




Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                    |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | ARM926EJ-S                                                                  |
| Core Size                  | 16/32-Bit                                                                   |
| Speed                      | 270MHz                                                                      |
| Connectivity               | EBI/EMI, I <sup>2</sup> C, IrDA, Memory Card, PCM, SPI, UART/USART, USB OTG |
| Peripherals                | DMA, I <sup>2</sup> S, LCD, PWM, WDT                                        |
| Number of I/O              | 20                                                                          |
| Program Memory Size        | -                                                                           |
| Program Memory Type        | ROMIess                                                                     |
| EEPROM Size                | -                                                                           |
| RAM Size                   | 192К х 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 1.1V ~ 3.6V                                                                 |
| Data Converters            | A/D 4x10b                                                                   |
| Oscillator Type            | External                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 180-TFBGA                                                                   |
| Supplier Device Package    | 180-TFBGA (12x12)                                                           |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc3141fet180-551   |
|                            |                                                                             |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### Low-cost, low-power ARM926EJ microcontrollers

| Pin names with prefix m a            | are mult                                        | iplexed p                      | ins. See <u>Table</u>   | <u>10</u> for pir                             | n function se    | election of multiplexed pins.                                  |
|--------------------------------------|-------------------------------------------------|--------------------------------|-------------------------|-----------------------------------------------|------------------|----------------------------------------------------------------|
| Pin name                             | BGA<br>Ball                                     | Digital<br>I/O<br>Ievel<br>[1] | Application<br>function | Pin<br>state<br>after<br>reset <sup>[2]</sup> | Cell type<br>[3] | Description                                                    |
| VSSE_IOC                             | B12;<br>D6;<br>D8;<br>D9;<br>G11;<br>L9;<br>L13 | -                              | Ground                  | -                                             | PG1              | -                                                              |
| LCD interface                        |                                                 |                                |                         |                                               |                  |                                                                |
| mLCD_CSB[4]                          | K8                                              | SUP8                           | DO                      | 0                                             | DIO4             | LCD chip select (active LOW).                                  |
| mLCD_E_RD <sup>[4]</sup>             | L8                                              | SUP8                           | DO                      | 0                                             | DIO4             | LCD 6800 enable or 8080 read enable (active HIGH).             |
| mLCD_RS <sup>[4]</sup>               | P8                                              | SUP8                           | DO                      | 0                                             | DIO4             | LCD instruction register (LOW)/data register (HIGH) select.    |
| mLCD_RW_WR <sup>[4]</sup>            | N9                                              | SUP8                           | DO                      | 0                                             | DIO4             | LCD 6800 read/write select or 8080 write enable (active HIGH). |
| mLCD_DB_0[4]                         | N8                                              | SUP8                           | DIO                     | 0                                             | DIO4             | LCD data 0.                                                    |
| mLCD_DB_1 <sup>[4]</sup>             | P9                                              | SUP8                           | DIO                     | 0                                             | DIO4             | LCD data 1.                                                    |
| mLCD_DB_2 <sup>[4]</sup>             | N6                                              | SUP8                           | DIO                     | 0                                             | DIO4             | LCD data 2.                                                    |
| mLCD_DB_3[4]                         | P6                                              | SUP8                           | DIO                     | 0                                             | DIO4             | LCD data 3.                                                    |
| mLCD_DB_4[4]                         | N7                                              | SUP8                           | DIO                     | 0                                             | DIO4             | LCD data 4.                                                    |
| mLCD_DB_5[4]                         | P7                                              | SUP8                           | DIO                     | 0                                             | DIO4             | LCD data 5.                                                    |
| mLCD_DB_6[4]                         | K6                                              | SUP8                           | DIO                     | 0                                             | DIO4             | LCD data 6.                                                    |
| mLCD_DB_7[4]                         | P5                                              | SUP8                           | DIO                     | 0                                             | DIO4             | LCD data 7.                                                    |
| mLCD_DB_8[4]                         | N5                                              | SUP8                           | DIO                     | 0                                             | DIO4             | LCD data 8/8-bit data 0.                                       |
| mLCD_DB_9[4]                         | L5                                              | SUP8                           | DIO                     | 0                                             | DIO4             | LCD data 9/8-bit data 1.                                       |
| mLCD_DB_10[4]                        | K7                                              | SUP8                           | DIO                     | 0                                             | DIO4             | LCD data 10/8-bit data 2.                                      |
| mLCD_DB_11[4]                        | N4                                              | SUP8                           | DIO                     | 0                                             | DIO4             | LCD data 11/8-bit data 3.                                      |
| mLCD_DB_12[4]                        | K5                                              | SUP8                           | DIO                     | 0                                             | DIO4             | LCD data 12/8-bit data 4/4-bit data 0.                         |
| mLCD_DB_13[4]                        | P4                                              | SUP8                           | DIO                     | 0                                             | DIO4             | LCD data 13/8-bit data 5/4-bit data 1/serial clock output.     |
| mLCD_DB_14 <sup>[4]</sup>            | P3                                              | SUP8                           | DIO                     | 0                                             | DIO4             | LCD data 14/8-bit data 6/4-bit data 2/serial data input.       |
| mLCD_DB_15 <sup>[4]</sup>            | N3                                              | SUP8                           | DIO                     | 0                                             | DIO4             | LCD data 15/8-bit data 7/4-bit data 3/serial data output.      |
| I <sup>2</sup> S/digital audio input |                                                 |                                |                         |                                               |                  |                                                                |
| I2SRX_DATA0[4]                       | M10                                             | SUP3                           | DI/GPIO                 | I                                             | DIO1             | I <sup>2</sup> S serial data receive input.                    |
| I2SRX_DATA1 <sup>[4]</sup>           | G14                                             | SUP3                           | DI/GPIO                 | I                                             | DIO1             | I <sup>2</sup> S serial data receive input.                    |
| I2SRX_BCK0 <sup>[4]</sup>            | N10                                             | SUP3                           | DIO/GPIO                | I                                             | DIO1             | I <sup>2</sup> S bit clock.                                    |
| I2SRX_BCK1 <sup>[4]</sup>            | F14                                             | SUP3                           | DIO/GPIO                | I                                             | DIO1             | I <sup>2</sup> S bit clock.                                    |
| I2SRX_WS0[4]                         | P11                                             | SUP3                           | DIO/GPIO                | I                                             | DIO1             | I <sup>2</sup> S word select.                                  |
| I2SRX_WS1 <sup>[4]</sup>             | F13                                             | SUP3                           | DIO/GPIO                | I                                             | DIO1             | I <sup>2</sup> S word select.                                  |

