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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Chapter 4 Memory
Figure 4-2.  MC9S08AW32 and MC9S08AW16 Memory Map
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Chapter 4 Memory
be programmed to logic 0 to enable block protection. Therefore the value $DE must be programmed into
NVPROT to protect addresses $E000 through $FFFF.

Figure 4-5. Block Protection Mechanism

One use for block protection is to block protect an area of FLASH memory for a bootloader program. This
bootloader program then can be used to erase the rest of the FLASH memory and reprogram it. Because
the bootloader is protected, it remains intact even if MCU power is lost in the middle of an erase and
reprogram operation.

4.4.7 Vector Redirection

Whenever any block protection is enabled, the reset and interrupt vectors will be protected. Vector
redirection allows users to modify interrupt vector information without unprotecting bootloader and reset
vector space. Vector redirection is enabled by programming the FNORED bit in the NVOPT register
located at address $FFBF to zero. For redirection to occur, at least some portion but not all of the FLASH
memory must be block protected by programming the NVPROT register located at address $FFBD. All of
the interrupt vectors (memory locations $FFC0–$FFFD) are redirected, though the reset vector
($FFFE:FFFF) is not.

For example, if 512 bytes of FLASH are protected, the protected address region is from $FE00 through
$FFFF. The interrupt vectors ($FFC0–$FFFD) are redirected to the locations $FDC0–$FDFD. Now, if an
SPI interrupt is taken for instance, the values in the locations $FDE0:FDE1 are used for the vector instead
of the values in the locations $FFE0:FFE1. This allows the user to reprogram the unprotected portion of
the FLASH with new program code including new interrupt vector values while leaving the protected area,
which includes the default vector locations, unchanged.

4.5 Security
The MC9S08AW60 Series includes circuitry to prevent unauthorized access to the contents of FLASH and
RAM memory. When security is engaged, FLASH and RAM are considered secure resources. Direct-page
registers, high-page registers, and the background debug controller are considered unsecured resources.
Programs executing within secure memory have normal access to any MCU memory locations and
resources. Attempts to access a secure memory location with a program executing from an unsecured
memory space or through the background debug interface are blocked (writes are ignored and reads return
all 0s).

Security is engaged or disengaged based on the state of two nonvolatile register bits (SEC01:SEC00) in
the FOPT register. During reset, the contents of the nonvolatile location NVOPT are copied from FLASH
into the working FOPT register in high-page register space. A user engages security by programming the
NVOPT location which can be done at the same time the FLASH memory is programmed. The 1:0 state
disengages security and the other three combinations engage security. Notice the erased state (1:1) makes

FPS7 FPS6 FPS5 FPS4 FPS3 FPS2 FPS1

A15 A14 A13 A12 A11 A10 A9 A8

1

A7 A6 A5 A4 A3 A2 A1 A0

1 1 1 1 1 1 1 1
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Chapter 5 Resets, Interrupts, and System Configuration
I bit in the CCR is 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set after
reset which masks (prevents) all maskable interrupt sources. The user program initializes the stack pointer
and performs other system setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the current instruction before responding
to the interrupt. The interrupt sequence obeys the same cycle-by-cycle sequence as the SWI instruction and
consists of:

• Saving the CPU registers on the stack

• Setting the I bit in the CCR to mask further interrupts

• Fetching the interrupt vector for the highest-priority interrupt that is currently pending

• Filling the instruction queue with the first three bytes of program information starting from the
address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of another
interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is restored to 0
when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit may be cleared
inside an ISR (after clearing the status flag that generated the interrupt) so that other interrupts can be
serviced without waiting for the first service routine to finish. This practice is not recommended for anyone
other than the most experienced programmers because it can lead to subtle program errors that are difficult
to debug.

The interrupt service routine ends with a return-from-interrupt (RTI) instruction which restores the CCR,
A, X, and PC registers to their pre-interrupt values by reading the previously saved information off the
stack.

NOTE
For compatibility with the M68HC08, the H register is not automatically
saved and restored. It is good programming practice to push H onto the stack
at the start of the interrupt service routine (ISR) and restore it immediately
before the RTI that is used to return from the ISR.

When two or more interrupts are pending when the I bit is cleared, the highest priority source is serviced
first (see Table 5-1).

5.5.1 Interrupt Stack Frame

Figure 5-1 shows the contents and organization of a stack frame. Before the interrupt, the stack pointer
(SP) points at the next available byte location on the stack. The current values of CPU registers are stored
on the stack starting with the low-order byte of the program counter (PCL) and ending with the CCR. After
stacking, the SP points at the next available location on the stack which is the address that is one less than
the address where the CCR was saved. The PC value that is stacked is the address of the instruction in the
main program that would have executed next if the interrupt had not occurred.
MC9S08AW60 Data Sheet, Rev 2
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Chapter 6 Parallel Input/Output
7 6 5 4 3 2 1 0

R
PTFDS7 PTFDS6 PTFDS5 PTFDS4 PTFDS3 PTFDS2 PTFDS1 PTFDS0

W

Reset 0 0 0 0 0 0 0 0

Figure 6-38. Output Drive Strength Selection for Port F (PTFDS)

Table 6-31. PTFDS Register Field Descriptions

Field Description

7:0
PTFDS[7:0]

Output Drive Strength Selection for Port F Bits — Each of these control bits selects between low and high
output drive for the associated PTF pin.
0 Low output drive enabled for port F bit n.
1 High output drive enabled for port F bit n.
MC9S08AW60 Data Sheet, Rev 2
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Chapter 7 Central Processor Unit (S08CPUV2)
interrupt service routine, this would allow nesting of interrupts (which is not recommended because it
leads to programs that are difficult to debug and maintain).

