UNLESS OTHERWISE SPECIFIED

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS						
(NTERNAL REFERENCE (REFBE = 1)											
Output Voltage	25°C ambient	2.38	2.44	2.50	V						
VREF Short-Circuit Current				10	mA						
VREF Temperature Coefficient			15		ppm/°C						
Load Regulation	Load = 0 to 200 μ A to AGND		0.5		ppm/µA						
VREF Turn-on Time 14.7µF tantalum, 0.1µF ceramic bypass			2		ms						
VREF Turn-on Time 2	0.1µF ceramic bypass		20		μs						
VREF Turn-on Time 3	no bypass cap		10		μs						
Power Supply Rejection			140		ppm/V						
EXTERNAL REFERENCE (J	$\mathbf{REFBE} = 0$										
Input Voltage Range		0		VDD	V						
Input Current	Sample Rate = 200 ksps ; VREF = 3.0 V		12		μΑ						
BIAS GENERATORS		•		•							
ADC Bias Generator	BIASE = '1'		100		μΑ						
Reference Bias Generator			40		μΑ						

Comparator falling-edge occurrence, and the CPORIF flag is set to logic 1 upon the Comparator rising-edge occurrence. Once set, these bits remain set until cleared by software. The Comparator rising-edge interrupt mask is enabled by setting CPORIE to a logic 1. The Comparator0 falling-edge interrupt mask is enabled by setting CPOFIE to a logic 1.

The output state of the Comparator can be obtained at any time by reading the CP0OUT bit. The Comparator is enabled by setting the CP0EN bit to logic 1, and is disabled by clearing this bit to logic 0.

Note that false rising edges and falling edges can be detected when the comparator is first powered on or if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the rising-edge and falling-edge flags be explicitly cleared to logic 0 a short time after the comparator is enabled or its mode bits have been changed. This Power Up Time is specified in Table 8.1 on page 65.

9.2.6. Special Function Registers

The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers (SFRs). The SFRs provide control and data exchange with the CIP-51's resources and peripherals. The CIP-51 duplicates the SFRs found in a typical 8051 implementation as well as implementing additional SFRs used to configure and access the sub-systems unique to the MCU. This allows the addition of new functionality while retaining compatibility with the MCS-51TM instruction set. Table 9.2 lists the SFRs implemented in the CIP-51 System Controller.

The SFR registers are accessed anytime the direct addressing mode is used to access memory locations from 0x80 to 0xFF. SFRs with addresses ending in 0x0 or 0x8 (e.g. P0, TCON, SCON0, IE, etc.) are bit-addressable as well as byte-addressable. All other SFRs are byte-addressable only. Unoccupied addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate effect and should be avoided. Refer to the corresponding pages of the datasheet, as indicated in Table 9.3, for a detailed description of each register.

F8	SPIOCN	PCA0L	РСА0Н	PCA0CPL0	PCA0CPH0			VDM0CN
F0	В	POMDIN	P1MDIN				EIP1	
E8	ADC0CN	PCA0CPL1	PCA0CPH1	PCA0CPL2	PCA0CPH2			RSTSRC
E0	ACC	XBR0	XBR1	OSCLCN	IT01CF		EIE1	
D8	PCA0CN	PCA0MD	PCA0CPM0	PCA0CPM1	PCA0CPM2			
D0	PSW	REF0CN			POSKIP	P1SKIP		
C8	TMR2CN		TMR2RLL	TMR2RLH	TMR2L	TMR2H		
C0	SMB0CN	SMB0CF	SMB0DAT	ADC0GTL	ADC0GTH	ADC0LTL	ADC0LTH	
B8	IP	IDA0CN	AMX0N	AMX0P	ADC0CF	ADC0L	ADC0H	
B0		OSCXCN	OSCICN	OSCICL			FLSCL	FLKEY
A8	IE	CLKSEL	EMI0CN					
A0	P2	SPI0CFG	SPI0CKR	SPI0DAT	POMDOUT	P1MDOUT	P2MDOUT	
98	SCON0	SBUF0		CPT0CN		CPT0MD		CPT0MX
90	P1	TMR3CN	TMR3RLL	TMR3RLH	TMR3L	TMR3H	IDA0L	IDA0H
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	PSCTL
80	PO	SP	DPL	DPH				PCON
	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)
	(bit							