#### Table 4. Pin description ...continued

Pin names with prefix m are multiplexed pins. See Table 10 for pin function selection of multiplexed pins

Product data sheet

| Peripheral name              | Supported transfer types                      |
|------------------------------|-----------------------------------------------|
| I <sup>2</sup> S0/1 receive  | Peripheral to Memory                          |
| I <sup>2</sup> S0/1 transmit | Memory to peripheral                          |
| PCM interface                | Memory to peripheral and peripheral to memory |

Table 9: Peripherals that support DMA ...continued

[1] AES decryption engine is available on LPC3143 only.

### 6.12 Interrupt controller

The interrupt controller collects interrupt requests from multiple devices, masks interrupt requests, and forwards the combined requests to the processor. The interrupt controller also provides facilities to identify the interrupt requesting devices to be served.

This module has the following features:

- The interrupt controller decodes all the interrupt requests issued by the on-chip peripherals.
- Two interrupt lines (Fast Interrupt Request (FIQ), Interrupt Request (IRQ)) to the ARM core. The ARM core supports two distinct levels of priority on all interrupt sources, FIQ for high priority interrupts and IRQ for normal priority interrupts.
- Software interrupt request capability associated with each request input.
- Visibility of interrupts request state before masking.
- Support for nesting of interrupt service routines.
- Interrupts routed to IRQ and to FIQ are vectored.
- Level interrupt support.

The following blocks can generate interrupts:

- NAND flash controller
- USB 2.0 HS OTG
- Event router
- 10 bit ADC
- UART
- LCD interface
- MCI
- SPI
- I<sup>2</sup>C0-bus and I<sup>2</sup>C1-bus controllers
- Timer 0, timer 1, timer 2, and timer 3
- I<sup>2</sup>S transmit: I2STX\_0 and I2STX\_1
- I<sup>2</sup>S receive: I2SRX\_0 and I2SRX\_1
- DMA

### 6.13 Multi-layer AHB

The multi-layer AHB is an interconnection scheme based on the AHB protocol that enables parallel access paths between multiple masters and slaves in a system.

### Low-cost, low-power ARM926EJ microcontrollers

Multiple masters can have access to different slaves at the same time.

<u>Figure 5</u> gives an overview of the multi-layer AHB configuration in the LPC3141/3143. AHB masters and slaves are numbered according to their AHB port number.

#### Low-cost, low-power ARM926EJ microcontrollers

This module has the following features:

- Supports all combinations of 32-bit masters and slaves (fully connected interconnect matrix).
- Round-Robin priority mechanism for bus arbitration: all masters have the same priority and get bus access in their natural order.
- Four devices on a master port (listed in their natural order for bus arbitration):
  - DMA
  - ARM926 instruction port
  - ARM926 data port
  - USB OTG
- Devices on a slave port (some ports are shared between multiple devices):
  - AHB to APB bridge 0
  - AHB to APB bridge 1
  - AHB to APB bridge 2
  - AHB to APB bridge 3
  - AHB to APB bridge 4
  - Interrupt controller
  - NAND flash controller
  - MCI SD/SDIO
  - USB 2.0 HS OTG
  - 96 kB ISRAM
  - 96 kB ISRAM
  - 128 kB ROM
  - MPMC (Multi-Purpose Memory Controller)

### 6.14 APB bridge

The APB bridge is a bus bridge between AMBA Advanced High-performance Bus (AHB) and the ARM Peripheral Bus (APB) interface.

The module supports two different architectures:

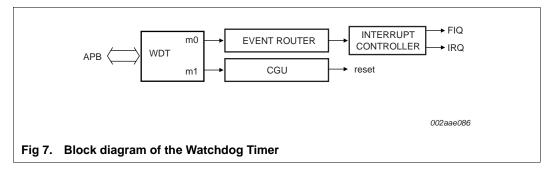
- Single-clock architecture, synchronous bridge. The same clock is used at the AHB side and at the APB side of the bridge. The AHB-to-APB4 bridge uses this architecture.
- Dual-clock architecture, asynchronous bridge. Different clocks are used at the AHB side and at the APB side of the bridge. The AHB-to-APB0, AHB-to-APB1, AHB-to-APB2, and AHB-to-APB3 bridges use this architecture.

