E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-QFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08aw48cfuer

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section Number

Title

Page

	7.2.1	Accumulator (A)	110
	7.2.2	Index Register (H:X)	110
	7.2.3	Stack Pointer (SP)	111
	7.2.4	Program Counter (PC)	111
	7.2.5	Condition Code Register (CCR)	111
7.3	Addressi	ng Modes	113
	7.3.1	Inherent Addressing Mode (INH)	113
	7.3.2	Relative Addressing Mode (REL)	113
	7.3.3	Immediate Addressing Mode (IMM)	113
	7.3.4	Direct Addressing Mode (DIR)	113
	7.3.5	Extended Addressing Mode (EXT)	114
	7.3.6	Indexed Addressing Mode	114
7.4	Special (Operations	115
	7.4.1	Reset Sequence	115
	7.4.2	Interrupt Sequence	115
	7.4.3	Wait Mode Operation	116
	7.4.4	Stop Mode Operation	116
	7.4.5	BGND Instruction	117
7.5	HCS08 I	nstruction Set Summary	

Chapter 8 Internal Clock Generator (S08ICGV4)

Introduc	tion	
8.1.1	Features	131
8.1.2	Modes of Operation	
8.1.3	Block Diagram	
External	Signal Description	
8.2.1	EXTAL — External Reference Clock / Oscillator Input	
8.2.2	XTAL — Oscillator Output	
8.2.3	External Clock Connections	
8.2.4	External Crystal/Resonator Connections	
Register	Definition	
8.3.1	ICG Control Register 1 (ICGC1)	
8.3.2	ICG Control Register 2 (ICGC2)	137
8.3.3	ICG Status Register 1 (ICGS1)	
8.3.4	ICG Status Register 2 (ICGS2)	139
8.3.5	ICG Filter Registers (ICGFLTU, ICGFLTL)	139
8.3.6	ICG Trim Register (ICGTRM)	140
Function	al Description	140
8.4.1	Off Mode (Off)	141
8.4.2	Self-Clocked Mode (SCM)	141
8.4.3	FLL Engaged, Internal Clock (FEI) Mode	142
	Introduc 8.1.1 8.1.2 8.1.3 External 8.2.1 8.2.2 8.2.3 8.2.4 Register 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 Function 8.4.1 8.4.2 8.4.3	Introduction 8.1.1 Features 8.1.2 Modes of Operation 8.1.3 Block Diagram External Signal Description

Figure 4-1. MC9S08AW60 and MC9S08AW48 Memory Map

Chapter 4 Memory

Table 4-2. Direct-Page	Register	Summary	(Sheet 1	of 3)
------------------------	----------	---------	----------	-------

Address	Register Name	Bit 7	6	5	4	3	2	1	Bit 0
\$00 00	PTAD	PTAD7	PTAD6	PTAD5	PTAD4	PTAD3	PTAD2	PTAD1	PTAD0
\$00 01	PTADD	PTADD7	PTADD6	PTADD5	PTADD4	PTADD3	PTADD2	PTADD1	PTADD0
\$00 02	PTBD	PTBD7	PTBD6	PTBD5	PTBD4	PTBD3	PTBD2	PTBD1	PTBD0
\$00 03	PTBDD	PTBDD7	PTBDD6	PTBDD5	PTBDD4	PTBDD3	PTBDD2	PTBDD1	PTBDD0
\$00 04	PTCD	0	PTCD6	PTCD5	PTCD4	PTCD3	PTCD2	PTCD1	PTCD0
\$00 05	PTCDD	0	PTCDD6	PTCDD5	PTCDD4	PTCDD3	PTCDD2	PTCDD1	PTCDD0
\$00 06	PTDD	PTDD7	PTDD6	PTDD5	PTDD4	PTDD3	PTDD2	PTDD1	PTDD0
\$00 07	PTDDD	PTDDD7	PTDDD6	PTDDD5	PTDDD4	PTDDD3	PTDDD2	PTDDD1	PTDDD0
\$00 08	PTED	PTED7	PTED6	PTED5	PTED4	PTED3	PTED2	PTED1	PTED0
\$00 09	PTEDD	PTEDD7	PTEDD6	PTEDD5	PTEDD4	PTEDD3	PTEDD2	PTEDD1	PTEDD0
\$00 0A	PTFD	PTFD7	PTFD6	PTFD5	PTFD4	PTFD3	PTFD2	PTFD1	PTFD0
\$00 0B	PTFDD	PTFDD7	PTFDD6	PTFDD5	PTFDD4	PTFDD3	PTFDD2	PTFDD1	PTFDD0
\$00 0C	PTGD	0	PTGD6	PTGD5	PTGD4	PTGD3	PTGD2	PTGD1	PTGD0
\$00 0D	PTGDD	0	PTGDD6	PTGDD5	PTGDD4	PTGDD3	PTGDD2	PTGDD1	PTGDD0
\$00 0E -	Reserved	_	_	_	_	—	—	_	—
\$00 0F	1001001	—		-	_		-		_
\$001 0	ADCISCI	COCO	AIEN	ADCO	10507		ADCH	-	
\$0011	ADC1SC2	ADACT	ADIRG	ACFE	ACFGI	0	0	R	R
\$0012	ADC1RH	0	0	0	0	0	0	ADR9	ADR8
\$0013	ADC1RL	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0
\$0014	ADCICVH	0	0	0	0	0	0	ADCV9	ADCV8
\$0015	ADCICVL	ADCV7	ADCV6	ADCV5	ADCV4	ADCV3	ADCV2	ADCV1	ADCV0
\$0016	ADC1CFG	ADLPC	AL		ADLSMP	MO	DE	ADICLK	
\$0017	APCILI	ADPC7	ADPC6	ADPC5	ADPC4	ADPC3	ADPC2	ADPC1	ADPC0
\$0018	APCIL2	ADPC15	ADPC14	ADPC13	ADPC12	ADPC11	ADPC10	ADPC9	ADPC8
\$0019	APC1L3	ADPC23	ADPC22	ADPC21	ADPC20	ADPC19	ADPC18	ADPC17	ADPC16
\$00 1A – \$00 1B	Reserved	_	_	_	_	_	_	_	_
\$00 1C	IRQSC	0	0	IRQEDG	IRQPE	IRQF	IRQACK	IRQIE	IRQMOD
\$00 1D	Reserved						_		—
\$00 1E	KBI1SC	KBEDG7	KBEDG6	KBEDG5	KBEDG4	KBF	KBACK	KBIE	KBIMOD
\$00 1F	KBI1PE	KBIPE7	KBIPE6	KBIPE5	KBIPE4	KBIPE3	KBIPE2	KBIPE1	KBIPE0
\$00 20	TPM1SC	TOF	TOIE	CPWMS	CLKSB	CLKSA	PS2	PS1	PS0
\$00 21	TPM1CNTH	Bit 15	14	13	12	11	10	9	Bit 8
\$00 22	TPM1CNTL	Bit 7	6	5	4	3	2	1	Bit 0
\$00 23	TPM1MODH	Bit 15	14	13	12	11	10	9	Bit 8
\$00 24	TPM1MODL	Bit 7	6	5	4	3	2	1	Bit 0
\$00 25	TPM1C0SC	CH0F	CH0IE	MS0B	MS0A	ELS0B	ELS0A	0	0
\$00 26	TPM1C0VH	Bit 15	14	13	12	11	10	9	Bit 8
\$00 27	TPM1C0VL	Bit 7	6	5	4	3	2	1	Bit 0

