

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08aw32cfger

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section Number

Title

Page

4.4	FLASH		50
	4.4.1	Features	51
	4.4.2	Program and Erase Times	
	4.4.3	Program and Erase Command Execution	52
	4.4.4	Burst Program Execution	
	4.4.5	Access Errors	55
	4.4.6	FLASH Block Protection	55
	4.4.7	Vector Redirection	56
4.5	Security		56
4.6	FLASH	Registers and Control Bits	58
	4.6.1	FLASH Clock Divider Register (FCDIV)	
	4.6.2	FLASH Options Register (FOPT and NVOPT)	59
	4.6.3	FLASH Configuration Register (FCNFG)	60
	4.6.4	FLASH Protection Register (FPROT and NVPROT)	
	4.6.5	FLASH Status Register (FSTAT)	61
	4.6.6	FLASH Command Register (FCMD)	63

Chapter 5 Resets, Interrupts, and System Configuration

5.1	Introduc	tion	65
5.2	Features		65
5.3	MCU Re	eset	65
5.4	Compute	er Operating Properly (COP) Watchdog	66
5.5	Interrupt	ts	66
	5.5.1	Interrupt Stack Frame	67
	5.5.2	External Interrupt Request (IRQ) Pin	68
	5.5.3	Interrupt Vectors, Sources, and Local Masks	69
5.6	Low-Vol	ltage Detect (LVD) System	
	5.6.1	Power-On Reset Operation	71
	5.6.2	LVD Reset Operation	71
	5.6.3	LVD Interrupt Operation	
	5.6.4	Low-Voltage Warning (LVW)	
5.7		ne Interrupt (RTI)	
5.8		Output	
5.9	Reset, In	terrupt, and System Control Registers and Control Bits	72
	5.9.1	Interrupt Pin Request Status and Control Register (IRQSC)	
	5.9.2	System Reset Status Register (SRS)	74
	5.9.3	System Background Debug Force Reset Register (SBDFR)	75
	5.9.4	System Options Register (SOPT)	
	5.9.5	System MCLK Control Register (SMCLK)	76
	5.9.6	System Device Identification Register (SDIDH, SDIDL)	
	5.9.7	System Real-Time Interrupt Status and Control Register (SRTISC)	78

Section Number Title 5.9.8 System Power Management Status and Control 1 Register (SPMSC1)79 System Power Management Status and Control 2 Register (SPMSC2)80 5.9.9 **Chapter 6 Parallel Input/Output** 6.1 6.2

6.3	Pin Desc	criptions	
	6.3.1	Port A	
	6.3.2	Port B	
	6.3.3	Port C	
	6.3.4	Port D	
	6.3.5	Port E	
	6.3.6	Port F	
	6.3.7	Port G	
6.4	Parallel I	I/O Control	
6.5	Pin Cont	rol	
	6.5.1	Internal Pullup Enable	
	6.5.2	Output Slew Rate Control Enable	
	6.5.3	Output Drive Strength Select	
6.6	Pin Beha	avior in Stop Modes	
6.7	Parallel I	I/O and Pin Control Registers	
	6.7.1	Port A I/O Registers (PTAD and PTADD)	
	6.7.2	Port A Pin Control Registers (PTAPE, PTASE, PTADS)	
	6.7.3	Port B I/O Registers (PTBD and PTBDD)	91
	6.7.4	Port B Pin Control Registers (PTBPE, PTBSE, PTBDS)	
	6.7.5	Port C I/O Registers (PTCD and PTCDD)	
	6.7.6	Port C Pin Control Registers (PTCPE, PTCSE, PTCDS)	
	6.7.7	Port D I/O Registers (PTDD and PTDDD)	
	6.7.8	Port D Pin Control Registers (PTDPE, PTDSE, PTDDS)	
	6.7.9	Port E I/O Registers (PTED and PTEDD)	
	6.7.10	Port E Pin Control Registers (PTEPE, PTESE, PTEDS)	101
	6.7.11	Port F I/O Registers (PTFD and PTFDD)	103
	6.7.12	Port F Pin Control Registers (PTFPE, PTFSE, PTFDS)	
	6.7.13	Port G I/O Registers (PTGD and PTGDD)	
	6.7.14	Port G Pin Control Registers (PTGPE, PTGSE, PTGDS)	