## 6.15 Clock Generation Unit (CGU)

The clock generation unit generates all clock signals in the system and controls the reset signals for all modules. The structure of the CGU is shown in <u>Figure 6</u>. Each output clock generated by the CGU belongs to one of the domains. Each clock domain is fed by a single base clock that originates from one of the available clock sources. Within a clock domain, fractional dividers are available to divide the base clock to a lower frequency.

Within most clock domains, the output clocks are again grouped into one or more subdomains. All output clocks within one subdomain are either all generated by the same fractional divider or they are connected directly to the base clock. Therefore all output clocks within one subdomain have the same frequency and all output clocks within one clock domain are synchronous because they originate from the same base clock.

The CGU reference clock is generated by the external crystal. Furthermore the CGU has several Phase Locked Loop (PLL) circuits to generate clock signals that can be used for system clocks and/or audio clocks. All clock sources, except the output of the PLLs, can be used as reference input for the PLLs.


This module has the following features:

- · Advanced features to optimize the system for low power:
  - All output clocks can be disabled individually for flexible power optimization.
  - Some modules have automatic clock gating: they are only active when (bus) access to the module is required.
  - Variable clock scaling for automatic power optimization of the AHB bus (high clock frequency when the bus is active, low clock frequency when the bus is idle).
  - Clock wake-up feature: module clocks can be programmed to be activated automatically on the basis of an event detected by the event router (see also <u>Section 6.19</u>). For example, all clocks (including the core/bus clocks) are off and activated automatically when a button is pressed.
- Supports five clock sources:
  - Reference clock generated by the oscillator with an external crystal.
  - Pins I2SRX\_BCK0, I2SRX\_WS0, I2SRX\_BCK1 and I2SRX\_WS1 are used to input external clock signals (used for generating audio frequencies in I2SRX slave mode, see also <u>Section 6.4</u>).
- Supports two PLLs:
  - System PLL generates programmable system clock frequency from its reference input.
  - I<sup>2</sup>S/Audio PLL generates programmable audio clock frequency (typically 256 × fs) from its reference input.

**Remark:** Both the System PLL and the I<sup>2</sup>S/Audio PLL generate their frequencies based on their (individual) reference clocks. The reference clocks can be programmed to the oscillator clock or one of the external clock signals.

- Highly flexible switchbox to distribute the signals from the clock sources to the module clocks.
  - Each clock generated by the CGU is derived from one of the base clocks and optionally divided by a fractional divider.

- After a reset, a register will indicate whether a reset has occurred because of a watchdog generated reset.
- Watchdog timer can also be used as a normal timer in addition to the watchdog functionality (output m0).



## 6.17 Input/Output Configuration module (IOCONFIG)

The General Purpose Input/Output (GPIO) pins can be controlled through the register interface provided by the IOCONFIG module. Next to several dedicated GPIO pins, most digital IO pins can also be used as GPIO if they are not required for their normal, dedicated function.

This module has the following features:

- Provides control for the digital pins that can double as GPIO (next to their normal function). The pinning list in <u>Table 4</u> indicates which pins can double as GPIO.
- Each controlled pin can be configured for 4 operational modes:
  - Normal operation (i.e. controlled by a function block)
  - Driven LOW
  - Driven HIGH
  - High impedance/input
- A GPIO pin can be observed (read) in any mode.
- The register interface provides 'set' and 'clear' access methods for choosing the operational mode.

### 6.18 10-bit Analog-to-Digital Converter (ADC10B)

This module is a 10-bit successive approximation ADC with an input multiplexer to allow for multiple analog signals on its input. A common use of this module is to read out multiple keys on one input from a resistor network.

This module has the following features:

- Four analog input channels, selected by an analog multiplexer.
- Programmable ADC resolution from 2 bit to 10 bit.
- The maximum conversion rate is 400 kSamples/s for 10 bit resolution and 1500 kSamples/s for 2 bit resolution.
- Single and continuous analog-to-digital conversion scan modes.
- Power-down mode.

- MP PCM: Multi-Protocol PCM. Configurable directional per slot.
- IOM-2: Extended ISDN-Oriented modular. Double clocking physical format.
- Twelve 8-bit slots in a frame with enabling control per slot.
- Internal frame clock generation in master mode.
- Receive and transmit DMA handshaking using a request/clear protocol.
- Interrupt generation per frame.

PCM (Pulse Code Modulation) is a very common method used for transmitting analog data in digital format. Most common applications of PCM are Digital audio as in Audio CD and computers, digital telephony and digital videos.

The IOM (ISDN Oriented Modular) interface is primarily used to interconnect telecommunications ICs providing ISDN compatibility. It delivers a symmetrical full-duplex communication link containing user data, control/programming lines, and status channels.

### 6.26 LCD interface

The dedicated LCD interface contains logic to interface to a 6800 (Motorola) or a 8080 (Intel) compatible LCD controller which support 4/8/16 bit modes. This module also supports a serial interface mode. The speed of the interface can be adjusted in software to match the speed of the connected LCD display.

This module has the following features:

- 4/8/16 bit parallel interface mode: 6800-series, 8080-series.
- Serial interface mode.
- Supports multiple frequencies for the 6800/8080 bus to support high- and low-speed controllers.
- Supports polling the busy flag from LCD controller to off-load the CPU from polling.
- Contains a 16 byte FIFO for sending control and data information to the LCD controller.
- Supports maskable interrupts.
- Supports DMA transfers.

