

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN-EP (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08aw32cfder

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Chapters

Chapter	Title	Page
Chapter 1	Introduction	19
Chapter 2	Pins and Connections	23
Chapter 3	Modes of Operation	33
Chapter 4	Memory	39
Chapter 5	Resets, Interrupts, and System Configuration	65
Chapter 6	Parallel Input/Output	81
Chapter 7	Central Processor Unit (S08CPUV2)	109
Chapter 8	Internal Clock Generator (S08ICGV4)	129
Chapter 9	Keyboard Interrupt (S08KBIV1)	157
Chapter 10	Timer/PWM (S08TPMV2)	165
Chapter 11	Serial Communications Interface (S08SCIV2)	181
Chapter 12	Serial Peripheral Interface (S08SPIV3)	199
Chapter 13	Inter-Integrated Circuit (S08IICV1)	215
Chapter 14	Analog-to-Digital Converter (S08ADC10V1)	233
Chapter 15	Development Support	261
Appendix A	Electrical Characteristics and Timing Specifications	283
Appendix B	Ordering Information and Mechanical Drawings	309

6.3	Pin Desc	riptions	
	6.3.1	Port A	
	6.3.2	Port B	
	6.3.3	Port C	
	6.3.4	Port D	
	6.3.5	Port E	
	6.3.6	Port F	
	6.3.7	Port G	
6.4	Parallel I	I/O Control	
6.5	Pin Cont	rol	
	6.5.1	Internal Pullup Enable	
	6.5.2	Output Slew Rate Control Enable	
	6.5.3	Output Drive Strength Select	
6.6	Pin Beha	avior in Stop Modes	
6.7	Parallel I	I/O and Pin Control Registers	
	6.7.1	Port A I/O Registers (PTAD and PTADD)	
	6.7.2	Port A Pin Control Registers (PTAPE, PTASE, PTADS)	
	6.7.3	Port B I/O Registers (PTBD and PTBDD)	91
	6.7.4	Port B Pin Control Registers (PTBPE, PTBSE, PTBDS)	
	6.7.5	Port C I/O Registers (PTCD and PTCDD)	94
	6.7.6	Port C Pin Control Registers (PTCPE, PTCSE, PTCDS)	95
	6.7.7	Port D I/O Registers (PTDD and PTDDD)	
	6.7.8	Port D Pin Control Registers (PTDPE, PTDSE, PTDDS)	
	6.7.9	Port E I/O Registers (PTED and PTEDD)	100
	6.7.10	Port E Pin Control Registers (PTEPE, PTESE, PTEDS)	101
	6.7.11	Port F I/O Registers (PTFD and PTFDD)	103
	6.7.12	Port F Pin Control Registers (PTFPE, PTFSE, PTFDS)	104
	6.7.13	Port G I/O Registers (PTGD and PTGDD)	106
	6.7.14	Port G Pin Control Registers (PTGPE, PTGSE, PTGDS)	107

Chapter 7 Central Processor Unit (S08CPUV2)

7.1	Introduct	tion1	09
	7.1.1	Features1	09
7.2	Program	mer's Model and CPU Registers1	10

MC9S08AW60 Data Sheet, Rev 2

Section Number

Title

Page

Appendix B Ordering Information and Mechanical Drawings

B .1	Ordering	Information	
B.2	Orderabl	e Part Numbering System	
	B.2.1	Consumer and Industrial Orderable Part Numbering System	
	B.2.2	Automotive Orderable Part Numbering System	
B.3	Mechani	cal Drawings	

Chapter 2 Pins and Connections

Figure 2-1. MC9S08AW60 Series in 64-Pin QFP/LQFP Package

4.6.4 FLASH Protection Register (FPROT and NVPROT)

During reset, the contents of the nonvolatile location NVPROT are copied from FLASH into FPROT. This register may be read at any time.

- If FPDIS = 0, then protection can be increased (in other words, a smaller value of FPS can be written).
- If FPDIS = 1, then writes do not change protection.

	7	6	5	4	3	2	1	0
R	FPS7	FPS6	FPS5	FPS4	FPS3	FPS2	FPS1	FPDIS
w	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)

Reset

This register is loaded from nonvolatile location NVPROT during reset.