Chapter 4 Memory

When security is enabled, the RAM is considered a secure memory resource and is not accessible through BDM or through code executing from non-secure memory. See Section 4.5, "Security" for a detailed description of the security feature.

4.4 FLASH

The FLASH memory is intended primarily for program storage. In-circuit programming allows the operating program to be loaded into the FLASH memory after final assembly of the application product. It is possible to program the entire array through the single-wire background debug interface. Because no special voltages are needed for FLASH erase and programming operations, in-application programming is also possible through other software-controlled communication paths. For a more detailed discussion of in-circuit and in-application programming, refer to the *HCS08 Family Reference Manual, Volume I*, Freescale Semiconductor document order number HCS08RMv1/D.

I bit in the CCR is 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set after reset which masks (prevents) all maskable interrupt sources. The user program initializes the stack pointer and performs other system setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the current instruction before responding to the interrupt. The interrupt sequence obeys the same cycle-by-cycle sequence as the SWI instruction and consists of:

- Saving the CPU registers on the stack
- Setting the I bit in the CCR to mask further interrupts
- Fetching the interrupt vector for the highest-priority interrupt that is currently pending
- Filling the instruction queue with the first three bytes of program information starting from the address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of another interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is restored to 0 when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit may be cleared inside an ISR (after clearing the status flag that generated the interrupt) so that other interrupts can be serviced without waiting for the first service routine to finish. This practice is not recommended for anyone other than the most experienced programmers because it can lead to subtle program errors that are difficult to debug.

The interrupt service routine ends with a return-from-interrupt (RTI) instruction which restores the CCR, A, X, and PC registers to their pre-interrupt values by reading the previously saved information off the stack.

NOTE

For compatibility with the M68HC08, the H register is not automatically saved and restored. It is good programming practice to push H onto the stack at the start of the interrupt service routine (ISR) and restore it immediately before the RTI that is used to return from the ISR.

When two or more interrupts are pending when the I bit is cleared, the highest priority source is serviced first (see Table 5-1).

5.5.1 Interrupt Stack Frame

Figure 5-1 shows the contents and organization of a stack frame. Before the interrupt, the stack pointer (SP) points at the next available byte location on the stack. The current values of CPU registers are stored on the stack starting with the low-order byte of the program counter (PCL) and ending with the CCR. After stacking, the SP points at the next available location on the stack which is the address that is one less than the address where the CCR was saved. The PC value that is stacked is the address of the instruction in the main program that would have executed next if the interrupt had not occurred.

Chapter 5 Resets, Interrupts, and System Configuration

5.9.9 System Power Management Status and Control 2 Register (SPMSC2)

This register is used to report the status of the low voltage warning function, and to configure the stop mode behavior of the MCU.

_	7	6	5	4	3	2	1	0
R	LVWF	0			PPDF	0		
w		LVWACK				PPDACK		FFDC
Power-on reset:	0 ⁽²⁾	0	0	0	0	0	0	0
LVD reset:	0 ⁽²⁾	0	U	U	0	0	0	0
Any other reset:	0 ⁽²⁾	0	U	U	0	0	0	0
		= Unimplemen	ited or Reserve	ed		U = Unaffec	ted by reset	

¹ This bit can be written only one time after reset. Additional writes are ignored.