### 6.27 I<sup>2</sup>C-bus master/slave interface

The LPC3141/3143 contains two I<sup>2</sup>C master/slave interfaces.

This module has the following features:

- **I2C0 interface**: The I<sup>2</sup>C0-bus interface is a standard I<sup>2</sup>C-compliant bus interface with open-drain pins. This interface supports functions described in the I<sup>2</sup>C-bus specification for speeds up to 400 kHz. This includes multi-master operation and allows powering off this device in a working system while leaving the I<sup>2</sup>C-bus functional.
- I2C1 interface: The I<sup>2</sup>C1-bus interface uses standard I/O pins and is intended for use with a single-master I<sup>2</sup>C-bus and does not support powering off this device. Standard I/Os also do not support multi-master I<sup>2</sup>C implementations.
- Supports normal mode (100 kHz SCL).

## 7. Limiting values

#### Table 11. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).[1]

| Symbol            | Parameter            | Conditions              |     | Min  | Тур | Max  | Unit |
|-------------------|----------------------|-------------------------|-----|------|-----|------|------|
| All digital I/O p | oins                 |                         |     |      |     |      |      |
| Vi                | input voltage        |                         |     | -0.5 | -   | +3.6 | V    |
| Vo                | output voltage       |                         |     | -0.5 | -   | +3.6 | V    |
| lo                | output current       | VDDE_IOC = 3.3 V        |     | -    | 4   | -    | mA   |
| Temperature v     | alues                |                         |     |      |     |      |      |
| Tj                | junction temperature | e                       |     | -40  | 25  | +125 | °C   |
| T <sub>stg</sub>  | storage temperature  | )                       | [2] | -65  | -   | +150 | °C   |
| T <sub>amb</sub>  | ambient temperatur   | e                       |     | -40  | +25 | +85  | °C   |
| Electrostatic h   | andling              |                         |     |      |     |      |      |
| V <sub>ESD</sub>  | electrostatic        | human body model        | [3] | -500 | -   | +500 | V    |
|                   | discharge voltage    | machine model           |     | -100 | -   | +100 | V    |
|                   |                      | charged device<br>model |     | -    | 500 | -    | V    |

[1] The following applies to the limiting values:

a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.

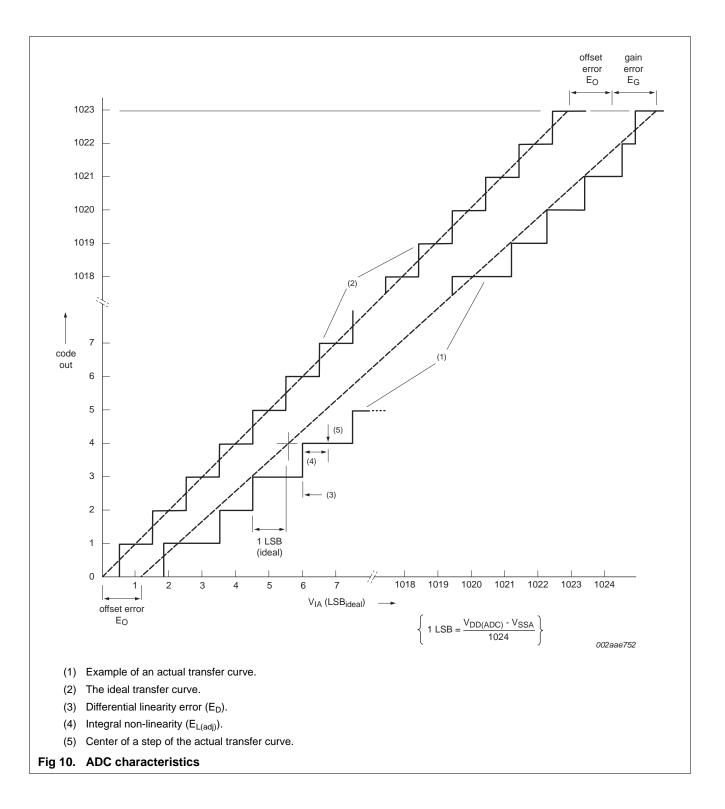
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V<sub>SS</sub> unless otherwise noted.

[2] Dependent on package type.

[3] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k $\Omega$  series resistor.

### Low-cost, low-power ARM926EJ microcontrollers

### Table 12: Static characteristics ...continued


 $T_{amb} = -40$  °C to +85 °C unless otherwise specified.

