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Chapter 2 Pins and Connections
2.3.1 Power (VDD, 2 x VSS, VDDAD, VSSAD)

VDD and VSS are the primary power supply pins for the MCU. This voltage source supplies power to all
I/O buffer circuitry and to an internal voltage regulator. The internal voltage regulator provides regulated
lower-voltage source to the CPU and other internal circuitry of the MCU.

Typically, application systems have two separate capacitors across the power pins. In this case, there
should be a bulk electrolytic capacitor, such as a 10-μF tantalum capacitor, to provide bulk charge storage
for the overall system and a 0.1-μF ceramic bypass capacitor located as near to the paired VDD and VSS
power pins as practical to suppress high-frequency noise. The MC9S08AW60 has a second VSS pin. This
pin should be connected to the system ground plane or to the primary VSS pin through a low-impedance
connection.

VDDAD and VSSAD are the analog power supply pins for the MCU. This voltage source supplies power to
the ADC module. A 0.1-μF ceramic bypass capacitor should be located as near to the analog power pins
as practical to suppress high-frequency noise.

2.3.2 Oscillator (XTAL, EXTAL)

Out of reset, the MCU uses an internally generated clock (self-clocked mode — fSelf_reset) equivalent to
about 8-MHz crystal rate. This frequency source is used during reset startup and can be enabled as the
clock source for stop recovery to avoid the need for a long crystal startup delay. This MCU also contains
a trimmable internal clock generator (ICG) module that can be used to run the MCU. For more information
on the ICG, see the Chapter 8, “Internal Clock Generator (S08ICGV4).”

The oscillator amplitude on XTAL and EXTAL is gain limited for low-power oscillation. Typically, these
pins have a 1-V peak-to-peak signal. For noisy environments, the high gain output (HGO) bit can be set to
enable rail-to-rail oscillation.

The oscillator in this MCU is a Pierce oscillator that can accommodate a crystal or ceramic resonator in
either of two frequency ranges selected by the RANGE bit in the ICGC1 register. Rather than a crystal or
ceramic resonator, an external oscillator can be connected to the EXTAL input pin.

Refer to Figure 2-4 for the following discussion. RS (when used) and RF should be low-inductance
resistors such as carbon composition resistors. Wire-wound resistors, and some metal film resistors, have
too much inductance. C1 and C2 normally should be high-quality ceramic capacitors that are specifically
designed for high-frequency applications.

RF is used to provide a bias path to keep the EXTAL input in its linear range during crystal startup and its
value is not generally critical. Typical systems use 1 MΩ to 10 MΩ. Higher values are sensitive to humidity
and lower values reduce gain and (in extreme cases) could prevent startup.

C1 and C2 are typically in the 5-pF to 25-pF range and are chosen to match the requirements of a specific
crystal or resonator. Be sure to take into account printed circuit board (PCB) capacitance and MCU pin
capacitance when sizing C1 and C2. The crystal manufacturer typically specifies a load capacitance which
is the series combination of C1 and C2 which are usually the same size. As a first-order approximation,
use 10 pF as an estimate of combined pin and PCB capacitance for each oscillator pin (EXTAL and
XTAL).
MC9S08AW60 Data Sheet, Rev 2
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Chapter 2 Pins and Connections

1

When an on-chip peripheral system is controlling a pin, data direction control bits still determine what is
read from port data registers even though the peripheral module controls the pin direction by controlling
the enable for the pin’s output buffer. See the Chapter 6, “Parallel Input/Output” chapter for more details.

Pullup enable bits for each input pin control whether on-chip pullup devices are enabled whenever the pin
is acting as an input even if it is being controlled by an on-chip peripheral module. When the PTD7, PTD3,
PTD2, and PTG4 pins are controlled by the KBI module and are configured for rising-edge/high-level
sensitivity, the pullup enable control bits enable pulldown devices rather than pullup devices.

NOTE
When an alternative function is first enabled it is possible to get a spurious
edge to the module, user software should clear out any associated flags
before interrupts are enabled. Table 2-1 illustrates the priority if multiple
modules are enabled. The highest priority module will have control over the
pin. Selecting a higher priority pin function with a lower priority function
already enabled can cause spurious edges to the lower priority module. It is
recommended that all modules that share a pin be disabled before enabling
another module.

PTF3–PTF0 TPM1CH5–
TPM1CH2

Chapter 10, “Timer/PWM (S08TPMV2)”

PTG4–PTG0 KBI1P4–KBI1P0 Chapter 9, “Keyboard Interrupt (S08KBIV1)”

PTG6–PTG5 EXTAL–XTAL Chapter 8, “Internal Clock Generator (S08ICGV4)”

See the listed chapter for information about modules that share these pins.