² LVWF will be set in the case when V_{Supply} transitions below the trip point or after reset and V_{Supply} is already below V_{LVW}.

Figure 5-11. System Power Management Status and Control 2 Register (SPMSC2)

Table 5-12. SPMSC2 Register Field Descriptions

Field	Description
7 LVWF	 Low-Voltage Warning Flag — The LVWF bit indicates the low voltage warning status. 0 Low voltage warning not present. 1 Low voltage warning is present or was present.
6 LVWACK	Low-Voltage Warning Acknowledge — The LVWACK bit is the low-voltage warning acknowledge. Writing a 1 to LVWACK clears LVWF to a 0 if a low voltage warning is not present.
5 LVDV	 Low-Voltage Detect Voltage Select — The LVDV bit selects the LVD trip point voltage (V_{LVD}). 0 Low trip point selected (V_{LVD} = V_{LVDL}). 1 High trip point selected (V_{LVD} = V_{LVDH}).
4 LVWV	 Low-Voltage Warning Voltage Select — The LVWV bit selects the LVW trip point voltage (V_{LVW}). 0 Low trip point selected (V_{LVW} = V_{LVWL}). 1 High trip point selected (V_{LVW} = V_{LVWH}).
3 PPDF	 Partial Power Down Flag — The PPDF bit indicates that the MCU has exited the stop2 mode. 0 Not stop2 mode recovery. 1 Stop2 mode recovery.
2 PPDACK	Partial Power Down Acknowledge — Writing a 1 to PPDACK clears the PPDF bit.
0 PPDC	 Partial Power Down Control — The write-once PPDC bit controls whether stop2 or stop3 mode is selected. 0 Stop3 mode enabled. 1 Stop2, partial power down, mode enabled.

Chapter 7 Central Processor Unit (S08CPUV2)

Bit-Manip	ulation	Branch	Read-M	lodify-Write	Control			Register	/Memory		
				9E60 6 NEG 3 SP1					9ED0 5 SUB 4 SP2	9EE0 4 SUB 3 SP1	
				9E61 6 CBEQ 4 SP1					9ED1 5 CMP 4 SP2	9EE1 4 CMP 3 SP1	
									9ED2 5 SBC 4 SP2	9EE2 4 SBC 3 SP1	
				9E63 6 COM 3 SP1					9ED3 5 CPX 4 SP2	9EE3 4 CPX 3 SP1	9EF3 6 CPHX 3 SP1
				9E64 6 LSR 3 SP1					9ED4 5 AND 4 SP2	9EE4 4 AND 3 SP1	
									9ED5 5 BIT 4 SP2	9EE5 4 BIT 3 SP1	
				9E66 6 ROR 3 SP1					9ED6 5 LDA 4 SP2	9EE6 4 LDA 3 SP1	
				9E67 6 ASR 3 SP1					9ED7 5 STA 4 SP2	9EE7 4 STA 3 SP1	
				9E68 6 LSL 3 SP1					9ED8 5 EOR 4 SP2	9EE8 4 EOR 3 SP1	
				9E69 6 ROL 3 SP1					9ED9 5 ADC 4 SP2	9EE9 4 ADC 3 SP1	
				9E6A 6 DEC 3 SP1					9EDA 5 ORA 4 SP2	9EEA 4 ORA 3 SP1	
				9E6B 8 DBNZ 4 SP1					9EDB 5 ADD 4 SP2	9EEB 4 ADD 3 SP1	
				9E6C 6 INC 3 SP1							
				9E6D 5 TST 3 SP1							
						9EAE 5 LDHX 2 IX	9EBE 6 LDHX 4 IX2	9ECE 5 LDHX 3 IX1	9EDE 5 LDX 4 SP2	9EEE 4 LDX 3 SP1	9EFE 5 LDHX 3 SP1
				9E6F 6 CLR 3 SP1					9EDF 5 STX 4 SP2	9EEF 4 STX 3 SP1	9EFF 5 STHX 3 SP1

Table 7-3. Opcode Map (Sheet 2 of 2)

Inherent Immediate Direct Extended DIR to DIR IX+ to DIR REL IX IX1 IX2 IMD DIX+ INH IMM DIR EXT DD IX+D

Relative Indexed, No Offset Indexed, 8-Bit Offset Indexed, 16-Bit Offset IMM to DIR DIR to IX+

Stack Pointer, 8-Bit Offset Stack Pointer, 16-Bit Offset Indexed, No Offset with Post Increment Indexed, 1-Byte Offset with Post Increment

SP1 SP2 IX+

IX1+

Note: All Sheet 2 Opcodes are Preceded by the Page 2 Prebyte (9E)

Prebyte (9E) and Opcode in Hexadecimal 9E60 6 NEG Number of Bytes 3 SP1 Addressing Mode

8.1.3 Block Diagram

Figure 8-3 is a top-level diagram that shows the functional organization of the internal clock generation (ICG) module. This section includes a general description and a feature list.

Figure 8-3. ICG Block Diagram

8.2 External Signal Description

The oscillator pins are used to provide an external clock source for the MCU. The oscillator pins are gain controlled in low-power mode (default). Oscillator amplitudes in low-power mode are limited to approximately 1 V, peak-to-peak.