| Symbol          | Parameter                    | Conditions                                                                 |            | Min                      | Тур | Max                 | Unit |
|-----------------|------------------------------|----------------------------------------------------------------------------|------------|--------------------------|-----|---------------------|------|
| latch           | I/O latch-up current         | –(1.5V <sub>DD(IO)</sub> ) < V <sub>I</sub> <<br>(1.5V <sub>DD(IO)</sub> ) | <u>[1]</u> | -                        | -   | 100                 | mA   |
| pu              | pull-up current              | inputs with pull-up; $V_I = 0;$                                            |            |                          |     |                     |      |
|                 |                              | SUP4; SUP8; 1.8 V mode                                                     | [1]        | 47                       | 65  | 103                 | μA   |
|                 |                              | SUP4; SUP8; 3.3 V<br>mode                                                  | <u>[1]</u> | 45                       | 50  | 101                 | μΑ   |
|                 |                              | SUP3                                                                       |            | 29                       | 50  | 76                  | μΑ   |
| pd              | pull-down current            | inputs with pull-down;<br>$V_I = V_{DD(IO)};$                              |            |                          |     |                     |      |
|                 |                              | SUP4; SUP8;<br>1.8 V mode                                                  | <u>[1]</u> | 49                       | 75  | 110                 | μΑ   |
|                 |                              | SUP4; SUP8;<br>3.3 V mode                                                  | <u>[1]</u> | 56                       | 50  | 110                 | μΑ   |
|                 |                              | SUP3                                                                       | [1]        | 25                       | 50  | 68                  | μA   |
| Output pin      | s and I/O pins configured    | d as output                                                                |            |                          |     |                     |      |
| Vo              | output voltage               |                                                                            |            | -                        | -   | V <sub>DD(IO)</sub> | V    |
| •               | HIGH-level output<br>voltage | SUP4; SUP8;<br>I <sub>OH</sub> = 6 mA:                                     |            |                          |     |                     |      |
|                 |                              | 1.8 V mode                                                                 |            | $V_{\text{DD(IO)}}-0.36$ | -   | -                   | V    |
|                 |                              | 3.3 V mode                                                                 |            | $V_{DD(IO)}-0.32$        | -   | -                   | V    |
|                 |                              | SUP3; I <sub>OH</sub> = 6 mA                                               |            | $V_{\text{DD(IO)}}-0.26$ | -   | -                   | V    |
|                 |                              | SUP3; I <sub>OH</sub> = 30 mA                                              |            | $V_{\text{DD(IO)}}-0.38$ | -   | -                   | V    |
| V <sub>OL</sub> | LOW-level output voltage     | SUP4; SUP8 outputs;<br>I <sub>OL</sub> = 4 mA                              |            |                          |     |                     |      |
|                 |                              | 1.8 V mode                                                                 |            | -                        | -   | 0.2                 | V    |
|                 |                              | 3.3 V mode                                                                 | [1]        | -                        | -   | 0.4                 | V    |
|                 |                              | SUP3; I <sub>OL</sub> = 4 mA                                               |            | -                        | -   | 0.4                 | V    |
| I <sub>ОН</sub> | HIGH-level output<br>current | $V_{DD(IO)} = 1.8 V;$<br>$V_{OH} = V_{DD} - 0.4 V$                         |            | 1                        | -   | -                   | mA   |
|                 |                              | $V_{DD(IO)} = 3.3 \text{ V};$<br>$V_{OH} = V_{DD} - 0.4 \text{ V}$         |            | 2.5                      | -   | -                   | mA   |
| OL              | LOW-level output<br>current  | V <sub>DD(IO)</sub> = 1.8 V;<br>V <sub>OL</sub> = 0.4 V                    |            | 4.3                      | -   | -                   | mA   |
|                 |                              | $V_{DD(IO)} = 3.3 V;$<br>$V_{OL} = 0.4 V$                                  |            | 6.2                      | -   | -                   | mA   |
| oz              | OFF-state output<br>current  | $V_O = 0 V; V_O = V_{DD};$<br>no pull-up/down                              |            | -                        | -   | 0.064               | μA   |
| Z <sub>o</sub>  | output impedance             | $V_{DD} = VDDE_IOx$<br>(x = A, B, C)                                       |            |                          |     |                     |      |
|                 |                              | 1.8 V mode                                                                 | [1]        | -                        | 45  | -                   | Ω    |
|                 |                              | 3.3 V mode                                                                 | [1]        | -                        | 35  | -                   | Ω    |