Table 2-1. Pin Sharing Priority

Lowest <- Pin Function Priority -> Highest
Reference1

Port Pins Alternate Function Alternate Function
MC9S08AW60 Data Sheet, Rev 2
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Chapter 3 Modes of Operation
After entering active background mode, the CPU is held in a suspended state waiting for serial background
commands rather than executing instructions from the user’s application program.

Background commands are of two types:

• Non-intrusive commands, defined as commands that can be issued while the user program is
running. Non-intrusive commands can be issued through the BKGD pin while the MCU is in run
mode; non-intrusive commands can also be executed when the MCU is in the active background
mode. Non-intrusive commands include:

— Memory access commands

— Memory-access-with-status commands

— BDC register access commands

— The BACKGROUND command

• Active background commands, which can only be executed while the MCU is in active background
mode. Active background commands include commands to:

— Read or write CPU registers

— Trace one user program instruction at a time

— Leave active background mode to return to the user’s application program (GO)

The active background mode is used to program a bootloader or user application program into the FLASH
program memory before the MCU is operated in run mode for the first time. When the MC9S08AW60
Series is shipped from the Freescale Semiconductor factory, the FLASH program memory is erased by
default unless specifically noted so there is no program that could be executed in run mode until the
FLASH memory is initially programmed. The active background mode can also be used to erase and
reprogram the FLASH memory after it has been previously programmed.

For additional information about the active background mode, refer to Chapter 15, “Development
Support.”

3.5 Wait Mode
Wait mode is entered by executing a WAIT instruction. Upon execution of the WAIT instruction, the CPU
enters a low-power state in which it is not clocked. The I bit in CCR is cleared when the CPU enters the
wait mode, enabling interrupts. When an interrupt request occurs, the CPU exits the wait mode and
resumes processing, beginning with the stacking operations leading to the interrupt service routine.

While the MCU is in wait mode, there are some restrictions on which background debug commands can
be used. Only the BACKGROUND command and memory-access-with-status commands are available
when the MCU is in wait mode. The memory-access-with-status commands do not allow memory access,
but they report an error indicating that the MCU is in either stop or wait mode. The BACKGROUND
command can be used to wake the MCU from wait mode and enter active background mode.

3.6 Stop Modes
One of two stop modes is entered upon execution of a STOP instruction when the STOPE bit in the system
option register is set. In both stop modes, all internal clocks are halted. If the STOPE bit is not set when
MC9S08AW60 Data Sheet, Rev 2
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Chapter 4 Memory
4.2 Register Addresses and Bit Assignments
The registers in the MC9S08AW60 Series are divided into these three groups:

• Direct-page registers are located in the first 112 locations in the memory map, so they are
accessible with efficient direct addressing mode instructions.

• High-page registers are used much less often, so they are located above $1800 in the memory map.
This leaves more room in the direct page for more frequently used registers and variables.

• The nonvolatile register area consists of a block of 16 locations in FLASH memory at
$FFB0–$FFBF.

Nonvolatile register locations include:

— Three values which are loaded into working registers at reset

— An 8-byte backdoor comparison key which optionally allows a user to gain controlled access
to secure memory

Because the nonvolatile register locations are FLASH memory, they must be erased and
programmed like other FLASH memory locations.

Direct-page registers can be accessed with efficient direct addressing mode instructions. Bit manipulation
instructions can be used to access any bit in any direct-page register. Table 4-2 is a summary of all
user-accessible direct-page registers and control bits.

The direct page registers in Table 4-2 can use the more efficient direct addressing mode which only
requires the lower byte of the address. Because of this, the lower byte of the address in column one is
shown in bold text. In Table 4-3 and Table 4-4 the whole address in column one is shown in bold. In
Table 4-2, Table 4-3, and Table 4-4, the register names in column two are shown in bold to set them apart
from the bit names to the right. Cells that are not associated with named bits are shaded. A shaded cell with
a 0 indicates this unused bit always reads as a 0. Shaded cells with dashes indicate unused or reserved bit
locations that could read as 1s or 0s.
MC9S08AW60 Data Sheet, Rev 2

Freescale Semiconductor 43



Chapter 4 Memory
When security is enabled, the RAM is considered a secure memory resource and is not accessible through
BDM or through code executing from non-secure memory. See Section 4.5, “Security” for a detailed
description of the security feature.