8.2.1 EXTAL — External Reference Clock / Oscillator Input

If upon the first write to ICGC1, either the FEE mode or FBE mode is selected, this pin functions as either the external clock input or the input of the oscillator circuit as determined by REFS. If upon the first write to ICGC1, either the FEI mode or SCM mode is selected, this pin is not used by the ICG.

8.2.2 XTAL — Oscillator Output

If upon the first write to ICGC1, either the FEE mode or FBE mode is selected, this pin functions as the output of the oscillator circuit. If upon the first write to ICGC1, either the FEI mode or SCM mode is

8.3.2 ICG Control Register 2 (ICGC2)

Figure 8-7. ICG Control Register 2 (ICGC2)

Table 8-2. ICGC2 Register Field Descriptions

Field	Description
7 LOLRE	 Loss of Lock Reset Enable — The LOLRE bit determines what type of request is made by the ICG following a loss of lock indication. The LOLRE bit only has an effect when LOLS is set. Generate an interrupt request on loss of lock. Generate a reset request on loss of lock.
6:4 MFD	Multiplication Factor — The MFD bits control the programmable multiplication factor in the FLL loop. The value specified by the MFD bits establishes the multiplication factor (N) applied to the reference frequency. Writes to the MFD bits will not take effect if a previous write is not complete. Select a low enough value for N such that $f_{ICGDCLK}$ does not exceed its maximum specified value. 000 Multiplication factor = 4 001 Multiplication factor = 6 010 Multiplication factor = 8 011 Multiplication factor = 10 100 Multiplication factor = 12 101 Multiplication factor = 14 110 Multiplication factor = 18
3 LOCRE	 Loss of Clock Reset Enable — The LOCRE bit determines how the system manages a loss of clock condition. Generate an interrupt request on loss of clock. Generate a reset request on loss of clock.
2:0 RFD	Reduced Frequency Divider — The RFD bits control the value of the divider following the clock select circuitry. The value specified by the RFD bits establishes the division factor (R) applied to the selected output clock source. Writes to the RFD bits will not take effect if a previous write is not complete. 000 Division factor = 1 001 Division factor = 2 010 Division factor = 4 011 Division factor = 8 100 Division factor = 16 101 Division factor = 32 110 Division factor = 64 111 Division factor = 128

8.3.3 ICG Status Register 1 (ICGS1)

Figure 8-8. ICG Status Register 1 (ICGS1)

Table 8-3. ICGS1	Register	Field	Descriptions
------------------	----------	-------	--------------

Field	Description
7:6 CLKST	 Clock Mode Status — The CLKST bits indicate the current clock mode. The CLKST bits don't update immediately after a write to the CLKS bits due to internal synchronization between clock domains. 00 Self-clocked 01 FLL engaged, internal reference 10 FLL bypassed, external reference 11 FLL engaged, external reference
5 REFST	 Reference Clock Status — The REFST bit indicates which clock reference is currently selected by the Reference Select circuit. 0 External Clock selected. 1 Crystal/Resonator selected.
4 LOLS	 FLL Loss of Lock Status — The LOLS bit is an indication of FLL lock status. FLL has not unexpectedly lost lock since LOLS was last cleared. FLL has unexpectedly lost lock since LOLS was last cleared, LOLRE determines action taken.
3 LOCK	 FLL Lock Status — The LOCK bit indicates whether the FLL has acquired lock. The LOCK bit is cleared in off, self-clocked, and FLL bypassed modes. FLL is currently unlocked. FLL is currently locked.
2 LOCS	 Loss Of Clock Status — The LOCS bit is an indication of ICG loss of clock status. ICG has not lost clock since LOCS was last cleared. ICG has lost clock since LOCS was last cleared, LOCRE determines action taken.
1 ERCS	 External Reference Clock Status — The ERCS bit is an indication of whether or not the external reference clock (ICGERCLK) meets the minimum frequency requirement. 0 External reference clock is not stable, frequency requirement is not met. 1 External reference clock is stable, frequency requirement is met.
0 ICGIF	 ICG Interrupt Flag — The ICGIF read/write flag is set when an ICG interrupt request is pending. It is cleared by a reset or by reading the ICG status register when ICGIF is set and then writing a logic 1 to ICGIF. If another ICG interrupt occurs before the clearing sequence is complete, the sequence is reset so ICGIF would remain set after the clear sequence was completed for the earlier interrupt. Writing a logic 0 to ICGIF has no effect. 0 No ICG interrupt request is pending. 1 An ICG interrupt request is pending.

8.4.1 Off Mode (Off)

Normally when the CPU enters stop mode, the ICG will cease all clock activity and is in the off state. However there are two cases to consider when clock activity continues while the CPU is in stop mode,

8.4.1.1 BDM Active

When the BDM is enabled, the ICG continues activity as originally programmed. This allows access to memory and control registers via the BDC controller.

8.4.1.2 OSCSTEN Bit Set

When the oscillator is enabled in stop mode (OSCSTEN = 1), the individual clock generators are enabled but the clock feed to the rest of the MCU is turned off. This option is provided to avoid long oscillator startup times if necessary, or to run the RTI from the oscillator during stop3.