## **NXP Semiconductors**

## LPC3141/3143

Low-cost, low-power ARM926EJ microcontrollers

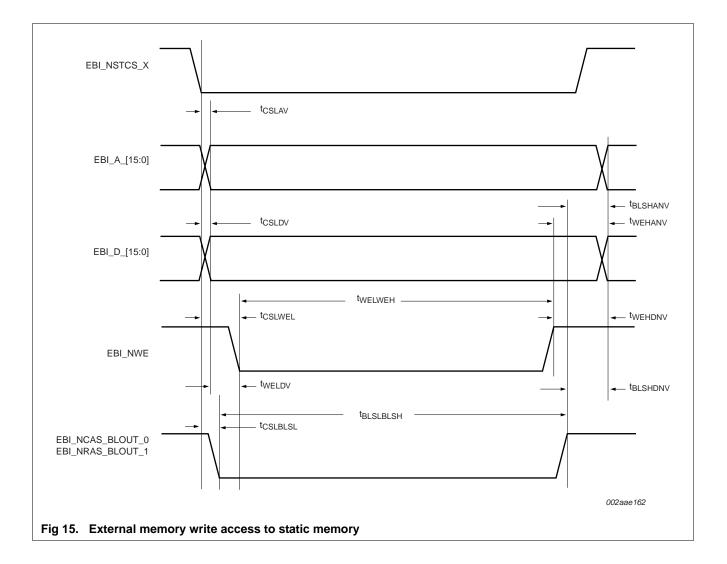


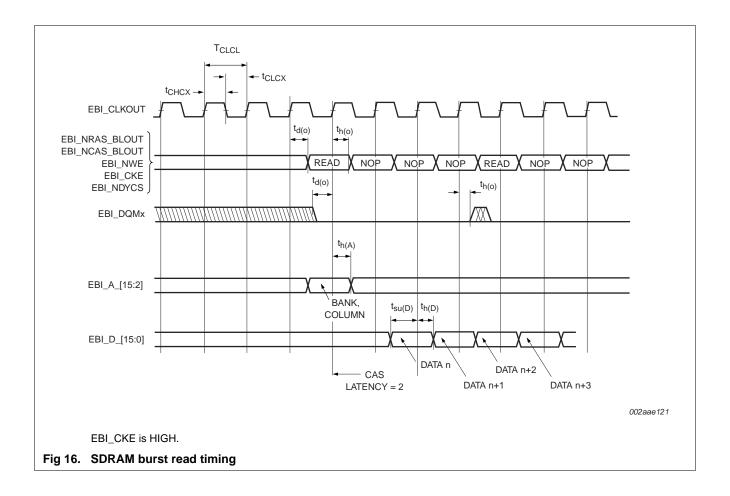
Low-cost, low-power ARM926EJ microcontrollers

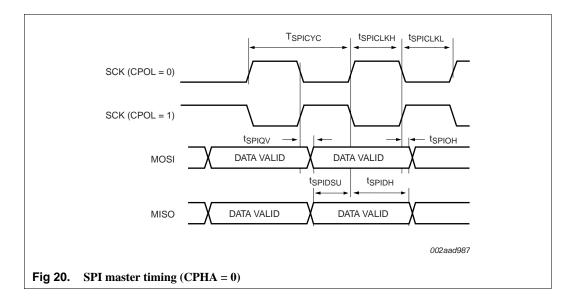
## 8.1 Power consumption

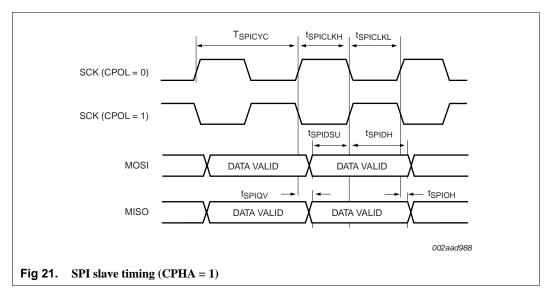
| Symbol          | Parameter                             | Conditions                                                              | Min          | Тур      | Max    | Unit |
|-----------------|---------------------------------------|-------------------------------------------------------------------------|--------------|----------|--------|------|
| Standby         | power mode <sup>[1]</sup>             |                                                                         |              |          |        |      |
| I <sub>DD</sub> | Supply current                        | core; VDDI = 1.2 V                                                      | -            | 1.1      | -      | mA   |
|                 |                                       | all other SUP1 supplies: VDDA12 = 1.2 V;<br>USB_VDDA12_PL = 1.2 V       | -            | 0.175    | -      | mA   |
|                 |                                       | VDDE_IOA = 1.8 V                                                        | -            | 0.001    | -      | mA   |
|                 |                                       | VDDE_IOB = 1.8 V                                                        | -            | 0.0008   | -      | mA   |
|                 |                                       | VDDE_IOC = 3.3 v                                                        | -            | 0.065    | -      | mA   |
|                 |                                       | ADC10B_VDDA33 = 3.3 V                                                   | -            | 0        | -      | mA   |
|                 |                                       | USB_VDDA33 = 3.3 V                                                      | -            | 0        | -      | mA   |
|                 |                                       | USB_VDDA_DRV = 3.3 V                                                    | -            | 0        | -      | mA   |
| Ρ               | Power dissipation                     | Total for supply domains SUP1, SUP3, SUP4, SUP8                         | -            | 1.75     | -      | mW   |
|                 | SDRAM based sys<br>dynamic clock scal | tem (operating frequency 270 MHz (core)/ 90 MHz (<br>ing <sup>[2]</sup> | bus)); heavy | SDRAM IC | ad pow | /er; |
| I <sub>DD</sub> | Supply current                        | core; VDDI = 1.2 V                                                      | -            | 86       | -      | mΑ   |
|                 |                                       | all other SUP1 supplies: VDDA12 = 1.2 V;<br>USB_VDDA12_PL = 1.2 V       | -            | 1.61     | -      | mA   |
|                 |                                       | VDDE_IOA = 1.8 V                                                        | -            | 10.5     | -      | mA   |
|                 |                                       | VDDE_IOB = 1.8 V                                                        | -            | 5.8      | -      | mA   |
|                 |                                       | VDDE_IOC = 3.3 V                                                        | -            | 0.52     | -      | mA   |
|                 |                                       | ADC10B_VDDA33 = 3.3 V                                                   | -            | 0.0002   | -      | mΑ   |
|                 |                                       | USB_VDDA33 = 3.3 V                                                      | -            | 1.66     | -      | mΑ   |
|                 |                                       | USB_VDDA_DRV = 3.3 V                                                    | -            | 0.895    | -      | mΑ   |
| Р               | Power dissipation                     | Total for supply domains SUP1, SUP3, SUP4, SUP8                         | -            | 144.6    | -      | mW   |
|                 | SDRAM based sys                       | tem (operating frequency 270 MHz (core)/ 90 MHz (<br>[2][3]             | bus)); heavy | SDRAM Io | ad pow | /er; |
| I <sub>DD</sub> | Supply current                        | core; VDDI = 1.2 V                                                      | -            | 67       | -      | mA   |
|                 |                                       | all other SUP1 supplies: VDDA12 = 1.2 V;<br>USB_VDDA12_PL = 1.2 V       | -            | 1.61     | -      | mA   |
|                 |                                       | VDDE_IOA = 1.8 V                                                        | -            | 10.5     | -      | mA   |
|                 |                                       | VDDE_IOB = 1.8 V                                                        | -            | 5.8      | -      | mA   |
|                 |                                       | VDDE_IOC = 3.3 V                                                        | -            | 0.52     | -      | mA   |
|                 |                                       | ADC10B_VDDA33 = 3.3 V                                                   | -            | 0.0002   | -      | mA   |
|                 |                                       | USB_VDDA33 = 3.3 V                                                      | -            | 1.66     | -      | mA   |
|                 |                                       | USB_VDDA_DRV = 3.3 V                                                    | -            | 0.895    | -      | mA   |
| Р               | Power dissipation                     | Total for supply domains SUP1, SUP3, SUP4, SUP8                         | -            | 121.8    | -      | mW   |