Chapter 7 Central Processor Unit (S08CPUV2)

7.1	Introduct	tion109
	7.1.1	Features
7.2	Program	mer's Model and CPU Registers

MC9S08AW60 Data Sheet, Rev 2

Page

Chapter 1 Introduction

1.1 Overview

The MC9S08AW60, MC9S08AW48, MC9S08AW32, and MC9S08AW16 are members of the low-cost, high-performance HCS08 family of 8-bit microcontroller units (MCUs). All MCUs in the family use the enhanced HCS08 core and are available with a variety of modules, memory sizes, memory types, and package types. Refer to Table 1-1 for memory sizes and package types.

Table 1-2 summarizes the peripheral availability per package type for the devices available in the MC9S08AW60 Series.

Device	FLASH	RAM	Package
MC9S08AW60	63,280		64 QFP
MC9S08AW48	49,152	2048	64 LQFP
MC9S08AW32	32,768	2010	48 QFN 44 LQFP
MC9S08AW16	16,384	1024	48 QFN 44 LQFP

Table 1-1. Devices in the MC9S08AW60 Series

 Table 1-2. Peripherals Available per Package Type

		Package Options	
Feature	64-pin	48-pin	44-pin
ADC	16-channel	8-channel	8-channel
IIC	yes	yes	yes
IRQ	yes	yes	yes
KBI1	8	7	6
SCI1	yes	yes	yes
SCI2	yes	yes	yes
SPI1	yes	yes	yes
TPM1	6-channel	4-channel	4-channel
TPM1CLK	yes	no	no
TPM2	2-channel	2-channel	2-channel
TPM2CLK	yes	no	no
I/O pins	54	38	34

1.2 MCU Block Diagrams

The block diagram shows the structure of the MC9S08AW60 Series.

NP

Chapter 1 Introduction

- The output of the digitally-controlled oscillator (DCO) in the frequency-locked loop sub-module
- Control bits inside the ICG determine which source is connected.
- FFE is a control signal generated inside the ICG. If the frequency of ICGOUT > 4 × the frequency of ICGERCLK, this signal is a logic 1 and the fixed-frequency clock will be ICGERCLK/2. Otherwise the fixed-frequency clock will be BUSCLK.
- ICGLCLK Development tools can select this internal self-clocked source (~ 8 MHz) to speed up BDC communications in systems where the bus clock is slow.
- ICGERCLK External reference clock can be selected as the real-time interrupt clock source. Can also be used as the ALTCLK input to the ADC module.

NP

Chapter 3 Modes of Operation

After entering active background mode, the CPU is held in a suspended state waiting for serial background commands rather than executing instructions from the user's application program.

Background commands are of two types:

- Non-intrusive commands, defined as commands that can be issued while the user program is running. Non-intrusive commands can be issued through the BKGD pin while the MCU is in run mode; non-intrusive commands can also be executed when the MCU is in the active background mode. Non-intrusive commands include:
 - Memory access commands
 - Memory-access-with-status commands
 - BDC register access commands
 - The BACKGROUND command
- Active background commands, which can only be executed while the MCU is in active background mode. Active background commands include commands to:
 - Read or write CPU registers
 - Trace one user program instruction at a time
 - Leave active background mode to return to the user's application program (GO)

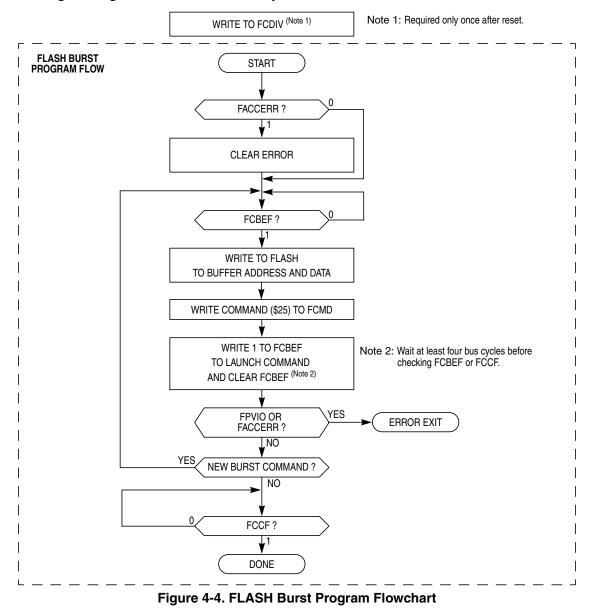
The active background mode is used to program a bootloader or user application program into the FLASH program memory before the MCU is operated in run mode for the first time. When the MC9S08AW60 Series is shipped from the Freescale Semiconductor factory, the FLASH program memory is erased by default unless specifically noted so there is no program that could be executed in run mode until the FLASH memory is initially programmed. The active background mode can also be used to erase and reprogram the FLASH memory after it has been previously programmed.