8.4.1.3 Stop/Off Mode Recovery

Upon the CPU exiting stop mode due to an interrupt, the previously set control bits are valid and the system clock feed resumes. If FEE is selected, the ICG will source the internal reference until the external clock is stable. If FBE is selected, the ICG will wait for the external clock to stabilize before enabling ICGOUT.

Upon the CPU exiting stop mode due to a reset, the previously set ICG control bits are ignored and the default reset values applied. Therefore the ICG will exit stop in SCM mode configured for an approximately 8 MHz DCO output (4 MHz bus clock) with trim value maintained. If using a crystal, 4096 clocks are detected prior to engaging ICGERCLK. This is incorporated in crystal start-up time.

8.4.2 Self-Clocked Mode (SCM)

Self-clocked mode (SCM) is the default mode of operation and is entered when any of the following conditions occur:

- After any reset.
- Exiting from off mode when CLKS does not equal 10. If CLKS = X1, the ICG enters this state temporarily until the DCO is stable (DCOS = 1).
- CLKS bits are written from X1 to 00.
- CLKS = 1X and ICGERCLK is not detected (both ERCS = 0 and LOCS = 1).

In this state, the FLL loop is open. The DCO is on, and the output clock signal ICGOUT frequency is given by $f_{ICGDCLK}$ / R. The ICGDCLK frequency can be varied from 8 MHz to 40 MHz by writing a new value into the filter registers (ICGFLTH and ICGFLTL). This is the only mode in which the filter registers can be written.

If this mode is entered due to a reset, $f_{ICGDCLK}$ will default to f_{Self_reset} which is nominally 8 MHz. If this mode is entered from FLL engaged internal, $f_{ICGDCLK}$ will maintain the previous frequency. If this mode is entered from FLL engaged external (either by programming CLKS or due to a loss of external reference clock), $f_{ICGDCLK}$ will maintain the previous frequency, but ICGOUT will double if the FLL was unlocked. If this mode is entered from off mode, $f_{ICGDCLK}$ will be equal to the frequency of ICGDCLK before

Chapter 8 Internal Clock Generator (S08ICGV4)

8.4.10 Clock Mode Requirements

A clock mode is requested by writing to CLKS1:CLKS0 and the actual clock mode is indicated by CLKST1:CLKST0. Provided minimum conditions are met, the status shown in CLKST1:CLKST0 should be the same as the requested mode in CLKS1:CLKS0. Table 8-9 shows the relationship between CLKS, CLKST, and ICGOUT. It also shows the conditions for CLKS = CLKST or the reason CLKS \neq CLKST.

NOTE

If a crystal will be used before the next reset, then be sure to set REFS = 1 and CLKS = 1x on the first write to the ICGC1 register. Failure to do so will result in "locking" REFS = 0 which will prevent the oscillator amplifier from being enabled until the next reset occurs.