Table 9.2. Special Function Register (SFR) Memory Map

Table 9.3. Special Function Registers

Register	Address	Description	Page
ACC	0xE0	Accumulator	80
ADC0CF	0xBC	ADC0 Configuration	43
ADC0CN	0xE8	ADC0 Control	45
ADC0GTH	0xC4	ADC0 Greater-Than Compare High	46
ADC0GTL	0xC3	ADC0 Greater-Than Compare Low	46
ADC0H	0xBE	ADC0 High	43
ADC0L	0xBD	ADC0 Low	44
ADC0LTH	0xC6	ADC0 Less-Than Compare Word High	47

addressable)

Table	9.3.	Special	Function	Registers
		~ ~ ~ ~ ~ ~ ~		

Register	Address	Description	Раде
PCA0CPM2	0xDC	PCA Module 2 Mode Register	198
PCA0H	0xEC	PCA Counter High	198
PCA0I	0xF9	PCA Counter Low	199
PCA0MD	0xD9	PCA Mode	197
PCON	0x87	Power Control	90
PSCTL	0x8F	Program Store R/W Control	100
PSW	0xD0	Program Status Word	79
REF0CN	0xD1	Voltage Reference Control	58
RSTSRC	0xEF	Reset Source Configuration/Status	95
SBUF0	0x99	UART0 Data Buffer	151
SCON0	0x98	UART0 Control	150
SMB0CF	0xC1	SMBus Configuration	134
SMB0CN	0xC0	SMBus Control	136
SMB0DAT	0xC2	SMBus Data	138
SP	0x81	Stack Pointer	79
SPI0CFG	0xA1	SPI Configuration	162
SPI0CKR	0xA2	SPI Clock Rate Control	164
SPI0CN	0xF8	SPI Control	163
SPI0DAT	0xA3	SPI Data	165
TCON	0x88	Timer/Counter Control	173
TH0	0x8C	Timer/Counter 0 High	176
TH1	0x8D	Timer/Counter 1 High	176
TL0	0x8A	Timer/Counter 0 Low	176
TL1	0x8B	Timer/Counter 1 Low	176
TMOD	0x89	Timer/Counter Mode	174
TMR2CN	0xC8	Timer/Counter 2 Control	179
TMR2H	0xCD	Timer/Counter 2 High	180
TMR2L	0xCC	Timer/Counter 2 Low	180
TMR2RLH	0xCB	Timer/Counter 2 Reload High	180
TMR2RLL	0xCA	Timer/Counter 2 Reload Low	180
TMR3CN	0x91	Timer/Counter 3Control	183
TMR3H	0x95	Timer/Counter 3 High	184
TMR3L	0x94	Timer/Counter 3Low	184
TMR3RLH	0x93	Timer/Counter 3 Reload High	184
TMR3RLL	0x92	Timer/Counter 3 Reload Low	184
VDM0CN	0xFF	VDD Monitor Control	93
XBR0	0xE1	Port I/O Crossbar Control 0	118
XBR1	0xE2	Port I/O Crossbar Control 1	119

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								Variable
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xB3
Bit7: Bits 6-0:	UNUSED. Re OSCICL: Inte This register of OSCICL defin factory calibra	ead = 0. Writ rnal Oscillat letermines the nes the intern ated to gener	e = don't car or Calibratic ne internal os nal oscillator ate an intern	re. on Register. scillator perio base frequer al oscillator :	od as per Equ acy. On C805 frequency of	nation 13.1. 7 51F330/1 dev 24.5 MHz.	The reset va vices, the re	lue for eset value is