For compatibility with the earlier M68HC05 MCUs, the high-order half of the H:X index register pair (H)
is not saved on the stack as part of the interrupt sequence. The user must use a PSHH instruction at the
beginning of the service routine to save H and then use a PULH instruction just before the RTI that ends
the interrupt service routine. It is not necessary to save H if you are certain that the interrupt service routine
does not use any instructions or auto-increment addressing modes that might change the value of H.

The software interrupt (SWI) instruction is like a hardware interrupt except that it is not masked by the
global I bit in the CCR and it is associated with an instruction opcode within the program so it is not
asynchronous to program execution.

7.4.3 Wait Mode Operation

The WAIT instruction enables interrupts by clearing the I bit in the CCR. It then halts the clocks to the
CPU to reduce overall power consumption while the CPU is waiting for the interrupt or reset event that
will wake the CPU from wait mode. When an interrupt or reset event occurs, the CPU clocks will resume
and the interrupt or reset event will be processed normally.

If a serial BACKGROUND command is issued to the MCU through the background debug interface while
the CPU is in wait mode, CPU clocks will resume and the CPU will enter active background mode where
other serial background commands can be processed. This ensures that a host development system can still
gain access to a target MCU even if it is in wait mode.

7.4.4 Stop Mode Operation

Usually, all system clocks, including the crystal oscillator (when used), are halted during stop mode to
minimize power consumption. In such systems, external circuitry is needed to control the time spent in
stop mode and to issue a signal to wake up the target MCU when it is time to resume processing. Unlike
the earlier M68HC05 and M68HC08 MCUs, the HCS08 can be configured to keep a minimum set of
clocks running in stop mode. This optionally allows an internal periodic signal to wake the target MCU
from stop mode.

When a host debug system is connected to the background debug pin (BKGD) and the ENBDM control
bit has been set by a serial command through the background interface (or because the MCU was reset into
active background mode), the oscillator is forced to remain active when the MCU enters stop mode. In this
case, if a serial BACKGROUND command is issued to the MCU through the background debug interface
while the CPU is in stop mode, CPU clocks will resume and the CPU will enter active background mode
where other serial background commands can be processed. This ensures that a host development system
can still gain access to a target MCU even if it is in stop mode.

Recovery from stop mode depends on the particular HCS08 and whether the oscillator was stopped in stop
mode. Refer to the Modes of Operation chapter for more details.
MC9S08AW60 Data Sheet, Rev 2
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Chapter 7 Central Processor Unit (S08CPUV2)
BRCLR n,opr8a,rel Branch if Bit n in Memory
Clear Branch if (Mn) = 0 – – – – – ↕

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

01
03
05
07
09
0B
0D
0F

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BRN rel Branch Never Uses 3 Bus Cycles – – – – – – REL 21 rr 3

BRSET n,opr8a,rel Branch if Bit n in Memory
Set Branch if (Mn) = 1 – – – – – ↕

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

00
02
04
06
08
0A
0C
0E

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BSET n,opr8a Set Bit n in Memory Mn ← 1 – – – – – –

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

10
12
14
16
18
1A
1C
1E

dd
dd
dd
dd
dd
dd
dd
dd

5
5
5
5
5
5
5
5

BSR rel Branch to Subroutine

PC ← (PC) + 0x0002
push (PCL); SP ← (SP) – 0x0001
push (PCH); SP ← (SP) – 0x0001

PC ← (PC) + rel

– – – – – – REL AD rr 5

CBEQ  opr8a,rel
CBEQA  #opr8i,rel
CBEQX  #opr8i,rel
CBEQ  oprx8,X+,rel
CBEQ ,X+,rel
CBEQ oprx8,SP,rel

Compare and Branch if
Equal

Branch if (A) = (M)
Branch if (A) = (M)
Branch if (X) = (M)
Branch if (A) = (M)
Branch if (A) = (M)
Branch if (A) = (M)

– – – – – –

DIR
IMM
IMM
IX1+
IX+
SP1

31
41
51
61
71

9E61

dd rr
ii rr
ii rr
ff rr
rr
ff rr

5
4
4
5
5
6

CLC Clear Carry Bit C ← 0 – – – – – 0 INH 98 1

CLI Clear Interrupt Mask Bit I ← 0 – – 0 – – – INH 9A 1

CLR opr8a
CLRA
CLRX
CLRH
CLR oprx8,X
CLR  ,X
CLR oprx8,SP

Clear

M ← 0x00
A ← 0x00
X ← 0x00
H ← 0x00
M ← 0x00
M ← 0x00
M ← 0x00

0 – – 0 1 –

DIR
INH
INH
INH
IX1
IX
SP1

3F
4F
5F
8C
6F
7F

9E6F

dd

ff

ff

5
1
1
1
5
4
6

CMP  #opr8i
CMP opr8a
CMP opr16a
CMP oprx16,X
CMP oprx8,X
CMP   ,X
CMP oprx16,SP
CMP oprx8,SP