Desired Mode (CLKS)	Range	Reference Frequency (f _{REFERENCE})	Comparison Cycle Time	ICGOUT	Conditions ¹ for CLKS = CLKST	Reason CLKS1 ≠ CLKST
Off (XX)	х	0		0	_	_
FBE (10)	x	0	_	0	_	ERCS = 0
SCM (00)	х	f _{ICGIRCLK} /7 ²	8/f _{ICGIRCLK}	ICGDCLK/R	Not switching from FBE to SCM	_
FEI (01)	0	f _{ICGIRCLK} /7 ⁽¹⁾	8/f _{ICGIRCLK}	ICGDCLK/R		DCOS = 0
FBE (10)	x	f _{ICGIRCLK} /7 ⁽¹⁾	8/f _{ICGIRCLK}	ICGDCLK/R		ERCS = 0
FEE (11)	x	f _{ICGIRCLK} /7 ⁽¹⁾	8/f _{ICGIRCLK}	ICGDCLK/R		DCOS = 0 or ERCS = 0
FEI (01)	0	f _{ICGIRCLK} /7	8/f _{ICGIRCLK}	ICGDCLK/R	DCOS = 1	_
FEE (11)	x	f _{ICGIRCLK} /7	8/f _{ICGIRCLK}	ICGDCLK/R	_	ERCS = 0
FBE (10)	x	0	_	ICGERCLK/R	ERCS = 1	—
FEE (11)	x	0		ICGERCLK/R		LOCS = 1 & ERCS = 1
FEE	0	ficgerclk	2/f _{ICGERCLK}	ICGDCLK/R ³	ERCS = 1 and DCOS = 1	_
(11)	1	ficgerclk	128/f _{ICGERCLK}	ICGDCLK/R ⁽²⁾	ERCS = 1 and DCOS = 1	
	Desired Mode (CLKS) Off (XX) FBE (10) SCM (00) FEI (01) FBE (10) FEI (11) FEE (11) FEE (11) FEE (11) FEE (11) FEE (11) FEE (11) FEE (11)	Desired Mode (CLKS)RangeOff (XX)XFBE (10)XSCM (00)XFEI (01)0FBE (10)XFEE (11)0FEE (11)XFBE (10)XFEE (11)XFEE (11)XFEE (11)XFEE (11)XFEE (11)XFEE (11)1	Desired Mode (CLKS)RangeReference Frequency (fREFERENCE)Off (XX)X0FBE (10)X0FBE (10)X $f_{1CGIRCLK}/7^{2}$ SCM (00)X $f_{1CGIRCLK}/7^{1}$ FEI (01)0 $f_{1CGIRCLK}/7^{(1)}$ FBE (10)X $f_{1CGIRCLK}/7^{(1)}$ FEE (11)X $f_{1CGIRCLK}/7^{(1)}$ FEE (11)X $f_{1CGIRCLK}/7^{(1)}$ FEE (11)X $f_{1CGIRCLK}/7^{(1)}$ FEE (10)X 0 FEE (11)X 0 FEE (11)X 0 FEE (11)X 0 FEE (11)1 $f_{1CGERCLK}$	Desired Mode (CLKS)RangeReference Frequency (fREFERENCE)Comparison Cycle TimeOff (XX)X0FBE (10)X0FBE (10)X0SCM (00)X $f_{ICGIRCLK/7^2}$ $8/f_{ICGIRCLK}$ FEI (01)0 $f_{ICGIRCLK/7^{(1)}}$ $8/f_{ICGIRCLK}$ FBE (10)X $f_{ICGIRCLK/7^{(1)}}$ $8/f_{ICGIRCLK}$ FEE (11)X $f_{ICGIRCLK/7^{(1)}}$ $8/f_{ICGIRCLK}$ FEE (11)0 $f_{ICGIRCLK/7^{(1)}}$ $8/f_{ICGIRCLK}$ FEE (11)X $f_{ICGIRCLK/7}$ $8/f_{ICGIRCLK}$ FEE (11)X $f_{ICGIRCLK/7}$ $8/f_{ICGIRCLK}$ FEE 	Desired Mode (CLKS)RangeReference Frequency (fREFERENCE)Comparison Cycle TimeICGOUTOff (XX)X00FBE (10)X00SCM (00)X $f_{1CGIRCLK}/7^2$ $8/f_{1CGIRCLK}$ ICGDCLK/RFEI (01)0 $f_{1CGIRCLK}/7^{(1)}$ $8/f_{1CGIRCLK}$ ICGDCLK/RFBE (10)X $f_{1CGIRCLK}/7^{(1)}$ $8/f_{1CGIRCLK}$ ICGDCLK/RFEE (10)X $f_{1CGIRCLK}/7^{(1)}$ $8/f_{1CGIRCLK}$ ICGDCLK/RFEE (11)X $f_{1CGIRCLK}/7^{(1)}$ $8/f_{1CGIRCLK}$ ICGDCLK/RFEE (11)X $f_{1CGIRCLK}/7^{(1)}$ $8/f_{1CGIRCLK}$ ICGDCLK/RFEE (10)X 0 ICGDCLK/RFEE (11)X0ICGERCLK/RFEE (11)X0ICGERCLK/RFEE (11)1 $f_{1CGERCLK}$ $2/f_{1CGERCLK}$ ICGDCLK/R^2	Desired Mode (CLKS)RangeReference Frequency (f_REFERENCE)Comparison Cycle TimeICGOUTConditions1 for CLKS = CLKSTOff (XX)X0 $$ 0 $-$ FBE (10)X0 $-$ 0 $-$ FBE (10)X0 $-$ 0 $-$ SCM (00)Xf _{ICGIRCLK} /728/f _{ICGIRCLK} ICGDCLK/RNot switching from FBE to SCMFEI (10)0f _{ICGIRCLK} /718/f _{ICGIRCLK} ICGDCLK/R $-$ FBE (10)Xf _{ICGIRCLK} /718/f _{ICGIRCLK} ICGDCLK/R $-$ FEE (11)Xf _{ICGIRCLK} /718/f _{ICGIRCLK} ICGDCLK/R $-$ FEE (11)Xf _{ICGIRCLK} /718/f _{ICGIRCLK} ICGDCLK/R $-$ FEE (11)Xf _{ICGIRCLK} /78/f _{ICGIRCLK} ICGDCLK/R $-$ FEE (11)X0 $-$ ICGERCLK/R $-$ FEE (11)X0 $-$ ICGDCLK/R $-$ FEE (11)X0 $-$ ICGDCLK/R $-$ FEE (11)X0 $-$ ICGDCLK/R3ERCS = 1 and DCOS = 1FEE (11)1f _{ICGERCLK} 128/f _{ICGERCLK} ICGDCLK/R12ERCS = 1 and DCOS = 1

Table 8-9. ICG State Table

¹ CLKST will not update immediately after a write to CLKS. Several bus cycles are required before CLKST updates to the new value.

² The reference frequency has no effect on ICGOUT in SCM, but the reference frequency is still used in making the comparisons that determine the DCOS bit

³ After initial LOCK; will be ICGDCLK/2R during initial locking process and while FLL is re-locking after the MFD bits are changed.

All TPM channels are programmable independently as input capture, output compare, or buffered edge-aligned PWM channels.

10.3 External Signal Description

When any pin associated with the timer is configured as a timer input, a passive pullup can be enabled. After reset, the TPM modules are disabled and all pins default to general-purpose inputs with the passive pullups disabled.

10.3.1 External TPM Clock Sources

When control bits CLKSB:CLKSA in the timer status and control register are set to 1:1, the prescaler and consequently the 16-bit counter for TPMx are driven by an external clock source, TPMxCLK, connected to an I/O pin. A synchronizer is needed between the external clock and the rest of the TPM. This synchronizer is clocked by the bus clock so the frequency of the external source must be less than one-half the frequency of the bus rate clock. The upper frequency limit for this external clock source is specified to be one-fourth the bus frequency to conservatively accommodate duty cycle and phase-locked loop (PLL) or frequency-locked loop (FLL) frequency jitter effects.