## Low-cost, low-power ARM926EJ microcontrollers

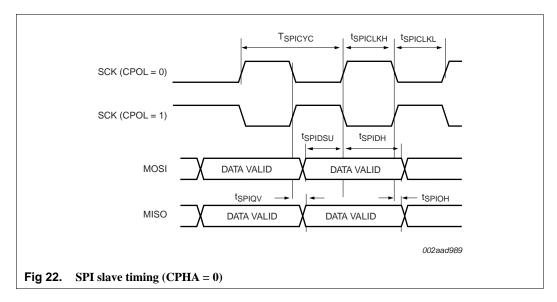

| Symbol          | Parameter                                          | Conditions                                                                      | Min           | Тур       | Max      | Unit  |
|-----------------|----------------------------------------------------|---------------------------------------------------------------------------------|---------------|-----------|----------|-------|
|                 | SDRAM based sys<br>clock scaling <sup>[4]</sup>    | tem (operating frequency 270 MHz (core)/ 90 MHz (                               | bus)); norma  | l mode po | wer; wi  | thout |
| I <sub>DD</sub> | Supply current                                     | core; VDDI = 1.2 V                                                              | -             | 36.1      | -        | mA    |
|                 |                                                    | all other SUP1 supplies: VDDA12 = 1.2 V;<br>USB_VDDA12_PL = 1.2 V               | -             | 1.61      | -        | mA    |
|                 |                                                    | VDDE_IOA = 1.8 V                                                                | -             | 3.79      | -        | mA    |
|                 |                                                    | VDDE_IOB = 1.8 V                                                                | -             | 3.75      | -        | mA    |
|                 |                                                    | VDDE_IOC = 3.3 V                                                                | -             | 0.67      | -        | mA    |
|                 |                                                    | ADC10B_VDDA33 = 3.3 V                                                           | -             | 0.0002    | -        | mA    |
|                 |                                                    | USB_VDDA33 = 3.3 V                                                              | -             | 1.66      | -        | mA    |
|                 |                                                    | USB_VDDA_DRV = 3.3 V                                                            | -             | 0.895     | -        | mA    |
| Ρ               | Power dissipation                                  | Total for supply domains SUP1, SUP3, SUP4, SUP8                                 | -             | 69.46     | -        | mW    |
|                 | SDRAM based sys<br>clock scaling <sup>[3][4]</sup> | tem (operating frequency 270 MHz (core)/ 90 MHz (                               | bus)); norma  | l mode po | wer; wi  | th    |
| I <sub>DD</sub> | Supply current                                     | core; VDDI = 1.2 V                                                              | -             | 17.8      | -        | mA    |
|                 |                                                    | all other SUP1 supplies: VDDA12 = 1.2 V;<br>USB_VDDA12_PL = 1.2 V               | -             | 1.61      | -        | mA    |
|                 |                                                    | VDDE_IOA = 1.8 V                                                                | -             | 3.79      | -        | mA    |
|                 |                                                    | VDDE_IOB = 1.8 V                                                                | -             | 3.75      | -        | mA    |
|                 |                                                    | VDDE_IOC = 3.3 V                                                                | -             | 0.67      | -        | mA    |
|                 |                                                    | ADC10B_VDDA33 = 3.3 V                                                           | -             | 0.0002    | -        | mA    |
|                 |                                                    | USB_VDDA33 = 3.3 V                                                              | -             | 1.66      | -        | mA    |
|                 |                                                    | USB_VDDA_DRV = 3.3 V                                                            | -             | 0.895     | -        | mA    |
| Ρ               | Power dissipation                                  | Total for supply domains SUP1, SUP3, SUP4, SUP8                                 | -             | 47.5      | -        | mW    |
|                 | SRAM based system<br>clock scaling; MM             | m (operating frequency 270 MHz (core)/ 90 MHz (bu<br>U on <u><sup>[5]</sup></u> | s)); normal n | node powe | er; with | out   |
| DD              | Supply current                                     | core; VDDI = 1.2 V                                                              | -             | 60.8      | -        | mA    |
|                 |                                                    | all other SUP1 supplies: VDDA12 = 1.2 V;<br>USB_VDDA12_PL = 1.2 V               | -             | 2.1       | -        | mA    |
|                 |                                                    | VDDE_IOA = 1.8 V                                                                | -             | 2.25      | -        | mA    |
|                 |                                                    | VDDE_IOB = 1.8 V                                                                | -             | 0         | -        | mA    |
|                 |                                                    | VDDE_IOC = 3.3 V                                                                | -             | 0.79      | -        | mA    |
|                 |                                                    | ADC10B_VDDA33 = 3.3 V                                                           | -             | 0.0002    | -        | mA    |
|                 |                                                    | USB_VDDA33 = 3.3 V                                                              | -             | 0.89      | -        | mA    |
|                 |                                                    | USB_VDDA_DRV = 3.3 V                                                            | -             | 1.75      | -        | mA    |
| Ρ               | Power dissipation                                  | Total for supply domains SUP1, SUP3, SUP4, SUP8                                 | -             | 90.86     | -        | mW    |