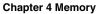
For additional information about the active background mode, refer to Chapter 15, "Development Support."

3.5 Wait Mode

Wait mode is entered by executing a WAIT instruction. Upon execution of the WAIT instruction, the CPU enters a low-power state in which it is not clocked. The I bit in CCR is cleared when the CPU enters the wait mode, enabling interrupts. When an interrupt request occurs, the CPU exits the wait mode and resumes processing, beginning with the stacking operations leading to the interrupt service routine.

While the MCU is in wait mode, there are some restrictions on which background debug commands can be used. Only the BACKGROUND command and memory-access-with-status commands are available when the MCU is in wait mode. The memory-access-with-status commands do not allow memory access, but they report an error indicating that the MCU is in either stop or wait mode. The BACKGROUND command can be used to wake the MCU from wait mode and enter active background mode.


3.6 Stop Modes


One of two stop modes is entered upon execution of a STOP instruction when the STOPE bit in the system option register is set. In both stop modes, all internal clocks are halted. If the STOPE bit is not set when

Chapter 4 Memory

The first byte of a series of sequential bytes being programmed in burst mode will take the same amount of time to program as a byte programmed in standard mode. Subsequent bytes will program in the burst program time provided that the conditions above are met. In the case the next sequential address is the beginning of a new row, the program time for that byte will be the standard time instead of the burst time. This is because the high voltage to the array must be disabled and then enabled again. If a new burst command has not been queued before the current command completes, then the charge pump will be disabled and high voltage removed from the array.

4.6.6 FLASH Command Register (FCMD)

Only five command codes are recognized in normal user modes as shown in Table 4-14. Refer to Section 4.4.3, "Program and Erase Command Execution" for a detailed discussion of FLASH programming and erase operations.

	7	6	5	4	3	2	1	0
R	0	0	0	0	0	0	0	0
w	FCMD7	FCMD6	FCMD5	FCMD4	FCMD3	FCMD2	FCMD1	FCMD0
Reset	0	0	0	0	0	0	0	0

Figure 4-11. FLASH Command Register (FCMD)

Table 4-13. FCMD Register Field Descriptions

Field	Description
FCMD[7:0]	FLASH Command Bits — See Table 4-14

Table 4-14. FLASH Commands

Command	FCMD	Equate File Label
Blank check	\$05	mBlank
Byte program	\$20	mByteProg
Byte program — burst mode	\$25	mBurstProg
Page erase (512 bytes/page)	\$40	mPageErase
Mass erase (all FLASH)	\$41	mMassErase

All other command codes are illegal and generate an access error.

It is not necessary to perform a blank check command after a mass erase operation. Only blank check is required as part of the security unlocking mechanism.

Chapter 6 Parallel Input/Output

_	7	6	5	4	3	2	1	0
R W	PTDDS7	PTDDS6	PTDDS5	PTDDS4	PTDDS3	PTDDS2	PTDDS1	PTDDS0
Reset	0	0	0	0	0	0	0	0

Figure 6-28. Output Drive Strength Selection for Port D (PTDDS)

Table 6-21. PTDDS Register Field Descriptions

Field	Description
7:0 PTDDS[7:0]	 Output Drive Strength Selection for Port D Bits — Each of these control bits selects between low and high output drive for the associated PTD pin. 0 Low output drive enabled for port D bit n. 1 High output drive enabled for port D bit n.