Figure 13.2. OSCICL: Internal H-F Oscillator Calibration Register

Figure 13.3. OSCICN: Internal H-F Oscillator Control Register

D (11)	P	P	P	P	D	D /11/	D (11)	
R/W	R	R	R	R	R	R/W	R/W	Reset Value
IOSCEN	IFRDY	-	-	-	-	IFCN1	IFCN0	11000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xB2
Bit7:	IOSCEN: Inte	ernal H-F Os	cillator Enab	ole Bit.				
	0: Internal H-	F Oscillator	Disabled.					
	1: Internal H-	F Oscillator	Enabled.					
Bit6:	IFRDY: Intern	nal H-F Osci	llator Freque	ency Ready F	lag.			
	0: Internal H-	F Oscillator	is not runnin	g at program	med frequen	CV.		
	1: Internal H-	F Oscillator	is running at	programmed	l frequency.	5		
Bits5-2:	UNUSED, Re	ad = 0000b.	Write $=$ don	't care.	1			
Bits1-0:	IFCN1-0: Inte	ernal H-F Os	cillator Fred	uency Contro	ol Bits.			
	00. SYSCLK	derived from	n Internal H-	F Oscillator	divided by 8			
	01: SYSCI K	derived from	i Internal H -	F Oscillator	divided by 4	•		
	10: SVSCLK	derived from	Internal H_	F Oscillator	divided by 7	•		
	10. STSCLK	derived from	Internal II	F Oscillator	divided by 2	•		
	II: SYSCLK	derived from	i internal H-	r Oscillator (invided by 1.			

13.2. Programmable Internal Low-Frequency (L-F) Oscillator

All C8051F330/1 devices include a programmable low-frequency internal oscillator, which is calibrated to a nominal frequency of 80 kHz. The low-frequency oscillator circuit includes a divider that can be changed to divide the clock by 1, 2, 4, or 8, using the OSCLD bits in the OSCLCN register (see Figure 13.4). Additionally, the OSCLF bits (OSCLCN5:2) can be used to adjust the oscillator's output frequency.

13.2.1. Calibrating the Internal L-F Oscillator

Timers 2 and 3 include capture functions that can be used to capture the oscillator frequency, when running from a known time base. When either Timer 2 or Timer 3 is configured for L-F Oscillator Capture Mode, a falling edge (Timer 2) or rising edge (Timer 3) of the low-frequency oscillator's output will cause a capture event on the corresponding timer. As a capture event occurs, the current timer value (TMRnH:TMRnL) is copied into the timer reload registers (TMRnRLH:TMRnRLL). By recording the difference between two successive timer capture values, the low-frequency oscillator's period can be calculated. The OSCLF bits can then be adjusted to produce the desired oscillator period. The L-F oscillator's period can be tuned in steps of approximately 3%. This is described by Equation 13.2, where f_{BASE} is the frequency of the L-F oscillator before changing the OSCLF bits, ΔT is the resulting change in the L-F oscillator period, and Δ OSCLF is the change to the OSCLF bits.

Equation 13.2. Typical Change in Internal L-F Oscillator Period with OSCLF Bits

$$\Delta T \cong 0.03 \times \frac{1}{f_{BASE}} \times \Delta \text{OSCLF}$$

Figure 13.4. OSCLCN: Internal L-F Oscillator Control Register

R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
OSCLEN		OSCLF3	OSCLF2	OSCLF1	OSCLF0	OSCLD1	OSCLD0	00xxxx00				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xE3				
Bit7:	 : OSCLEN: Internal L-F Oscillator Enable. 0: Internal L-F Oscillator Disabled. 1: Internal L-F Oscillator Enabled. 											
Bit6:	OSCLRDY: Internal L-F Oscillator frequency not stabilized.											
Bits5-2:	OSCLF[3:0]: Internal L-F Oscillator Frequency Stabilized. OSCLF[3:0]: Internal L-F Oscillator Frequency Control bits. Fine-tune control bits for the Internal L-F oscillator frequency. When set to 0000b, the L-F oscillator operates at its fastest setting. When set to 1111b, the L-F oscillator operates at its slowest setting. The effects of changing the OSCLE bits on the asseillator period are described in Equation 12.2											
Bits1-0:	effects of changing the OSCLF bits on the oscillator period are described in Equation 13.2. OSCLD[1:0]: Internal L-F Oscillator Divider Select. 00: Divide by 8 selected. 01: Divide by 4 selected. 10: Divide by 2 selected. 11: Divide by 1 selected.											