4.4 FLASH
The FLASH memory is intended primarily for program storage. In-circuit programming allows the
operating program to be loaded into the FLASH memory after final assembly of the application product.
It is possible to program the entire array through the single-wire background debug interface. Because no
special voltages are needed for FLASH erase and programming operations, in-application programming
is also possible through other software-controlled communication paths. For a more detailed discussion of
in-circuit and in-application programming, refer to the HCS08 Family Reference Manual, Volume I,
Freescale Semiconductor document order number HCS08RMv1/D.
MC9S08AW60 Data Sheet, Rev 2

50 Freescale Semiconductor



Chapter 4 Memory
be programmed to logic 0 to enable block protection. Therefore the value $DE must be programmed into
NVPROT to protect addresses $E000 through $FFFF.

Figure 4-5. Block Protection Mechanism

One use for block protection is to block protect an area of FLASH memory for a bootloader program. This
bootloader program then can be used to erase the rest of the FLASH memory and reprogram it. Because
the bootloader is protected, it remains intact even if MCU power is lost in the middle of an erase and
reprogram operation.

4.4.7 Vector Redirection

Whenever any block protection is enabled, the reset and interrupt vectors will be protected. Vector
redirection allows users to modify interrupt vector information without unprotecting bootloader and reset
vector space. Vector redirection is enabled by programming the FNORED bit in the NVOPT register
located at address $FFBF to zero. For redirection to occur, at least some portion but not all of the FLASH
memory must be block protected by programming the NVPROT register located at address $FFBD. All of
the interrupt vectors (memory locations $FFC0–$FFFD) are redirected, though the reset vector
($FFFE:FFFF) is not.

For example, if 512 bytes of FLASH are protected, the protected address region is from $FE00 through
$FFFF. The interrupt vectors ($FFC0–$FFFD) are redirected to the locations $FDC0–$FDFD. Now, if an
SPI interrupt is taken for instance, the values in the locations $FDE0:FDE1 are used for the vector instead
of the values in the locations $FFE0:FFE1. This allows the user to reprogram the unprotected portion of
the FLASH with new program code including new interrupt vector values while leaving the protected area,
which includes the default vector locations, unchanged.

4.5 Security
The MC9S08AW60 Series includes circuitry to prevent unauthorized access to the contents of FLASH and
RAM memory. When security is engaged, FLASH and RAM are considered secure resources. Direct-page
registers, high-page registers, and the background debug controller are considered unsecured resources.
Programs executing within secure memory have normal access to any MCU memory locations and
resources. Attempts to access a secure memory location with a program executing from an unsecured
memory space or through the background debug interface are blocked (writes are ignored and reads return
all 0s).

Security is engaged or disengaged based on the state of two nonvolatile register bits (SEC01:SEC00) in
the FOPT register. During reset, the contents of the nonvolatile location NVOPT are copied from FLASH
into the working FOPT register in high-page register space. A user engages security by programming the
NVOPT location which can be done at the same time the FLASH memory is programmed. The 1:0 state
disengages security and the other three combinations engage security. Notice the erased state (1:1) makes

FPS7 FPS6 FPS5 FPS4 FPS3 FPS2 FPS1

A15 A14 A13 A12 A11 A10 A9 A8

1

A7 A6 A5 A4 A3 A2 A1 A0

1 1 1 1 1 1 1 1
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Chapter 5 Resets, Interrupts, and System Configuration
NOTE
The voltage measured on the pulled up IRQ pin may be as low as
VDD – 0.7 V. The internal gates connected to this pin are pulled all the way
to VDD. All other pins with enabled pullup resistors will have an unloaded
measurement of VDD.

5.5.2.2 Edge and Level Sensitivity

The IRQMOD control bit reconfigures the detection logic so it detects edge events and pin levels. In this
edge detection mode, the IRQF status flag becomes set when an edge is detected (when the IRQ pin
changes from the deasserted to the asserted level), but the flag is continuously set (and cannot be cleared)
as long as the IRQ pin remains at the asserted level.

5.5.3 Interrupt Vectors, Sources, and Local Masks

Table 5-1 provides a summary of all interrupt sources. Higher-priority sources are located toward the
bottom of the table. The high-order byte of the address for the interrupt service routine is located at the
first address in the vector address column, and the low-order byte of the address for the interrupt service
routine is located at the next higher address.