¹ Background commands can be used to change the contents of these bits in FPROT.

Figure 4-9. FLASH Protection Register (FPROT)

Table 4-11. FPROT Register Field Descriptions

Field	Description
7:1 FPS[7:1]	FLASH Protect Select Bits — When FPDIS = 0, this 7-bit field determines the ending address of unprotected FLASH locations at the high address end of the FLASH. Protected FLASH locations cannot be erased or programmed.
0 FPDIS	 FLASH Protection Disable 0 FLASH block specified by FPS[7:1] is block protected (program and erase not allowed). 1 No FLASH block is protected.

4.6.5 FLASH Status Register (FSTAT)

Bits 3, 1, and 0 always read 0 and writes have no meaning or effect. The remaining five bits are status bits that can be read at any time. Writes to these bits have special meanings that are discussed in the bit descriptions.

Figure 4-10. FLASH Status Register (FSTAT)

NOTE

The voltage measured on the pulled up IRQ pin may be as low as $V_{DD} - 0.7$ V. The internal gates connected to this pin are pulled all the way to V_{DD} . All other pins with enabled pullup resistors will have an unloaded measurement of V_{DD} .

5.5.2.2 Edge and Level Sensitivity

The IRQMOD control bit reconfigures the detection logic so it detects edge events and pin levels. In this edge detection mode, the IRQF status flag becomes set when an edge is detected (when the IRQ pin changes from the deasserted to the asserted level), but the flag is continuously set (and cannot be cleared) as long as the IRQ pin remains at the asserted level.

5.5.3 Interrupt Vectors, Sources, and Local Masks

Table 5-1 provides a summary of all interrupt sources. Higher-priority sources are located toward the bottom of the table. The high-order byte of the address for the interrupt service routine is located at the first address in the vector address column, and the low-order byte of the address for the interrupt service routine is located at the next higher address.

When an interrupt condition occurs, an associated flag bit becomes set. If the associated local interrupt enable is 1, an interrupt request is sent to the CPU. Within the CPU, if the global interrupt mask (I bit in the CCR) is 0, the CPU will finish the current instruction, stack the PCL, PCH, X, A, and CCR CPU registers, set the I bit, and then fetch the interrupt vector for the highest priority pending interrupt. Processing then continues in the interrupt service routine.

Chapter 6 Parallel Input/Output

6.7.5 Port C I/O Registers (PTCD and PTCDD)

Port C parallel I/O function is controlled by the registers listed below.

Figure 6-19. Port C Data Register (PTCD)

Table 6-12	PTCD	Register	Field	Descriptions
------------	------	----------	-------	--------------

Field	Description
6:0 PTCD[6:0]	Port C Data Register Bits — For port C pins that are inputs, reads return the logic level on the pin. For port C pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port C pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTCD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pullups disabled.

_	7	6	5	4	3	2	1	0
R W		PTCDD6	PTCDD5	PTCDD4	PTCDD3	PTCDD2	PTCDD1	PTCDD0
Reset	0	0	0	0	0	0	0	0

Figure 6-20. Data Direction for Port C (PTCDD)

Table 6-13. PTCDD Register Field Descriptions

Field	Description
6:0 PTCDD[6:0]	Data Direction for Port C Bits — These read/write bits control the direction of port C pins and what is read for PTCD reads.
	 Input (output driver disabled) and reads return the pin value. Output driver enabled for port C bit n and PTCD reads return the contents of PTCDn.