108

F	VALUES READ							VALUES WRITTEN		
HOOM	STATUS VECTOR	ACKRQ	ARBLOST	ACK	CURRENT SMBUS STATE	TYPICAL RESPONSE OPTIONS		OLS	ACK	
er	0100	0	0	0	A slave byte was transmitted; NACK received.	No action required (expecting STOP condition).	0	0	Х	
Slave Transmitte		0	0	1	A slave byte was transmitted; ACK received.	Load SMB0DAT with next data byte to transmit.	0	0	Х	
		0	1	X	A Slave byte was transmitted; error detected.	No action required (expecting Master to end transfer).	0	0	Х	
	0101	0	X	X	A STOP was detected while an addressed Slave Transmitter.	No action required (transfer complete).	0	0	Х	
	0010	1	0	x	A slave address was received; ACK	Acknowledge received address.	0	0	1	
					requested.	Do not acknowledge received address.		0	0	
		1		X	Lost arbitration as master; slave	Acknowledge received address.	0	0	1	
Slave Receiver			1		address received; ACK requested.	Do not acknowledge received address.	0	0	0	
						Reschedule failed transfer; do not acknowledge received address.	1	0	0	
	0010	0	1	X	Lost arbitration while attempting a	Abort failed transfer.	0	0	Х	
					repeated START.	Reschedule failed transfer.	1	0	Х	
		1	1	Х	Lost arbitration while attempting a STOP.	No action required (transfer complete/aborted).	0	0	0	
	0001	0	0 0 X		A STOP was detected while an addressed slave receiver.	No action required (transfer complete).		0	Х	
		0	1	X	Lost arbitration due to a detected	Abort transfer.		0	Х	
					STOP.	Reschedule failed transfer.		0	Х	
	0000	1	0	X	A slave byte was received; ACK requested.	Acknowledge received byte; Read SMB0DAT.		0	1	
		-				Do not acknowledge received byte.	0	0	0	
		1	1	x	Lost arbitration while transmitting a	Abort failed transfer.	0	0	0	
		1	1		data byte as master.	Reschedule failed transfer.	1	0	0	

R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
SOMODE	-	MCE0	REN0	TB80	RB80	TI0	RI0	01000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit				
							SFR Address	· 0x98				
							51 IC / Iddiess	. 0// 0				
Bit7:	S0MODE: Se	rial Port 0 O	peration Mo	de.								
	This bit selects the UARTO Operation Mode.											
	0: 8-bit UART with Variable Baud Rate.											
Disc	1: 9-bit UART with Variable Baud Rate.											
Bit6:	UNUSED. Read = 1b. Write = don't care.											
BID:	MCE0: Multiprocessor Communication Enable.											
	SOMODF = 0	• Checks for	valid stop b	it uie Seriar I	on o operati	ion mode.						
	0: Lo	ogic level of	stop bit is ig	nored.								
	1: R	10 will only b	be activated	if stop bit is	logic level 1.							
	SOMODE = 1	: Multiproce	ssor Commu	inications Er	nable.							
	0: Lo	ogic level of	ninth bit is i	gnored.								
	1: R	I0 is set and	an interrupt	is generated	only when the	e ninth bit is	logic 1.					
Bit4:	REN0: Receiv	ve Enable.	LIADT									
	This bit enabl	es/disables t	he UART re	ceiver.								
	0: UARI0 red	ception disab	led.									
Bit3.	TR80. Ninth	Transmission	n Bit									
Dits.	The logic leve	el of this bit	will be assig	ned to the ni	nth transmissi	ion bit in 9-ł	oit UART M	ode. It is not				
used in 8-bit UART Mode. Set or cleared by software as required.												
Bit2:	RB80: Ninth Receive Bit.											
	RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9th data bit in											
	Mode 1.											
Bit1:	TIO: Transmit	t Interrupt Fl	ag.				1 0.1 1					
	Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bit in 8-bit UART)											
	mode, or at the beginning of the STOP bit in 9-bit UAK1 Mode). When the UAR10 interrupt is											
	must be clear	ed manually	by software		o life OAKTO	interrupt sei	vice routine	. This on				
Bit0:	RI0: Receive	Interrupt Fla	g.									
	Set to '1' by hardware when a byte of data has been received by UART0 (set at the STOP bit sam-											
	pling time). V	When the UA	RT0 interrup	ot is enabled,	setting this b	oit to '1' cau	ses the CPU	to vector to				
	the UART0 ir	nterrupt servi	ce routine. T	This bit must	be cleared m	anually by s	oftware.					