On some devices the external clock input is shared with one of the TPM channels. When a TPM channel is shared as the external clock input, the associated TPM channel cannot use the pin. (The channel can still be used in output compare mode as a software timer.) Also, if one of the TPM channels is used as the external clock input, the corresponding ELSnB:ELSnA control bits must be set to 0:0 so the channel is not trying to use the same pin.

10.3.2 TPMxCHn — TPMx Channel n I/O Pins

Each TPM channel is associated with an I/O pin on the MCU. The function of this pin depends on the configuration of the channel. In some cases, no pin function is needed so the pin reverts to being controlled by general-purpose I/O controls. When a timer has control of a port pin, the port data and data direction registers do not affect the related pin(s). See the Pins and Connections chapter for additional information about shared pin functions.

10.4 Register Definition

The TPM includes:

- An 8-bit status and control register (TPMxSC)
- A 16-bit counter (TPMxCNTH:TPMxCNTL)
- A 16-bit modulo register (TPMxMODH:TPMxMODL)

Each timer channel has:

- An 8-bit status and control register (TPMxCnSC)
- A 16-bit channel value register (TPMxCnVH:TPMxCnVL)

Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address assignments for all TPM registers. This section refers to registers and control bits only by their names. A

Chapter 10 Timer/Pulse-Width Modulator (S08TPMV2)

10.6.3 Channel Event Interrupt Description

The meaning of channel interrupts depends on the current mode of the channel (input capture, output compare, edge-aligned PWM, or center-aligned PWM).

When a channel is configured as an input capture channel, the ELSnB:ELSnA control bits select rising edges, falling edges, any edge, or no edge (off) as the edge that triggers an input capture event. When the selected edge is detected, the interrupt flag is set. The flag is cleared by the 2-step sequence described in Section 10.6.1, "Clearing Timer Interrupt Flags."

When a channel is configured as an output compare channel, the interrupt flag is set each time the main timer counter matches the 16-bit value in the channel value register. The flag is cleared by the 2-step sequence described in Section 10.6.1, "Clearing Timer Interrupt Flags."

10.6.4 PWM End-of-Duty-Cycle Events

For channels that are configured for PWM operation, there are two possibilities:

- When the channel is configured for edge-aligned PWM, the channel flag is set when the timer counter matches the channel value register that marks the end of the active duty cycle period.
- When the channel is configured for center-aligned PWM, the timer count matches the channel value register twice during each PWM cycle. In this CPWM case, the channel flag is set at the start and at the end of the active duty cycle, which are the times when the timer counter matches the channel value register.

The flag is cleared by the 2-step sequence described in Section 10.6.1, "Clearing Timer Interrupt Flags."

14.2.4 Features

Features of the ADC module include:

- Linear successive approximation algorithm with 10 bits resolution.
- Up to 28 analog inputs.
- Output formatted in 10- or 8-bit right-justified format.
- Single or continuous conversion (automatic return to idle after single conversion).
- Configurable sample time and conversion speed/power.
- Conversion complete flag and interrupt.
- Input clock selectable from up to four sources.
- Operation in wait or stop3 modes for lower noise operation.
- Asynchronous clock source for lower noise operation.
- Selectable asynchronous hardware conversion trigger.
- Automatic compare with interrupt for less-than, or greater-than or equal-to, programmable value.

14.2.5 Block Diagram

Figure 14-2 provides a block diagram of the ADC module

Chapter 15 Development Support

15.1 Introduction

Development support systems in the HCS08 include the background debug controller (BDC) and the on-chip debug module (DBG). The BDC provides a single-wire debug interface to the target MCU that provides a convenient interface for programming the on-chip FLASH and other nonvolatile memories. The BDC is also the primary debug interface for development and allows non-intrusive access to memory data and traditional debug features such as CPU register modify, breakpoints, and single instruction trace commands.

In the HCS08 family, address and data bus signals are not available on external pins (not even in test modes). Debug is done through commands fed into the target MCU via the single-wire background debug interface. The debug module provides a means to selectively trigger and capture bus information so an external development system can reconstruct what happened inside the MCU on a cycle-by-cycle basis without having external access to the address and data signals.

The alternate BDC clock source for MC9S08AW60 Series is the ICGLCLK. See Chapter 8, "Internal Clock Generator (S08ICGV4)" for more information about ICGCLK and how to select clock sources.

Chapter 15 Development Support

The SYNC command is unlike other BDC commands because the host does not necessarily know the correct communications speed to use for BDC communications until after it has analyzed the response to the SYNC command.

To issue a SYNC command, the host:

- Drives the BKGD pin low for at least 128 cycles of the slowest possible BDC clock (The slowest clock is normally the reference oscillator/64 or the self-clocked rate/64.)
- Drives BKGD high for a brief speedup pulse to get a fast rise time (This speedup pulse is typically one cycle of the fastest clock in the system.)
- Removes all drive to the BKGD pin so it reverts to high impedance
- Monitors the BKGD pin for the sync response pulse

The target, upon detecting the SYNC request from the host (which is a much longer low time than would ever occur during normal BDC communications):

- Waits for BKGD to return to a logic high
- Delays 16 cycles to allow the host to stop driving the high speedup pulse
- Drives BKGD low for 128 BDC clock cycles
- Drives a 1-cycle high speedup pulse to force a fast rise time on BKGD
- Removes all drive to the BKGD pin so it reverts to high impedance

The host measures the low time of this 128-cycle sync response pulse and determines the correct speed for subsequent BDC communications. Typically, the host can determine the correct communication speed within a few percent of the actual target speed and the communication protocol can easily tolerate speed errors of several percent.