Source				c	Eff on (ec CC	t R		ess le	epe	pue	cles ¹
Form	Operation	Description	v	н	I	N	z	с	Addre Moc	Opco	Opera	Bus Cy
BRCLR n,opr8a,rel	Branch if Bit <i>n</i> in Memory Clear	Branch if (Mn) = 0	_	_	_	_	_	¢	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	01 03 05 07 09 0B 0D 0F	dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr	5555555 555555555555555555555555555555
BRN <i>rel</i>	Branch Never	Uses 3 Bus Cycles	-	-	-	-	-	-	REL	21	rr	3
BRSET n,opr8a,rel	Branch if Bit <i>n</i> in Memory Set	Branch if (Mn) = 1	_	_	_	_	_	\$	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	00 02 04 06 08 0A 0C 0E	dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr	5555555555
BSET n,opr8a	Set Bit <i>n</i> in Memory	Mn ← 1	_	_	_	_	_	_	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	10 12 14 16 18 1A 1C 1E	dd dd dd dd dd dd dd dd dd	5 5 5 5 5 5 5 5 5 5 5 5 5
BSR rel	Branch to Subroutine	$\begin{array}{l} PC \leftarrow (PC) + 0 \texttt{x0002} \\ \texttt{push} \ (PCL) \texttt{; } SP \leftarrow (SP) - 0 \texttt{x0001} \\ \texttt{push} \ (PCH) \texttt{; } SP \leftarrow (SP) - 0 \texttt{x0001} \\ PC \leftarrow (PC) + \mathit{rel} \end{array}$	_	_	_	_	_	_	REL	AD	rr	5
CBEQ opr8a,rel CBEQA #opr8i,rel CBEQX #opr8i,rel CBEQ oprx8,X+,rel CBEQ ,X+,rel CBEQ oprx8,SP,rel	Compare and Branch if Equal	Branch if $(A) = (M)$ Branch if $(A) = (M)$ Branch if $(X) = (M)$ Branch if $(A) = (M)$ Branch if $(A) = (M)$ Branch if $(A) = (M)$	_	_	_	_	_	_	DIR IMM IX1+ IX+ SP1	31 41 51 61 71 9E61	dd rr ii rr ii rr ff rr rr ff rr	544556
CLC	Clear Carry Bit	$C \leftarrow 0$	-	-	-	-	-	0	INH	98		1
CLI	Clear Interrupt Mask Bit	$I \leftarrow 0$	-	-	0	-	-	-	INH	9A		1
CLR opr8a CLRA CLRX CLRH CLR oprx8,X CLR ,X CLR oprx8,SP	Clear	$\begin{array}{c} M \leftarrow 0x00 \\ A \leftarrow 0x00 \\ X \leftarrow 0x00 \\ H \leftarrow 0x00 \\ M \leftarrow 0x00 \\ M \leftarrow 0x00 \\ M \leftarrow 0x00 \\ M \leftarrow 0x00 \end{array}$	0	_	_	0	1	_	DIR INH INH INH IX1 IX SP1	3F 4F 5F 8C 6F 7F 9E6F	dd ff ff	5 1 1 5 4 6
CMP #opr8i CMP opr8a CMP opr16a CMP oprx16,X CMP oprx8,X CMP ,X CMP oprx16,SP CMP oprx8,SP	Compare Accumulator with Memory	(A) – (M) (CCR Updated But Operands Not Changed)	\$	_	_	\$	\$	\$	IMM DIR EXT IX2 IX1 IX SP2 SP1	A1 B1 C1 E1 F1 9ED1 9EE1	ii dd hh II ee ff ff ee ff ff	2 3 4 3 3 5 4
COM opr8a COMA COMX COM oprx8,X COM ,X COM oprx8,SP	Complement (One's Complement)	$\begin{array}{c} M \leftarrow (\overline{M}) = 0xFF - (M) \\ A \leftarrow (\overline{A}) = 0xFF - (A) \\ X \leftarrow (\overline{X}) = 0xFF - (X) \\ M \leftarrow (\overline{M}) = 0xFF - (M) \\ M \leftarrow (\overline{M}) = 0xFF - (M) \\ M \leftarrow (\overline{M}) = 0xFF - (M) \end{array}$	0	_	_	\$	\$	1	DIR INH INH IX1 IX SP1	33 43 53 63 73 9E63	dd ff ff	5 1 5 4 6
CPHX opr16a CPHX #opr16i CPHX opr8a CPHX oprx8,SP	Compare Index Register (H:X) with Memory	(H:X) – (M:M + 0x0001) (CCR Updated But Operands Not Changed)	\$	_	_	¢	\$	\$	EXT IMM DIR SP1	3E 65 75 9EF3	hh ll jj kk dd ff	6 3 5 6

Table 7-2. HCS08 Instruction Set Summary (Sheet 3 of 7)

Chapter 7 Central Processor Unit (S08CPUV2)