#### Table 14. Power consumption ...continued


LPC3141\_43 Product data sheet


## **NXP Semiconductors**

# LPC3141/3143









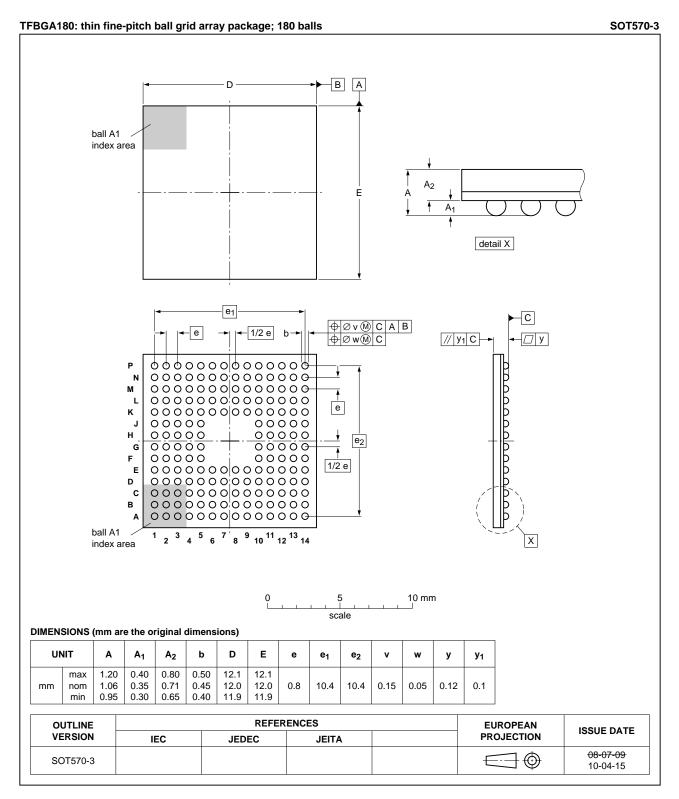

Low-cost, low-power ARM926EJ microcontrollers



### 9.6.1 Texas Instruments synchronous serial mode (SSI mode)

| Table 23.       | Dynamic  | characteristic: SPI interface (SSI mode)                 |
|-----------------|----------|----------------------------------------------------------|
| $T_{amb} = -40$ | ℃ to +85 | °C; V <sub>DD(IO)</sub> (SUP3) over specified ranges.[1] |

| Symbol                    | Parameter            | Conditions                                                                              | Min | Typ <u>[2]</u> | Max | Unit |
|---------------------------|----------------------|-----------------------------------------------------------------------------------------|-----|----------------|-----|------|
| t <sub>su(SPI_MISO)</sub> | SPI_MISO set-up time | T <sub>amb</sub> = 25 °C;<br>measured in<br>SPI Master<br>mode; see<br><u>Figure 23</u> | -   | 11             | -   | ns   |


[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

**Remark:** Note that the signal names SCK, MISO, and MOSI correspond to signals on pins SPI\_SCK, SPI\_MOSI, and SPI\_MISO in the following SPI timing diagram.

Low-cost, low-power ARM926EJ microcontrollers

## 12. Package outline



#### Fig 24. LPC3141/3143 TFBGA180 package outline

| Table 27. A | bbreviations continued                                    |
|-------------|-----------------------------------------------------------|
| Acronym     | Description                                               |
| RNG         | Random Number Generator                                   |
| ROM         | Read-Only Memory                                          |
| SD          | Secure Digital                                            |
| SDHC        | Secure Digital High Capacity                              |
| SDIO        | Secure Digital Input Output                               |
| SDR SDRAM   | Single Data Rate Synchronous Dynamic Random Access Memory |
| SE0         | Single Ended 0                                            |
| SIR         | Serial IrDA                                               |
| SPI         | Serial Peripheral Interface                               |
| SSI         | Serial Synchronous Interface                              |
| SysCReg     | System Control Registers                                  |
| TAP         | Test Access Port                                          |
| TDO         | Test Data Out                                             |
| UART        | Universal Asynchronous Receiver Transmitter               |
| USB         | Universal Serial Bus                                      |
| UTMI        | USB 2.0 Transceiver Macrocell Interface                   |
| WDT         | WatchDog Timer                                            |

#### Low-cost, low-power ARM926EJ microcontrollers

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

**Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in

automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the

## **16. Contact information**

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

## 15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I<sup>2</sup>C-bus — logo is a trademark of NXP B.V.

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com