Chapter 7 Central Processor Unit (S08CPUV2)

Bit-Manipulation	Branch	Read-Modify-Write				 Control Register/Memory							
					9E60 6 NEG 3 SP1						9ED0 5 SUB 4 SP2	9EE0 4 SUB 3 SP1	
					9E61 6 CBEQ 4 SP1						9ED1 5	9EE1 4	
											4 SP2 9ED2 5 SBC 4 SP2	3 SP1	
					9E63 6 COM 3 SP1						9ED3 5 CPX 4 SP2 9ED4 5 AND	CPX 3 SP1	9EF3 6 CPHX 3 SP1
					9E64 6 LSR 3 SP1						9ED4 5 AND 4 SP2 9ED5 5 BIT 4 SP2	9EE4 4 AND 3 SP1	
											9ED5 5 BIT 4 SP2 9ED6 5	9EE5 4 BIT 3 SP1	
					9E66 6 ROR 3 SP1 9E67 6								
					ASR 3 SP1						4 SP2 9ED7 5 STA 4 SP2	9EE7 4 STA 3 SP1	
					9E68 6 LSL 3 SP1 9E69 6						9ED8 5 EOR 4 SP2	9EE8 4 EOR 3 SP1	
					ROL 3 SP1						9ED9 5 ADC 4 SP2	ADC 3 SP1	
					9E6A 6 DEC 3 SP1 9E6B 8						9EDA 5 ORA 4 SP2	ORA 3 SP1	
					DBNZ 4 SP1						9EDB 5 ADD 4 SP2	ADD	
					9E6C 6 INC 3 SP1								
					9E6D 5 TST 3 SP1								
								9EAE 5 LDHX 2 IX	LDHX	אחו	9EDE 5 LDX 4 SP2 9EDF 5	צחו	
					9E6F 6 CLR 3 SP1						9EDF 5 STX 4 SP2	9EEF 4 STX 3 SP1	9EFF 5 STHX 3 SP1

Table 7-3. Opcode Map (Sheet 2 of 2)

Inherent Immediate Direct Extended DIR to DIR IX+ to DIR REL IX IX1 IX2 IMD DIX+ INH IMM DIR EXT DD IX+D

Relative Indexed, No Offset Indexed, 8-Bit Offset Indexed, 16-Bit Offset IMM to DIR DIR to IX+

Stack Pointer, 8-Bit Offset Stack Pointer, 16-Bit Offset Indexed, No Offset with Post Increment Indexed, 1-Byte Offset with Post Increment

SP1 SP2 IX+

IX1+

Note: All Sheet 2 Opcodes are Preceded by the Page 2 Prebyte (9E)

Prebyte (9E) and Opcode in Hexadecimal 9E60 6 NEG Number of Bytes 3 SP1 Addressing Mode

Chapter 8 Internal Clock Generator (S08ICGV4)

Table 8-12. MFD and RFD Decode Table

101	14]	101	÷32
110	16		110	÷64
111	18		111	÷128

8.5.2 Example #1: External Crystal = 32 kHz, Bus Frequency = 4.19 MHz

In this example, the FLL will be used (in FEE mode) to multiply the external 32 kHz oscillator up to 8.38 MHz to achieve 4.19 MHz bus frequency.

After the MCU is released from reset, the ICG is in self-clocked mode (SCM) and supplies approximately 8 MHz on ICGOUT, which corresponds to a 4 MHz bus frequency (f_{Bus}).

The clock scheme will be FLL engaged, external (FEE). So

Solving for N / R gives:

N / R = 8.38 MHz /(32 kHz * 64) = 4 ; we can choose N = 4 and R =1	Eqn. 8-2
--	----------

The values needed in each register to set up the desired operation are:

ICGC1 = \$38 (%00111000)

Bit 7	HGO	0	Configures oscillator for low power
Bit 6	RANGE	0	Configures oscillator for low-frequency range; FLL prescale factor is 64
Bit 5	REFS	1	Oscillator using crystal or resonator is requested
Bits 4:3	CLKS	11	FLL engaged, external reference clock mode
Bit 2	OSCSTEN	0	Oscillator disabled
Bit 1	LOCD	0	Loss-of-clock detection enabled
Bit 0		0	Unimplemented or reserved, always reads zero

ICGC2 = \$00 (%0000000)