Source Form	Operation	Description			Eff on (ec CC	t R		ress ode	ode	rand	ycles ¹
	operation	Description		н	I	N	z	с	Add Mo	Opq	Ope	Bus C
ТАР	Transfer Accumulator to CCR	$CCR \gets (A)$	¢	\$	\$	\$	\$	¢	INH	84		1
ТАХ	Transfer Accumulator to X (Index Register Low)	X ← (A)	-	-	-	-	-	-	INH	97		1
ТРА	Transfer CCR to Accumulator	$A \gets (CCR)$	-	-	-	-	-	-	INH	85		1
TST opr8a TSTA TSTX TST oprx8,X TST ,X TST oprx8,SP	Test for Negative or Zero	$\begin{array}{l} (M) - 0x00\\ (A) - 0x00\\ (X) - 0x00\\ (M) - 0x00 \end{array}$	0	_	_	\$	\$	_	DIR INH INH IX1 IX SP1	3D 4D 5D 6D 7D 9E6D	dd ff ff	4 1 4 3 5
TSX	Transfer SP to Index Reg.	$H:X \leftarrow (SP) + 0x0001$	-	-	-	-	-	-	INH	95		2
ТХА	Transfer X (Index Reg. Low) to Accumulator	$A \gets (X)$	-	_	-	-	-	-	INH	9F		1
TXS	Transfer Index Reg. to SP	$SP \leftarrow (H:X) - 0x0001$	-	-	-	-	-	-	INH	94		2
WAIT	Enable Interrupts; Wait for Interrupt	l bit ← 0; Halt CPU	-	_	0	-	-	-	INH	8F		2+

Table 7-2. HCS08 Instruction Set Summary (Sheet 7 of 7)

¹ Bus clock frequency is one-half of the CPU clock frequency.

CPWMS	MSnB:MSnA	ELSnB:ELSnA	Mode	Configuration		
Х	ХХ	00	Pin not used for TPM channel; use as an external clock for the TPM or revert to general-purpose I/O			
0	00	01	Input capture	Capture on rising edge only		
		10		Capture on falling edge only		
		11		Capture on rising or falling edge		
	01	00	Output	Software compare only		
		01	compare	Toggle output on compare		
		10		Clear output on compare		
		11		Set output on compare		
	1X	10	Edge-aligned	High-true pulses (clear output on compare)		
		X1	PWM	Low-true pulses (set output on compare)		
1	XX	10	Center-aligned	High-true pulses (clear output on compare-up)		
		X1	PWM	Low-true pulses (set output on compare-up)		

Tahle	10-5	Mode	Edge	and I	l evel	Selection
lane	10-5.	woue,	Luye,	anu	LEVEI	Selection

If the associated port pin is not stable for at least two bus clock cycles before changing to input capture mode, it is possible to get an unexpected indication of an edge trigger. Typically, a program would clear status flags after changing channel configuration bits and before enabling channel interrupts or using the status flags to avoid any unexpected behavior.

10.4.5 Timer x Channel Value Registers (TPMxCnVH:TPMxCnVL)

These read/write registers contain the captured TPM counter value of the input capture function or the output compare value for the output compare or PWM functions. The channel value registers are cleared by reset.

_	7	6	5	4	3	2	1	0
R W	Bit 15	14	13	12	11	10	9	Bit 8
Reset	0	0	0	0	0	0	0	0

	7	6	5	4	3	2	1	0
R W	Bit 7	6	5	4	3	2	1	Bit 0
Reset	0	0	0	0	0	0	0	0

Figure 10-10. Timer Channel Value Register Low (TPMxCnVL)

In input capture mode, reading either byte (TPMxCnVH or TPMxCnVL) latches the contents of both bytes into a buffer where they remain latched until the other byte is read. This latching mechanism also resets (becomes unlatched) when the TPMxCnSC register is written.

transferred to the corresponding timer channel registers only after both 8-bit bytes of a 16-bit register have been written and the timer counter overflows (reverses direction from up-counting to down-counting at the end of the terminal count in the modulus register). This TPMxCNT overflow requirement only applies to PWM channels, not output compares.