When an interrupt condition occurs, an associated flag bit becomes set. If the associated local interrupt
enable is 1, an interrupt request is sent to the CPU. Within the CPU, if the global interrupt mask (I bit in
the CCR) is 0, the CPU will finish the current instruction, stack the PCL, PCH, X, A, and CCR CPU
registers, set the I bit, and then fetch the interrupt vector for the highest priority pending interrupt.
Processing then continues in the interrupt service routine.
MC9S08AW60 Data Sheet, Rev 2
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Chapter 7 Central Processor Unit (S08CPUV2)
7.3 Addressing Modes
Addressing modes define the way the CPU accesses operands and data. In the HCS08, all memory, status
and control registers, and input/output (I/O) ports share a single 64-Kbyte linear address space so a 16-bit
binary address can uniquely identify any memory location. This arrangement means that the same
instructions that access variables in RAM can also be used to access I/O and control registers or nonvolatile
program space.

Some instructions use more than one addressing mode. For instance, move instructions use one addressing
mode to specify the source operand and a second addressing mode to specify the destination address.
Instructions such as BRCLR, BRSET, CBEQ, and DBNZ use one addressing mode to specify the location
of an operand for a test and then use relative addressing mode to specify the branch destination address
when the tested condition is true. For BRCLR, BRSET, CBEQ, and DBNZ, the addressing mode listed in
the instruction set tables is the addressing mode needed to access the operand to be tested, and relative
addressing mode is implied for the branch destination.

7.3.1 Inherent Addressing Mode (INH)

In this addressing mode, operands needed to complete the instruction (if any) are located within CPU
registers so the CPU does not need to access memory to get any operands.

7.3.2 Relative Addressing Mode (REL)

Relative addressing mode is used to specify the destination location for branch instructions. A signed 8-bit
offset value is located in the memory location immediately following the opcode. During execution, if the
branch condition is true, the signed offset is sign-extended to a 16-bit value and is added to the current
contents of the program counter, which causes program execution to continue at the branch destination
address.

7.3.3 Immediate Addressing Mode (IMM)

In immediate addressing mode, the operand needed to complete the instruction is included in the object
code immediately following the instruction opcode in memory. In the case of a 16-bit immediate operand,
the high-order byte is located in the next memory location after the opcode, and the low-order byte is
located in the next memory location after that.

7.3.4 Direct Addressing Mode (DIR)

In direct addressing mode, the instruction includes the low-order eight bits of an address in the direct page
(0x0000–0x00FF). During execution a 16-bit address is formed by concatenating an implied 0x00 for the
high-order half of the address and the direct address from the instruction to get the 16-bit address where
the desired operand is located. This is faster and more memory efficient than specifying a complete 16-bit
address for the operand.
MC9S08AW60 Data Sheet, Rev 2
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Chapter 7 Central Processor Unit (S08CPUV2)
0 = Bit forced to 0
1 = Bit forced to 1

= Bit set or cleared according to results of operation
U = Undefined after the operation

Machine coding notation

dd = Low-order 8 bits of a direct address 0x0000–0x00FF (high byte assumed to be 0x00)
ee = Upper 8 bits of 16-bit offset
ff = Lower 8 bits of 16-bit offset or 8-bit offset
ii = One byte of immediate data
jj = High-order byte of a 16-bit immediate data value

kk = Low-order byte of a 16-bit immediate data value
hh = High-order byte of 16-bit extended address

ll = Low-order byte of 16-bit extended address
rr = Relative offset

Source form

Everything in the source forms columns, except expressions in italic characters, is literal information that
must appear in the assembly source file exactly as shown. The initial 3- to 5-letter mnemonic is always a
literal expression. All commas, pound signs (#), parentheses, and plus signs (+) are literal characters.

n — Any label or expression that evaluates to a single integer in the range 0–7
opr8i — Any label or expression that evaluates to an 8-bit immediate value

opr16i — Any label or expression that evaluates to a 16-bit immediate value
opr8a — Any label or expression that evaluates to an 8-bit value. The instruction treats this 8-bit

value as the low order 8 bits of an address in the direct page of the 64-Kbyte address
space (0x00xx).

opr16a — Any label or expression that evaluates to a 16-bit value. The instruction treats this
value as an address in the 64-Kbyte address space.

oprx8 — Any label or expression that evaluates to an unsigned 8-bit value, used for indexed
addressing

oprx16 — Any label or expression that evaluates to a 16-bit value. Because the HCS08 has a
16-bit address bus, this can be either a signed or an unsigned value.

rel — Any label or expression that refers to an address that is within –128 to +127 locations
from the next address after the last byte of object code for the current instruction. The
assembler will calculate the 8-bit signed offset and include it in the object code for this
instruction.