Bit 7	LOLRE	0	Generates an interrupt request on loss of lock
Bits 6:4	MFD	000	Sets the MFD multiplication factor to 4
Bit 3	LOCRE	0	Generates an interrupt request on loss of clock
Bits 2:0	RFD	000	Sets the RFD division factor to ÷1

ICGS1 = \$xx

This is read only except for clearing interrupt flag

ICGS2 =\$xx

This is read only; should read DCOS = 1 before performing any time critical tasks

ICGFLTLU/L =\$xx

Only needed in self-clocked mode; FLT will be adjusted by loop to give 8.38 MHz DCO clock Bits 15:12 unused 0000

CPWMS	MSnB:MSnA	ELSnB:ELSnA	Mode	Configuration	
Х	XX	00	Pin not used for TPM channel; use as an external clock for the TPN revert to general-purpose I/O		
0	00	01	Input capture	Capture on rising edge only	
		10		Capture on falling edge only	
		11		Capture on rising or falling edge	
	01	00	Output	Software compare only	
		01	compare	Toggle output on compare	
		10		Clear output on compare	
		11		Set output on compare	
	1X	10	Edge-aligned	High-true pulses (clear output on compare)	
		X1	PWM	Low-true pulses (set output on compare)	
1	XX			High-true pulses (clear output on compare-up)	
				Low-true pulses (set output on compare-up)	

Table 10-5.	Mode.	Edae.	and	Level	Selection
14010 10 01			~		

If the associated port pin is not stable for at least two bus clock cycles before changing to input capture mode, it is possible to get an unexpected indication of an edge trigger. Typically, a program would clear status flags after changing channel configuration bits and before enabling channel interrupts or using the status flags to avoid any unexpected behavior.

10.4.5 Timer x Channel Value Registers (TPMxCnVH:TPMxCnVL)

These read/write registers contain the captured TPM counter value of the input capture function or the output compare value for the output compare or PWM functions. The channel value registers are cleared by reset.

_	7	6	5	4	3	2	1	0
R W	Bit 15	14	13	12	11	10	9	Bit 8
Reset	0	0	0	0	0	0	0	0

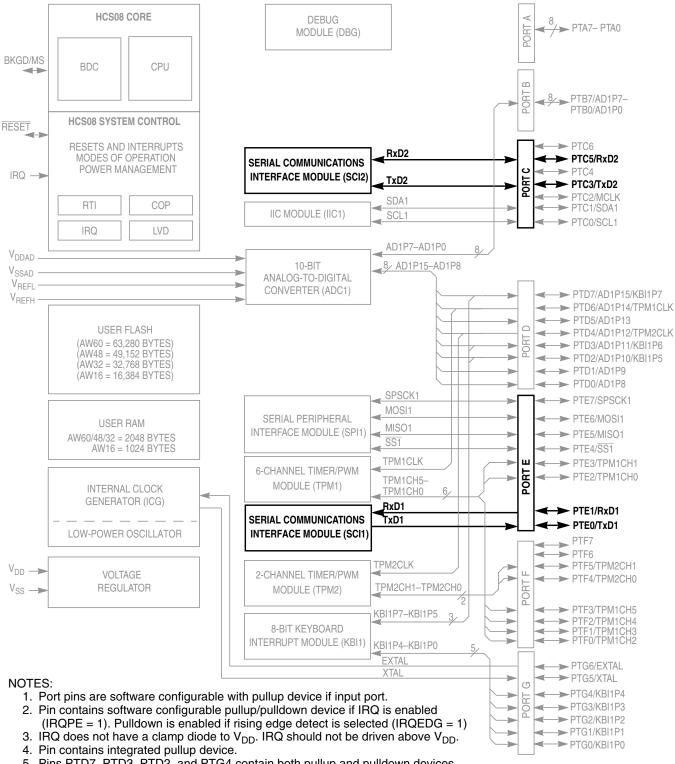
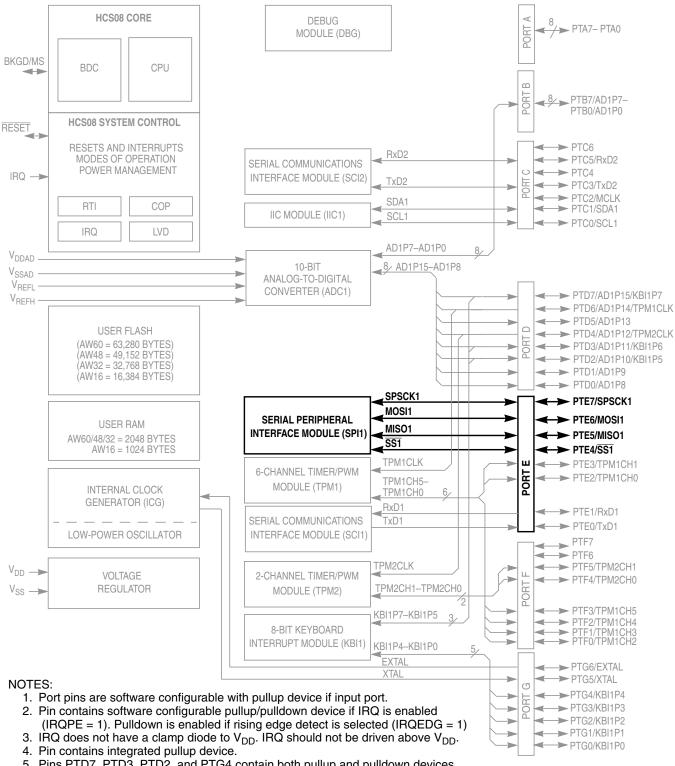