Optionally, when TPMxCNTH:TPMxCNTL = TPMxMODH:TPMxMODL, the TPM can generate a TOF interrupt at the end of this count. The user can choose to reload any number of the PWM buffers, and they will all update simultaneously at the start of a new period.

Writing to TPMxSC cancels any values written to TPMxMODH and/or TPMxMODL and resets the coherency mechanism for the modulo registers. Writing to TPMxCnSC cancels any values written to the channel value registers and resets the coherency mechanism for TPMxCnVH:TPMxCnVL.

10.6 TPM Interrupts

The TPM generates an optional interrupt for the main counter overflow and an interrupt for each channel. The meaning of channel interrupts depends on the mode of operation for each channel. If the channel is configured for input capture, the interrupt flag is set each time the selected input capture edge is recognized. If the channel is configured for output compare or PWM modes, the interrupt flag is set each time the main timer counter matches the value in the 16-bit channel value register. See the Resets, Interrupts, and System Configuration chapter for absolute interrupt vector addresses, priority, and local interrupt mask control bits.

For each interrupt source in the TPM, a flag bit is set on recognition of the interrupt condition such as timer overflow, channel input capture, or output compare events. This flag may be read (polled) by software to verify that the action has occurred, or an associated enable bit (TOIE or CHnIE) can be set to enable hardware interrupt generation. While the interrupt enable bit is set, a static interrupt will be generated whenever the associated interrupt flag equals 1. It is the responsibility of user software to perform a sequence of steps to clear the interrupt flag before returning from the interrupt service routine.

10.6.1 Clearing Timer Interrupt Flags

TPM interrupt flags are cleared by a 2-step process that includes a read of the flag bit while it is set (1) followed by a write of 0 to the bit. If a new event is detected between these two steps, the sequence is reset and the interrupt flag remains set after the second step to avoid the possibility of missing the new event.

10.6.2 Timer Overflow Interrupt Description

The conditions that cause TOF to become set depend on the counting mode (up or up/down). In up-counting mode, the 16-bit timer counter counts from 0x0000 through 0xFFFF and overflows to 0x0000 on the next counting clock. TOF becomes set at the transition from 0xFFFF to 0x0000. When a modulus limit is set, TOF becomes set at the transition from the value set in the modulus register to 0x0000. When the counter is operating in up-/down-counting mode, the TOF flag gets set as the counter changes direction at the transition from the value set in the modulus register and the next lower count value. This corresponds to the end of a PWM period. (The 0x0000 count value corresponds to the center of a period.)

Chapter 10 Timer/Pulse-Width Modulator (S08TPMV2)

10.6.3 Channel Event Interrupt Description

The meaning of channel interrupts depends on the current mode of the channel (input capture, output compare, edge-aligned PWM, or center-aligned PWM).

When a channel is configured as an input capture channel, the ELSnB:ELSnA control bits select rising edges, falling edges, any edge, or no edge (off) as the edge that triggers an input capture event. When the selected edge is detected, the interrupt flag is set. The flag is cleared by the 2-step sequence described in Section 10.6.1, "Clearing Timer Interrupt Flags."

When a channel is configured as an output compare channel, the interrupt flag is set each time the main timer counter matches the 16-bit value in the channel value register. The flag is cleared by the 2-step sequence described in Section 10.6.1, "Clearing Timer Interrupt Flags."

10.6.4 PWM End-of-Duty-Cycle Events

For channels that are configured for PWM operation, there are two possibilities:

- When the channel is configured for edge-aligned PWM, the channel flag is set when the timer counter matches the channel value register that marks the end of the active duty cycle period.
- When the channel is configured for center-aligned PWM, the timer count matches the channel value register twice during each PWM cycle. In this CPWM case, the channel flag is set at the start and at the end of the active duty cycle, which are the times when the timer counter matches the channel value register.

The flag is cleared by the 2-step sequence described in Section 10.6.1, "Clearing Timer Interrupt Flags."

Figure 11-3 shows the receiver portion of the SCI.

11.2 Register Definition

The SCI has eight 8-bit registers to control baud rate, select SCI options, report SCI status, and for transmit/receive data.

Chapter 11 Serial Communications Interface (S08SCIV2)

11.2.3 SCI Control Register 2 (SCIxC2)

This register can be read or written at any time.