Address modes

INH = Inherent (no operands)
IMM = 8-bit or 16-bit immediate
DIR = 8-bit direct
EXT = 16-bit extended
MC9S08AW60 Data Sheet, Rev 2
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Chapter 8
Internal Clock Generator (S08ICGV4)
The internal clock generation (ICG) module is used to generate the system clocks for the MC9S08AW60
Series MCU. The analog supply lines VDDA and VSSA are internally derived from the MCU’s VDD and
VSS pins. Electrical parametric data for the ICG may be found in Appendix A, “Electrical Characteristics
and Timing Specifications.”

Figure 8-1. System Clock Distribution Diagram

NOTE
Freescale Semiconductor recommends that FLASH location $FFBE be
reserved to store a nonvolatile version of ICGTRM. This will allow
debugger and programmer vendors to perform a manual trim operation and
store the resultant ICGTRM value for users to access at a later time.

TPM1 TPM2 IIC1 SCI1 SCI2 SPI1

BDCCPU ADC RAM FLASH

ICG

ICGOUT ÷2

FFE

SYSTEM

LOGIC

BUSCLK

ICGLCLK*

CONTROL

FIXED FREQ CLOCK (XCLK)

ICGERCLK
RTI

* ICGLCLK is the alternate BDC clock source for the MC9S08AW60 Series.

÷2

FLASH has frequency
requirements for program
and erase operation.
See Appendix A, “Electrical
Characteristics and Timing
Specifications.

ADC has min and max
frequency requirements.
See Chapter 14,
“Analog-to-Digital Converter
(S08ADC10V1) and
Appendix A, “Electrical
Characteristics and Timing
Specifications
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Chapter 8 Internal Clock Generator (S08ICGV4)
8.4.10 Clock Mode Requirements

A clock mode is requested by writing to CLKS1:CLKS0 and the actual clock mode is indicated by
CLKST1:CLKST0. Provided minimum conditions are met, the status shown in CLKST1:CLKST0 should
be the same as the requested mode in CLKS1:CLKS0. Table 8-9 shows the relationship between CLKS,
CLKST, and ICGOUT. It also shows the conditions for CLKS = CLKST or the reason CLKS ≠ CLKST.

NOTE
If a crystal will be used before the next reset, then be sure to set REFS = 1
and CLKS = 1x on the first write to the ICGC1 register. Failure to do so will
result in “locking” REFS = 0 which will prevent the oscillator amplifier
from being enabled until the next reset occurs.

Table 8-9.  ICG State Table

Actual
Mode

(CLKST)

Desired
Mode

(CLKS)
Range

Reference
Frequency

(fREFERENCE)

Comparison
Cycle Time

ICGOUT
Conditions1 for
CLKS = CLKST

1 CLKST will not update immediately after a write to CLKS. Several bus cycles are required before CLKST updates to the new
value.

Reason
CLKS1 ≠
CLKST

Off
(XX)

Off
(XX)

X 0 — 0 — —

FBE
(10)

X 0 — 0 — ERCS = 0

SCM
(00)

SCM
(00)

X fICGIRCLK/72

2 The reference frequency has no effect on ICGOUT in SCM, but the reference frequency is still used in making the comparisons
that determine the DCOS bit

8/fICGIRCLK ICGDCLK/R
Not switching
from FBE to

SCM
—

FEI
(01)

0 fICGIRCLK/7(1) 8/fICGIRCLK ICGDCLK/R — DCOS = 0

FBE
(10)

X fICGIRCLK/7(1) 8/fICGIRCLK ICGDCLK/R — ERCS = 0

FEE
(11)

X fICGIRCLK/7(1) 8/fICGIRCLK ICGDCLK/R —
DCOS = 0 or

ERCS = 0

FEI
(01)

FEI
(01)

0 fICGIRCLK/7 8/fICGIRCLK ICGDCLK/R DCOS = 1 —

FEE
(11)

X fICGIRCLK/7 8/fICGIRCLK ICGDCLK/R — ERCS = 0

FBE
(10)

FBE
(10)

X 0 — ICGERCLK/R ERCS = 1 —

FEE
(11)

X 0 — ICGERCLK/R —
LOCS = 1 &
ERCS = 1

FEE
(11)

FEE
(11)

0 fICGERCLK 2/fICGERCLK ICGDCLK/R3

3 After initial LOCK; will be ICGDCLK/2R during initial locking process and while FLL is re-locking after the MFD bits are changed.

ERCS = 1 and
DCOS = 1

—

1 fICGERCLK 128/fICGERCLK ICGDCLK/R(2) ERCS = 1 and
DCOS = 1

—

MC9S08AW60 Data Sheet, Rev 2
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Chapter 9
Keyboard Interrupt (S08KBIV1)

9.1 Introduction
The MC9S08AW60 Series has one KBI module with eight keyboard interrupt inputs that are shared with
port D and port G pins. See Chapter 2, “Pins and Connections,” for more information about the logic and
hardware aspects of these pins.