Figure 16.7. SCON0: Serial Port 0 Control Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
								00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_	
							SFR Addres	s: 0x99	
Bits7-0:	: SBUF0[7:0]: Serial Data Buffer Bits 7-0 (MSB-LSB) This SFR accesses two registers; a transmit shift register and a receive latch register. When data is written to SBUF0, it goes to the transmit shift register and is held for serial transmission. Writing a byte to SBUF0 initiates the transmission. A read of SBUF0 returns the contents of the receive latch								

Figure 16.8. SBUF0: Serial (UART0) Port Data Buffer Register

17.2. SPI0 Master Mode Operation

A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic 1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device simultaneously transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by reading SPI0DAT.

When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire single-master mode. The default, multi-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and is used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in this mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and a Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0 must be manually re-enabled in software under these circumstances. In multi-master systems, devices will typically default to being slave devices while they are not acting as the system master device. In multi-master mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins. Figure 17.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this mode, NSS is not used, and is not mapped to an external port pin through the crossbar. Any slave devices that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 17.3 shows a connection diagram between a master device in 3-wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an output pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be addressed using general-purpose I/O pins. Figure 17.4 shows a connection diagram for a master device in 4-wire master mode and two slave devices.

Figure 17.11. SPI0DAT: SPI0 Data Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
T3MH	T3ML	T2MH	T2ML	T1M	T0M	SCA1	SCA0	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0x8E				
Bit7:	T3MH: Time	T3MH: Timer 3 High Byte Clock Select.										
	This bit selects the clock supplied to the Timer 3 high byte if Timer 3 is configured in split 8-bit timer											
	mode. T3MH is ignored if Time 3 is in any other mode.											
	0: Timer 3 high byte uses the clock defined by the T3XCLK bit in TMR3CN.											
D'16	1: Timer 3 hi	gh byte uses	the system c	lock.								
Bito:	This hit sales	T3ML: Timer 3 Low Byte Clock Select.										
	hit selects the	a clock suppl	supplied to 1	$\frac{11101}{2000} 5.11 111$	nel 5 is com	ingured in spi	it 8-bit time	er mode, uns				
	DIL SELECTS THE CLOCK SUPPLIED TO THE LOWER 8-DIL TIMET. 0: Timer 3 low byte uses the clock defined by the T3YCLK bit in TMR 3CN											
	1: Timer 3 lo	w byte uses	the system cl	ock.	SHELL ON		•					
Bit5:	T2MH: Time	er 2 High By	te Clock Sele	ct.								
	This bit selec	This bit selects the clock supplied to the Timer 2 high byte if Timer 2 is configured in split 8-bit timer										
	mode. T2MH	I is ignored i	f Timer 2 is i	n any other 1	node.							
	0: Timer 2 hi	gh byte uses	the clock det	fined by the	T2XCLK bit	in TMR2CN	Ι.					
D : 4	1: Timer 2 hi	1: Timer 2 high byte uses the system clock.										
Bit4:	T2ML: Time	r 2 Low Byte	e Clock Selec	it.		Coursed in an1		an maada thia				
	hit selects the	I his bit selects the clock supplied to 1 imer 2. If 1 imer 2 is configured in split 8-bit timer mode, this bit selects the clock supplied to the lower 8 bit timer										
	0. Timer 2 lo	w byte uses i	the clock def	ined by the T	2XCLK hit	in TMR2CN						
	1: Timer 2 lo	1. Timer 2 low byte uses the system clock										
Bit3:	T1M: Timer	1 Clock Sele	ect.									
	This select th	e clock sour	ce supplied to	Timer 1. T	l M is ignore	d when C/T1	is set to lo	gic 1.				
	0: Timer 1 us	ses the clock	defined by th	e prescale b	its, SCA1-SC	CA0.						
	1: Timer 1 uses the system clock.											
Bit2:	TOM: Timer	0 Clock Sele	ect.	1. T'	о том	1 1 (. 1 . 1				
	1 ins on selects the clock source supplied to 1 inter 0. 10M is ignored when C/10 is set to logic 1. 0: Counter/Timer 0 uses the clock defined by the prescale bits SCA1 SCA0											
	1. Counter/Timer () uses the system clock											
Bits1-0:	SCA1-SCA0: Timer 0/1 Prescale Bits.											
	These bits co	ntrol the div	ision of the c	lock supplied	d to Timer 0	and/or Timer	1 if config	gured to use				
	prescaled clo	ck inputs.		11			c	, ,				
	SCA1 S	SCA0 Pr	escaled Cloo	<u>k</u>								
	0	$\frac{0}{1}$ Sy	stem clock d	$\frac{1}{1}$								
	0	1 Sy	stem clock d	ivided by 4								
		0 Sy	stem clock d	ivided by 48								
	I Note: E-t-	I EX	ded by 9 in	uivided by 8	with the							
	Note: Extern		ided by 8 18 Sy	richronized	with the							
	system cite	x.										