Figure 11-7. SCI Control Register 2 (SCIxC2)

Table 11-4. SCIxC2 Register Field Descriptions

Field	Description
7 TIE	Transmit Interrupt Enable (for TDRE)0Hardware interrupts from TDRE disabled (use polling).1Hardware interrupt requested when TDRE flag is 1.
6 TCIE	Transmission Complete Interrupt Enable (for TC)0Hardware interrupts from TC disabled (use polling).1Hardware interrupt requested when TC flag is 1.
5 RIE	Receiver Interrupt Enable (for RDRF)0Hardware interrupts from RDRF disabled (use polling).1Hardware interrupt requested when RDRF flag is 1.
4 ILIE	Idle Line Interrupt Enable (for IDLE)00111Hardware interrupt requested when IDLE flag is 1.
3 TE	Transmitter Enable0Transmitter off.1Transmitter on.TE must be 1 in order to use the SCI transmitter. Normally, when TE = 1, the SCI forces the TxD pin to act as an output for the SCI system. If LOOPS = 1 and RSRC = 0, the TxD pin reverts to being a port B general-purpose I/O pin even if TE = 1.When the SCI is configured for single-wire operation (LOOPS = RSRC = 1), TXDIR controls the direction of traffic on the single SCI communication line (TxD pin).TE also can be used to queue an idle character by writing TE = 0 then TE = 1 while a transmission is in progress.Refer to Section 11.3.2.1, "Send Break and Queued Idle" for more details.When TE is written to 0, the transmitter keeps control of the port TxD pin until any data, queued idle, or queued break character finishes transmitting before allowing the pin to revert to a general-purpose I/O pin.
2 RE	Receiver Enable — When the SCI receiver is off, the RxD pin reverts to being a general-purpose port I/O pin. 0 Receiver off. 1 Receiver on.

Chapter 13 Inter-Integrated Circuit (S08IICV1)

13.1.3 Block Diagram

Figure 13-2 is a block diagram of the IIC.

Figure 13-2. IIC Functional Block Diagram

13.2 External Signal Description

This section describes each user-accessible pin signal.

13.2.1 SCL — Serial Clock Line

The bidirectional SCL is the serial clock line of the IIC system.

13.2.2 SDA — Serial Data Line

The bidirectional SDA is the serial data line of the IIC system.

13.3 Register Definition

This section consists of the IIC register descriptions in address order.

Chapter 15 Development Support

The SYNC command is unlike other BDC commands because the host does not necessarily know the correct communications speed to use for BDC communications until after it has analyzed the response to the SYNC command.

To issue a SYNC command, the host:

- Drives the BKGD pin low for at least 128 cycles of the slowest possible BDC clock (The slowest clock is normally the reference oscillator/64 or the self-clocked rate/64.)
- Drives BKGD high for a brief speedup pulse to get a fast rise time (This speedup pulse is typically one cycle of the fastest clock in the system.)
- Removes all drive to the BKGD pin so it reverts to high impedance
- Monitors the BKGD pin for the sync response pulse

The target, upon detecting the SYNC request from the host (which is a much longer low time than would ever occur during normal BDC communications):

- Waits for BKGD to return to a logic high
- Delays 16 cycles to allow the host to stop driving the high speedup pulse
- Drives BKGD low for 128 BDC clock cycles
- Drives a 1-cycle high speedup pulse to force a fast rise time on BKGD
- Removes all drive to the BKGD pin so it reverts to high impedance

The host measures the low time of this 128-cycle sync response pulse and determines the correct speed for subsequent BDC communications. Typically, the host can determine the correct communication speed within a few percent of the actual target speed and the communication protocol can easily tolerate speed errors of several percent.

15.2.4 BDC Hardware Breakpoint

The BDC includes one relatively simple hardware breakpoint that compares the CPU address bus to a 16-bit match value in the BDCBKPT register. This breakpoint can generate a forced breakpoint or a tagged breakpoint. A forced breakpoint causes the CPU to enter active background mode at the first instruction boundary following any access to the breakpoint address. The tagged breakpoint causes the instruction opcode at the breakpoint address to be tagged so that the CPU will enter active background mode rather than executing that instruction if and when it reaches the end of the instruction queue. This implies that tagged breakpoints can only be placed at the address of an instruction opcode while forced breakpoints can be set at any address.