9.2 Keyboard Pin Sharing
The KBI input KBIP7 shares a common pin with PTD7 and AD15. When KBIP7 is enabled the pin is
forced to its input state regardless of the value of the associated port D data direction bit. The port D pullup
enable is still used to control the pullup resistor and the pin state can be sensed through a read of the port
D data register (this requires that bit 7 of the port D DDR is 0). In the case that the pin is enabled as an
ADC input, both the PTD7 and KBIP7 functions are disabled, including the pullup resistor.

The KBI input KBIP6 shares a common pin with PTD3 and AD11, and KBI input KBIP5 shares a common
pin with PTD2 and AD10. The sharing of each of these inputs with port and ADC functions operates in
the same way as described above for KBIP7.

The KBI inputs KBIP4 – KBIP0 are shared on common pins with PTG4 – PTG0. These pins all operate
in the same way as described above for KBIP7 except that none are shared with an ADC input.

KBIP3 – KBIP0 are always falling-edge/low-level sensitive. KBIP7 – KBIP4 can be configured for
rising-edge/high-level or for falling-edge/low-level sensitivity. When any of the inputs KBIP7 – KBIP0 are
enabled and configured to detect rising edges/high levels, and the pin pullup is enabled through the
corresponding port pullup enable bit for that pin, a pulldown resistor rather than a pullup resistor is enabled
on the pin.

Table 9-1. KBI and Parallel I/O Interaction

PTxPEn
(Pull Enable)

PTxDDn
(Data Direction)

KBIPEn
(KBI Pin Enable)

KBEDGn
(KBI Edge Select)

Pullup Pulldown

0 0 0 x1

1 x = Don’t care

disabled disabled

1 0 0 x enabled disabled

x 1 0 x disabled disabled

1 x 1 0 enabled disabled

1 x 1 1 disabled enabled

0 x 1 x disabled disabled
MC9S08AW60 Data Sheet, Rev 2
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Chapter 10
Timer/PWM (S08TPMV2)

10.1 Introduction
The MC9S08AW60 Series includes two independent timer/PWM (TPM) modules which support
traditional input capture, output compare, or buffered edge-aligned pulse-width modulation (PWM) on
each channel. A control bit in each TPM configures all channels in that timer to operate as center-aligned
PWM functions. In each of these two TPMs, timing functions are based on a separate 16-bit counter with
prescaler and modulo features to control frequency and range (period between overflows) of the time
reference. This timing system is ideally suited for a wide range of control applications, and the
center-aligned PWM capability on the 3-channel TPM extends the field of applications to motor control in
small appliances.

The use of the fixed system clock, XCLK, as the clock source for either of the TPM modules allows the
TPM prescaler to run using the oscillator rate divided by two (ICGERCLK/2). This option is only available
if the ICG is configured in FEE mode and the proper conditions are met (see Section 8.4.11, “Fixed
Frequency Clock”). In all other ICG modes this selection is redundant because XCLK is the same as
BUSCLK.

10.2 Features
The timer system in the MC9S08AW60 Series includes a 6-channel TPM1 and a separate 2-channel
TPM2. Timer system features include:

• A total of eight channels:
— Each channel may be input capture, output compare, or buffered edge-aligned PWM
— Rising-edge, falling-edge, or any-edge input capture trigger
— Set, clear, or toggle output compare action
— Selectable polarity on PWM outputs

• Each TPM may be configured for buffered, center-aligned pulse-width modulation (CPWM) on all
channels

• Clock source to prescaler for each TPM is independently selectable as bus clock, fixed system
clock, or an external pin:
— Prescale taps for divide by 1, 2, 4, 8, 16, 32, 64, or 128
— External clock inputs TPM1CLK for TPM1 and TPM2CLK for TPM2 (only available in

64-pin package)
• 16-bit free-running or up/down (CPWM) count operation
• 16-bit modulus register to control counter range
• Timer system enable
• One interrupt per channel plus a terminal count interrupt for each TPM module
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Chapter 11 Serial Communications Interface (S08SCIV2)
Figure 11-3 shows the receiver portion of the SCI.

Figure 11-3. SCI Receiver Block Diagram

11.2 Register Definition
The SCI has eight 8-bit registers to control baud rate, select SCI options, report SCI status, and for
transmit/receive data.
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Chapter 13 Inter-Integrated Circuit (S08IICV1)
Figure 13-9. IIC Clock Synchronization

13.4.1.8 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices may hold
the SCL low after completion of one byte transfer (9 bits). In such case, it halts the bus clock and forces
the master clock into wait states until the slave releases the SCL line.