	7	6	5	4	3	2	1	0
R W	Bit 7	6	5	4	3	2	1	Bit 0
Reset	0	0	0	0	0	0	0	0

Figure 10-10. Timer Channel Value Register Low (TPMxCnVL)

In input capture mode, reading either byte (TPMxCnVH or TPMxCnVL) latches the contents of both bytes into a buffer where they remain latched until the other byte is read. This latching mechanism also resets (becomes unlatched) when the TPMxCnSC register is written.

Chapter 11 Serial Communications Interface (S08SCIV2)



5. Pins PTD7, PTD3, PTD2, and PTG4 contain both pullup and pulldown devices. Pulldown enabled when KBI is enabled (KBIPEn = 1) and rising edge is selected (KBEDGn = 1).

Figure 11-1. Block Diagram Highlighting the SCI Modules

SPIChapter 12 Serial Peripheral Interface (S08SPIV3)

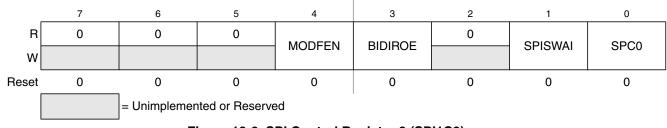
5. Pins PTD7, PTD3, PTD2, and PTG4 contain both pullup and pulldown devices. Pulldown enabled when KBI is enabled (KBIPEn = 1) and rising edge is selected (KBEDGn = 1).

Figure 12-1. Block Diagram Highlighting the SPI Module

Table 12-1. SPI1C1 Field Descriptions (continued)

Field	Description
4 MSTR	Master/Slave Mode Select 0 SPI module configured as a slave SPI device 1 SPI module configured as a master SPI device
3 CPOL	 Clock Polarity — This bit effectively places an inverter in series with the clock signal from a master SPI or to a slave SPI device. Refer to Section 12.4.1, "SPI Clock Formats" for more details. 0 Active-high SPI clock (idles low) 1 Active-low SPI clock (idles high)
2 CPHA	 Clock Phase — This bit selects one of two clock formats for different kinds of synchronous serial peripheral devices. Refer to Section 12.4.1, "SPI Clock Formats" for more details. 0 First edge on SPSCK occurs at the middle of the first cycle of an 8-cycle data transfer 1 First edge on SPSCK occurs at the start of the first cycle of an 8-cycle data transfer
1 SSOE	Slave Select Output Enable — This bit is used in combination with the mode fault enable (MODFEN) bit in SPCR2 and the master/slave (MSTR) control bit to determine the function of the SS pin as shown in Table 12-2.
0 LSBFE	 LSB First (Shifter Direction) 0 SPI serial data transfers start with most significant bit 1 SPI serial data transfers start with least significant bit

Table 12-2. SS Pin Function


MODFEN	SSOE	Master Mode	Slave Mode
0	0	General-purpose I/O (not SPI)	Slave select input
0	1	General-purpose I/O (not SPI)	Slave select input
1	0	SS input for mode fault	Slave select input
1	1	Automatic SS output	Slave select input

NOTE

Ensure that the SPI should not be disabled (SPE=0) at the same time as a bit change to the CPHA bit. These changes should be performed as separate operations or unexpected behavior may occur.