The breakpoint enable (BKPTEN) control bit in the BDC status and control register (BDCSCR) is used to enable the breakpoint logic (BKPTEN = 1). When BKPTEN = 0, its default value after reset, the breakpoint logic is disabled and no BDC breakpoints are requested regardless of the values in other BDC breakpoint registers and control bits. The force/tag select (FTS) control bit in BDCSCR is used to select forced (FTS = 1) or tagged (FTS = 0) type breakpoints.

The on-chip debug module (DBG) includes circuitry for two additional hardware breakpoints that are more flexible than the simple breakpoint in the BDC module.

Appendix A Electrical Characteristics and Timing Specifications

A.10.2 Timer/PWM (TPM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Function	Symbol	Min	Мах	Unit
External clock frequency	f _{TPMext}	dc	f _{Bus} /4	Hz
External clock period	t _{TPMext}	4	_	t _{cyc}
External clock high time	t _{clkh}	1.5	_	t _{cyc}
External clock low time	t _{ciki}	1.5	_	t _{cyc}
Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table	A-14.	ТРМ	Input	Timina
Tuble	A 17.		mput	i i i i i i i i i i i i i i i i i i i

Figure A-14. Timer External Clock

Figure A-15. Timer Input Capture Pulse

Appendix A Electrical Characteristics and Timing Specifications

The conducted susceptibility is determined by injecting the transient susceptibility signal on each pin of the microcontroller. The transient waveform and injection methodology is based on IEC 61000-4-4 (EFT/B). The transient voltage required to cause performance degradation on any pin in the tested configuration is greater than or equal to the reported levels unless otherwise indicated by footnotes below the table.

Parameter	Symbol	Conditions	f _{OSC} /f _{BUS}	Result	Amplitude ¹ (Min)	Unit
				A	±0 ±2.0 ²	
Conducted susceptibility, electrical	ical V _{CS_EFT}	$V_{DD} = 5.5V$ $T_A = +25^{\circ}C$ package type 64 QFP	32768 Hz	В	±2.5	kV
fast transient/burst (EFT/B)			crystal 2 MHz Bus	С	±3.0	
				D	>±3.0	

Table A-18.	Conducted	Susceptibility
-------------	-----------	----------------

¹ Data based on qualification test results. Not tested in production.

² The RESET pin is susceptible to the minimum applied transient of 220 V. All other pins have a result of A up to a minimum of 2000V.

The susceptibility performance classification is described in Table A-19.

Result	Performance Criteria						
A	No failure	The MCU performs as designed during and after exposure.					
В	Self-recovering failure	The MCU does not perform as designed during exposure. The MCU returns automatically to normal operation after exposure is removed.					
С	Soft failure	The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the RESET pin is asserted.					
D	Hard failure	The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the power to the MCU is cycled.					
E	Damage	The MCU does not perform as designed during and after exposure. The MCU cannot be returned to proper operation due to physical damage or other permanent performance degradation.					

Table A-19. Susceptibility Performance Classification

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	IT TO SCALE	
TITLE:	D⊡CUMENT N⊡: 98ASS23225W REV: D				
44 LD LQFP, 10 X 10 PKG, 0.8 PITCH, 1	1.4 THICK	CASE NUMBER: 824D-02 26 FEB 200			
		STANDARD: JE	DEC MS-026-BCB		

How to Reach Us:

USA/Europe/Locations not listed:

Freescale Semiconductor Literature Distribution P.O. Box 5405, Denver, Colorado 80217 1-800-521-6274 or 480-768-2130

Japan:

Freescale Semiconductor Japan Ltd. SPS, Technical Information Center 3-20-1, Minami-Azabu Minato-ku Tokyo 106-8573, Japan 81-3-3440-3569

Asia/Pacific:

Freescale Semiconductor H.K. Ltd. 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T. Hong Kong 852-26668334

Learn More: For more information about Freescale Semiconductor products, please visit http://www.freescale.com

MC9S08AW60, Rev 2 12/2006

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005.