13.4.1.9 Clock Stretching

The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer. After
the master has driven SCL low the slave can drive SCL low for the required period and then release it. If
the slave SCL low period is greater than the master SCL low period then the resulting SCL bus signal low
period is stretched.

13.5 Resets
The IIC is disabled after reset. The IIC cannot cause an MCU reset.

13.6 Interrupts
The IIC generates a single interrupt.

An interrupt from the IIC is generated when any of the events in Table 13-7 occur provided the IICIE bit
is set. The interrupt is driven by bit IICIF (of the IIC status register) and masked with bit IICIE (of the IIC
control register). The IICIF bit must be cleared by software by writing a one to it in the interrupt routine.
The user can determine the interrupt type by reading the status register.

Table 13-7. Interrupt Summary

Interrupt Source Status Flag Local Enable

Complete 1-byte transfer TCF IICIF IICIE

Match of received calling address IAAS IICIF IICIE

Arbitration Lost ARBL IICIF IICIE

SCL1

SCL2

SCL

INTERNAL COUNTER RESET

DELAY START COUNTING HIGH PERIOD
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Chapter 14 Analog-to-Digital Converter (S08ADC10V1)
14.5.7.2 Stop3 Mode With ADACK Enabled

If ADACK is selected as the conversion clock, the ADC continues operation during stop3 mode. For
guaranteed ADC operation, the MCU’s voltage regulator must remain active during stop3 mode. Consult
the module introduction for configuration information for this MCU.

If a conversion is in progress when the MCU enters stop3 mode, it continues until completion. Conversions
can be initiated while the MCU is in stop3 mode by means of the hardware trigger or if continuous
conversions are enabled.

A conversion complete event sets the COCO and generates an ADC interrupt to wake the MCU from stop3
mode if the ADC interrupt is enabled (AIEN = 1).

NOTE
It is possible for the ADC module to wake the system from low power stop
and cause the MCU to begin consuming run-level currents without
generating a system level interrupt. To prevent this scenario, software
should ensure that the data transfer blocking mechanism (discussed in
Section 14.5.4.2, “Completing Conversions) is cleared when entering stop3
and continuing ADC conversions.

14.5.8 MCU Stop1 and Stop2 Mode Operation

The ADC module is automatically disabled when the MCU enters either stop1 or stop2 mode. All module
registers contain their reset values following exit from stop1 or stop2. Therefore the module must be
re-enabled and re-configured following exit from stop1 or stop2.

14.6 Initialization Information
This section gives an example which provides some basic direction on how a user would initialize and
configure the ADC module. The user has the flexibility of choosing between configuring the module for
8-bit or 10-bit resolution, single or continuous conversion, and a polled or interrupt approach, among many
other options. Refer to Table 14-6, Table 14-7, and Table 14-8 for information used in this example.

NOTE
Hexadecimal values designated by a preceding 0x, binary values designated
by a preceding %, and decimal values have no preceding character.

14.6.1 ADC Module Initialization Example

14.6.1.1 Initialization Sequence

Before the ADC module can be used to complete conversions, an initialization procedure must be
performed. A typical sequence is as follows:

1. Update the configuration register (ADCCFG) to select the input clock source and the divide ratio
used to generate the internal clock, ADCK. This register is also used for selecting sample time and
low-power configuration.
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Chapter 15 Development Support
15.2.3 BDC Commands

BDC commands are sent serially from a host computer to the BKGD pin of the target HCS08 MCU. All
commands and data are sent MSB-first using a custom BDC communications protocol. Active background
mode commands require that the target MCU is currently in the active background mode while
non-intrusive commands may be issued at any time whether the target MCU is in active background mode
or running a user application program.

Table 15-1 shows all HCS08 BDC commands, a shorthand description of their coding structure, and the
meaning of each command.

Coding Structure Nomenclature

This nomenclature is used in Table 15-1 to describe the coding structure of the BDC commands.