Figure 18.6. CKCON: Clock Control Register

18.3. Timer 3

Timer 3 is a 16-bit timer formed by two 8-bit SFRs: TMR3L (low byte) and TMR3H (high byte). Timer 3 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T3SPLIT bit (TMR3CN.3) defines the Timer 3 operation mode.

Timer 3 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 3 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

18.3.1. 16-bit Timer with Auto-Reload

When T3SPLIT (TMR3CN.3) is zero, Timer 3 operates as a 16-bit timer with auto-reload. Timer 3 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 3 reload registers (TMR3RLH and TM32RLL) is loaded into the Timer 3 register as shown in Figure 18.11, and the Timer 3 High Byte Overflow Flag (TMR3CN.7) is set. If Timer 3 interrupts are enabled (if IE.5 is set), an interrupt will be generated on each Timer 3 overflow. Additionally, if Timer 3 interrupts are enabled and the TF3LEN bit is set (TMR3CN.5), an interrupt will be generated each time the lower 8 bits (TL3) overflow from 0xFF to 0x00.

19.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

Figure 19.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hard-ware.

188

19.2.5. 8-Bit Pulse Width Modulator Mode

Each module can be used independently to generate a pulse width modulated (PWM) output on its associated CEXn pin. The frequency of the output is dependent on the timebase for the PCA counter/timer. The duty cycle of the PWM output signal is varied using the module's PCA0CPLn capture/compare register. When the value in the low byte of the PCA counter/timer (PCA0L) is equal to the value in PCA0CPLn, the output on the CEXn pin will be set. When the count value in PCA0L overflows, the CEXn output will be reset (see Figure 19.8). Also, when the counter/timer low byte (PCA0L) overflows from 0xFF to 0x00, PCA0CPLn is reloaded automatically with the value stored in the module's capture/compare high byte (PCA0CPHn) without software intervention. Setting the ECOMn and PWMn bits in the PCA0CPMn register enables 8-Bit Pulse Width Modulator mode. The duty cycle for 8-Bit PWM Mode is given by Equation 19.2.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

Equation 19.2. 8-Bit PWM Duty Cycle

$$DutyCycle = \frac{(256 - PCA0CPHn)}{256}$$

Using Equation 19.2, the largest duty cycle is 100% (PCA0CPHn = 0), and the smallest duty cycle is 0.39% (PCA0CPHn = 0xFF). A 0% duty cycle may be generated by clearing the ECOMn bit to '0'.

Figure 19.8. PCA 8-Bit PWM Mode Diagram