12.3.2 SPI Control Register 2 (SPI1C2)

This read/write register is used to control optional features of the SPI system. Bits 7, 6, 5, and 2 are not implemented and always read 0.

Chapter 13 Inter-Integrated Circuit (S08IICV1)

13.1 Introduction

The MC9S08AW60 Series of microcontrollers has an inter-integrated circuit (IIC) module for communication with other integrated circuits. The two pins associated with this module, SCL and SDA, are open-drain outputs and are shared with port C pins 0 and 1, respectively.

13.1.1 Features

The IIC includes these distinctive features:

- Compatible with IIC bus standard
- Multi-master operation
- Software programmable for one of 64 different serial clock frequencies
- Software selectable acknowledge bit
- Interrupt driven byte-by-byte data transfer
- Arbitration lost interrupt with automatic mode switching from master to slave
- Calling address identification interrupt
- START and STOP signal generation/detection
- Repeated START signal generation
- Acknowledge bit generation/detection
- Bus busy detection

13.1.2 Modes of Operation

The IIC functions the same in normal and monitor modes. A brief description of the IIC in the various MCU modes is given here.

- Run mode This is the basic mode of operation. To conserve power in this mode, disable the module.
- Wait mode The module will continue to operate while the MCU is in wait mode and can provide a wake-up interrupt.
- Stop mode The IIC is inactive in stop3 mode for reduced power consumption. The STOP instruction does not affect IIC register states. Stop2 will reset the register contents.

Chapter 15 Development Support

Figure 15-3 shows the host receiving a logic 1 from the target HCS08 MCU. Because the host is asynchronous to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on BKGD to the perceived start of the bit time in the target MCU. The host holds the BKGD pin low long enough for the target to recognize it (at least two target BDC cycles). The host must release the low drive before the target MCU drives a brief active-high speedup pulse seven cycles after the perceived start of the bit time. The host should sample the bit level about 10 cycles after it started the bit time.

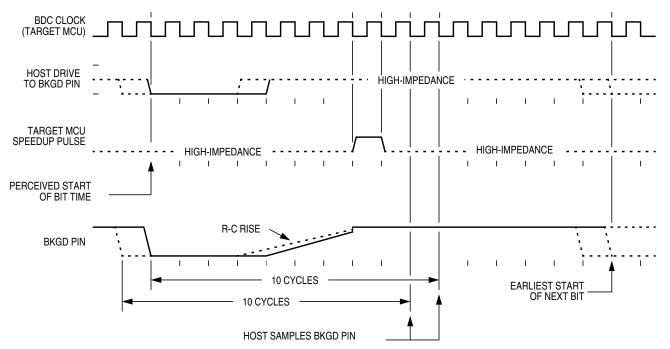


Figure 15-3. BDC Target-to-Host Serial Bit Timing (Logic 1)

15.3 On-Chip Debug System (DBG)

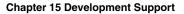
Because HCS08 devices do not have external address and data buses, the most important functions of an in-circuit emulator have been built onto the chip with the MCU. The debug system consists of an 8-stage FIFO that can store address or data bus information, and a flexible trigger system to decide when to capture bus information and what information to capture. The system relies on the single-wire background debug system to access debug control registers and to read results out of the eight stage FIFO.

The debug module includes control and status registers that are accessible in the user's memory map. These registers are located in the high register space to avoid using valuable direct page memory space.

Most of the debug module's functions are used during development, and user programs rarely access any of the control and status registers for the debug module. The one exception is that the debug system can provide the means to implement a form of ROM patching. This topic is discussed in greater detail in Section 15.3.6, "Hardware Breakpoints."

15.3.1 Comparators A and B

Two 16-bit comparators (A and B) can optionally be qualified with the R/W signal and an opcode tracking circuit. Separate control bits allow you to ignore R/W for each comparator. The opcode tracking circuitry optionally allows you to specify that a trigger will occur only if the opcode at the specified address is actually executed as opposed to only being read from memory into the instruction queue. The comparators are also capable of magnitude comparisons to support the inside range and outside range trigger modes. Comparators are disabled temporarily during all BDC accesses.