Commands begin with an 8-bit hexadecimal command code in the host-to-target
direction (most significant bit first)

/  = separates parts of the command
d = delay 16 target BDC clock cycles

AAAA = a 16-bit address in the host-to-target direction
RD = 8 bits of read data in the target-to-host direction

WD = 8 bits of write data in the host-to-target direction
RD16 = 16 bits of read data in the target-to-host direction

WD16 = 16 bits of write data in the host-to-target direction
SS = the contents of BDCSCR in the target-to-host direction (STATUS)
CC = 8 bits of write data for BDCSCR in the host-to-target direction (CONTROL)

RBKP = 16 bits of read data in the target-to-host direction (from BDCBKPT breakpoint
register)

WBKP = 16 bits of write data in the host-to-target direction (for BDCBKPT breakpoint register)
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Chapter 15 Development Support
The SYNC command is unlike other BDC commands because the host does not necessarily know the
correct communications speed to use for BDC communications until after it has analyzed the response to
the SYNC command.

To issue a SYNC command, the host:

• Drives the BKGD pin low for at least 128 cycles of the slowest possible BDC clock (The slowest
clock is normally the reference oscillator/64 or the self-clocked rate/64.)

• Drives BKGD high for a brief speedup pulse to get a fast rise time (This speedup pulse is typically
one cycle of the fastest clock in the system.)

• Removes all drive to the BKGD pin so it reverts to high impedance

• Monitors the BKGD pin for the sync response pulse

The target, upon detecting the SYNC request from the host (which is a much longer low time than would
ever occur during normal BDC communications):

• Waits for BKGD to return to a logic high

• Delays 16 cycles to allow the host to stop driving the high speedup pulse

• Drives BKGD low for 128 BDC clock cycles

• Drives a 1-cycle high speedup pulse to force a fast rise time on BKGD

• Removes all drive to the BKGD pin so it reverts to high impedance

The host measures the low time of this 128-cycle sync response pulse and determines the correct speed for
subsequent BDC communications. Typically, the host can determine the correct communication speed
within a few percent of the actual target speed and the communication protocol can easily tolerate speed
errors of several percent.

15.2.4 BDC Hardware Breakpoint

The BDC includes one relatively simple hardware breakpoint that compares the CPU address bus to a
16-bit match value in the BDCBKPT register. This breakpoint can generate a forced breakpoint or a tagged
breakpoint. A forced breakpoint causes the CPU to enter active background mode at the first instruction
boundary following any access to the breakpoint address. The tagged breakpoint causes the instruction
opcode at the breakpoint address to be tagged so that the CPU will enter active background mode rather
than executing that instruction if and when it reaches the end of the instruction queue. This implies that
tagged breakpoints can only be placed at the address of an instruction opcode while forced breakpoints can
be set at any address.

The breakpoint enable (BKPTEN) control bit in the BDC status and control register (BDCSCR) is used to
enable the breakpoint logic (BKPTEN = 1). When BKPTEN = 0, its default value after reset, the
breakpoint logic is disabled and no BDC breakpoints are requested regardless of the values in other BDC
breakpoint registers and control bits. The force/tag select (FTS) control bit in BDCSCR is used to select
forced (FTS = 1) or tagged (FTS = 0) type breakpoints.

The on-chip debug module (DBG) includes circuitry for two additional hardware breakpoints that are more
flexible than the simple breakpoint in the BDC module.
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Chapter 15 Development Support
15.4.3.8 Debug Trigger Register (DBGT)

This register can be read any time, but may be written only if ARM = 0, except bits 4 and 5 are hard-wired
to 0s.

7 6 5 4 3 2 1 0

R
TRGSEL BEGIN

0 0
TRG3 TRG2 TRG1 TRG0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 15-8. Debug Trigger Register (DBGT)

Table 15-5. DBGT Register Field Descriptions

Field Description

7
TRGSEL

Trigger Type — Controls whether the match outputs from comparators A and B are qualified with the opcode
tracking logic in the debug module. If TRGSEL is set, a match signal from comparator A or B must propagate
through the opcode tracking logic and a trigger event is only signalled to the FIFO logic if the opcode at the match
address is actually executed.
0 Trigger on access to compare address (force)
1 Trigger if opcode at compare address is executed (tag)

6
BEGIN

Begin/End Trigger Select — Controls whether the FIFO starts filling at a trigger or fills in a circular manner until
a trigger ends the capture of information. In event-only trigger modes, this bit is ignored and all debug runs are
assumed to be begin traces.
0 Data stored in FIFO until trigger (end trace)
1 Trigger initiates data storage (begin trace)

3:0
TRG[3:0]

Select Trigger Mode — Selects one of nine triggering modes, as described below.
0000 A-only
0001 A OR B
0010 A Then B
0011 Event-only B (store data)
0100 A then event-only B (store data)
0101 A AND B data (full mode)
0110 A AND NOT B data (full mode)
0111 Inside range: A ≤ address ≤ B
1000 Outside range: address < A or address > B
1001 – 1111 (No trigger)
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