15.2.4 BDC Hardware Breakpoint

The BDC includes one relatively simple hardware breakpoint that compares the CPU address bus to a 16-bit match value in the BDCBKPT register. This breakpoint can generate a forced breakpoint or a tagged breakpoint. A forced breakpoint causes the CPU to enter active background mode at the first instruction boundary following any access to the breakpoint address. The tagged breakpoint causes the instruction opcode at the breakpoint address to be tagged so that the CPU will enter active background mode rather than executing that instruction if and when it reaches the end of the instruction queue. This implies that tagged breakpoints can only be placed at the address of an instruction opcode while forced breakpoints can be set at any address.

The breakpoint enable (BKPTEN) control bit in the BDC status and control register (BDCSCR) is used to enable the breakpoint logic (BKPTEN = 1). When BKPTEN = 0, its default value after reset, the breakpoint logic is disabled and no BDC breakpoints are requested regardless of the values in other BDC breakpoint registers and control bits. The force/tag select (FTS) control bit in BDCSCR is used to select forced (FTS = 1) or tagged (FTS = 0) type breakpoints.

The on-chip debug module (DBG) includes circuitry for two additional hardware breakpoints that are more flexible than the simple breakpoint in the BDC module.

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
9	Ρ	High Impedance (off-state) leakage current ²	I _{oz}	—	0.01	1	μA
10	Ρ	Internal pullup resistors ³	R _{PU}	20	45	65	kΩ
11	Ρ	Internal pulldown resistors ⁴	R _{PD}	20	45	65	kΩ
12	С	Input Capacitance; all non-supply pins	C _{In}	—	—	8	pF
13	Ρ	POR rearm voltage	V _{POR}	0.9	1.4	2.0	V
14	D	POR rearm time	t _{POR}	10	—	—	μs
15	Ρ	Low-voltage detection threshold — high range V _{DD} falling V _{DD} rising	V _{LVDH}	4.2 4.3	4.3 4.4	4.4 4.5	v
16	Р	Low-voltage detection threshold — low range V _{DD} falling V _{DD} rising	V _{LVDL}	2.48 2.54	2.56 2.62	2.64 2.7	v
17	Р	Low-voltage warning threshold — high range V _{DD} falling V _{DD} rising	V _{LVWH}	4.2 4.3	4.3 4.4	4.4 4.5	v
18	Р	Low-voltage warning threshold — low range V _{DD} falling V _{DD} rising	V _{LVWL}	2.48 2.54	2.56 2.62	2.64 2.7	v
19	Р	Low-voltage inhibit reset/recover hysteresis 5V 3V	V _{hys}	_	100 60	_	mV
20	Ρ	Bandgap Voltage Reference Factory trimmed at V _{DD} = 5.0 V Temp = 25 °C	V _{BG}	1.185	1.20	1.215	V
21	D	dc injection current ^{5, 6, 7, 8} DC Injection Current Single pin limit $V_{IN} > V_{DD}$ $V_{IN} < V_{SS}$ Total MCU limit, includes sum of all stressed pins $V_{IN} > V_{DD}$ $V_{IN} < V_{SS}$	II _{IC} I	0 0 0 0		2 -0.2 25 -5	mA mA mA mA

Table A-7. DC Characteristics (continued)

¹ Typical values are based on characterization data at 25°C unless otherwise stated.

- ² Measured with $V_{In} = V_{DD}$ or V_{SS} .
- ³ Measured with $V_{In} = V_{SS}$.
- ⁴ Measured with $V_{In} = V_{DD}$.
- ⁵ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which (would reduce overall power consumption).
- $^{6}\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

⁷ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

Appendix A Electrical Characteristics and Timing Specifications

Appendix B Ordering Information and Mechanical Drawings

B.1 Ordering Information

This section contains ordering numbers for MC9S08AW60 Series devices. See below for an example of the device numbering system.

Dovice Number ¹	Me	mory	Available Packages ²	
Device Number	FLASH	RAM	Туре	
MC9S08AW60 MC9S08AW48 MC9S08AW32	63,280 49,152 32,768	2048	64-pin LQFP 64-pin QFP 48-pin QFN	
MC9S08AW16	16,384	1024	44-pin LQFP	

Table B-1. Consumer and Industrial Device Numbering System

¹ See Table 1-1 for a complete description of modules included on each device.

² See Table B-3 for package information.

Table B-2. Automotive Device Numbering System

Device Number ¹	Ме	mory	Available Packages ²		
Device Number	FLASH	RAM	Туре		
S9S08AW60	63,280		64-pin LQFP		
S9S08AW48	49,152	2048	48-pin QFN		
S9S08AW32	32,768		44-pin LQFP		
S9S08AW16	16,384	1024	48-pin QFN 44-pin LQFP		

¹ See Table 1-1 for a complete description of modules included on each device.

² See Table B-3 for package information.