The A comparator is always associated with the 16-bit CPU address. The B comparator compares to the CPU address or the 8-bit CPU data bus, depending on the trigger mode selected. Because the CPU data bus is separated into a read data bus and a write data bus, the RWAEN and RWA control bits have an additional purpose, in full address plus data comparisons they are used to decide which of these buses to use in the comparator B data bus comparisons. If RWAEN = 1 (enabled) and RWA = 0 (write), the CPU's write data bus is used. Otherwise, the CPU's read data bus is used.

The currently selected trigger mode determines what the debugger logic does when a comparator detects a qualified match condition. A match can cause:

- Generation of a breakpoint to the CPU
- Storage of data bus values into the FIFO
- Starting to store change-of-flow addresses into the FIFO (begin type trace)
- Stopping the storage of change-of-flow addresses into the FIFO (end type trace)

15.3.2 Bus Capture Information and FIFO Operation

The usual way to use the FIFO is to setup the trigger mode and other control options, then arm the debugger. When the FIFO has filled or the debugger has stopped storing data into the FIFO, you would read the information out of it in the order it was stored into the FIFO. Status bits indicate the number of words of valid information that are in the FIFO as data is stored into it. If a trace run is manually halted by writing 0 to ARM before the FIFO is full (CNT = 1:0:0:0), the information is shifted by one position and

Field	Description
2 WS	 Wait or Stop Status — When the target CPU is in wait or stop mode, most BDC commands cannot function. However, the BACKGROUND command can be used to force the target CPU out of wait or stop and into active background mode where all BDC commands work. Whenever the host forces the target MCU into active background mode, the host should issue a READ_STATUS command to check that BDMACT = 1 before attempting other BDC commands. 0 Target CPU is running user application code or in active background mode (was not in wait or stop mode when background became active) 1 Target CPU is in wait or stop mode, or a BACKGROUND command was used to change from wait or stop to active background mode
1 WSF	 Wait or Stop Failure Status — This status bit is set if a memory access command failed due to the target CPU executing a wait or stop instruction at or about the same time. The usual recovery strategy is to issue a BACKGROUND command to get out of wait or stop mode into active background mode, repeat the command that failed, then return to the user program. (Typically, the host would restore CPU registers and stack values and re-execute the wait or stop instruction.) Memory access did not conflict with a wait or stop instruction Memory access command failed because the CPU entered wait or stop mode
0 DVF	 Data Valid Failure Status — This status bit is not used in the MC9S08AW60 Series because it does not have any slow access memory. 0 Memory access did not conflict with a slow memory access 1 Memory access command failed because CPU was not finished with a slow memory access

Table 15-2. BDCSCR Register Field Descriptions (continued)

15.4.1.2 BDC Breakpoint Match Register (BDCBKPT)

This 16-bit register holds the address for the hardware breakpoint in the BDC. The BKPTEN and FTS control bits in BDCSCR are used to enable and configure the breakpoint logic. Dedicated serial BDC commands (READ_BKPT and WRITE_BKPT) are used to read and write the BDCBKPT register but is not accessible to user programs because it is not located in the normal memory map of the MCU. Breakpoints are normally set while the target MCU is in active background mode before running the user application program. For additional information about setup and use of the hardware breakpoint logic in the BDC, refer to Section 15.2.4, "BDC Hardware Breakpoint."

15.4.2 System Background Debug Force Reset Register (SBDFR)

This register contains a single write-only control bit. A serial background mode command such as WRITE_BYTE must be used to write to SBDFR. Attempts to write this register from a user program are ignored. Reads always return 0x00.

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
- 4. DATUMS A-B AND -D- TO BE DETERMINED AT DATUM PLANE -H-.

5 dimensions to be determined at seating plane -C-.

- DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PER SIDE. DIMENSIONS DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- Z DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDICTION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.

© FREESCALE SEMICONDUCTOR, INC. MECHANICA		L OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: 64LD QFP (14 X 14)		DOCUMENT NO: 98ASB42844B		REV: B
		CASE NUMBER	R: 840B-01	20 MAY 2005
		STANDARD: NON-JEDEC		