Compare Accumulator
with Memory

(A) – (M)
(CCR Updated But Operands Not

Changed)
↕ – – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A1
B1
C1
D1
E1
F1

9ED1
9EE1

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

COM opr8a
COMA
COMX
COM oprx8,X
COM  ,X
COM oprx8,SP

Complement
(One’s Complement)

M ← (M)= 0xFF – (M)
A ← (A) = 0xFF – (A)
X ← (X) = 0xFF – (X)
M ← (M) = 0xFF – (M)
M ← (M) = 0xFF – (M)
M ← (M) = 0xFF – (M)

0 – – ↕ ↕ 1

DIR
INH
INH
IX1
IX
SP1

33
43
53
63
73

9E63

dd

ff

ff

5
1
1
5
4
6

CPHX opr16a
CPHX #opr16i
CPHX opr8a
CPHX oprx8,SP

Compare Index Register
(H:X) with Memory

(H:X) – (M:M + 0x0001)
(CCR Updated But Operands Not

Changed)
↕ – – ↕ ↕ ↕

EXT
IMM
DIR
SP1

3E
65
75

9EF3

hh ll
jj kk
dd
ff

6
3
5
6

Table 7-2. HCS08 Instruction Set Summary (Sheet 3 of 7)

Source
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Chapter 8 Internal Clock Generator (S08ICGV4)
Figure 8-15. ICG Initialization and Stop Recovery for Example #2
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CONTINUE

RECOVERY
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Chapter 8 Internal Clock Generator (S08ICGV4)
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Chapter 10 Timer/Pulse-Width Modulator (S08TPMV2)
If the associated port pin is not stable for at least two bus clock cycles before changing to input capture
mode, it is possible to get an unexpected indication of an edge trigger. Typically, a program would clear
status flags after changing channel configuration bits and before enabling channel interrupts or using the
status flags to avoid any unexpected behavior.

10.4.5 Timer x Channel Value Registers (TPMxCnVH:TPMxCnVL)

These read/write registers contain the captured TPM counter value of the input capture function or the
output compare value for the output compare or PWM functions. The channel value registers are cleared
by reset.

In input capture mode, reading either byte (TPMxCnVH or TPMxCnVL) latches the contents of both bytes
into a buffer where they remain latched until the other byte is read. This latching mechanism also resets
(becomes unlatched) when the TPMxCnSC register is written.

Table 10-5. Mode, Edge, and Level Selection

CPWMS MSnB:MSnA ELSnB:ELSnA Mode Configuration

X XX 00 Pin not used for TPM channel; use as an external clock for the TPM or
revert to general-purpose I/O

0 00 01 Input capture Capture on rising edge only

10 Capture on falling edge only

11 Capture on rising or falling edge

01 00 Output
compare

Software compare only

01 Toggle output on compare

10 Clear output on compare

11 Set output on compare

1X 10 Edge-aligned
PWM

High-true pulses (clear output on compare)

X1 Low-true pulses (set output on compare)

1 XX 10 Center-aligned
PWM

High-true pulses (clear output on compare-up)

X1 Low-true pulses (set output on compare-up)

7 6 5 4 3 2 1 0

R
Bit 15 14 13 12 11 10 9 Bit 8

W

Reset 0 0 0 0 0 0 0 0

Figure 10-9. Timer x Channel Value Register High (TPMxCnVH)

7 6 5 4 3 2 1 0

R
Bit 7 6 5 4 3 2 1 Bit 0

W

Reset 0 0 0 0 0 0 0 0

Figure 10-10. Timer Channel Value Register Low (TPMxCnVL)
MC9S08AW60 Data Sheet, Rev 2
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Chapter 12 Serial Peripheral Interface (S08SPIV3)
The most common uses of the SPI system include connecting simple shift registers for adding input or
output ports or connecting small peripheral devices such as serial A/D or D/A converters. Although
Figure 12-2 shows a system where data is exchanged between two MCUs, many practical systems involve
simpler connections where data is unidirectionally transferred from the master MCU to a slave or from a
slave to the master MCU.

12.0.2.2 SPI Module Block Diagram

Figure 12-3 is a block diagram of the SPI module. The central element of the SPI is the SPI shift register.
Data is written to the double-buffered transmitter (write to SPI1D) and gets transferred to the SPI shift
register at the start of a data transfer. After shifting in a byte of data, the data is transferred into the
double-buffered receiver where it can be read (read from SPI1D). Pin multiplexing logic controls
connections between MCU pins and the SPI module.

When the SPI is configured as a master, the clock output is routed to the SPSCK pin, the shifter output is
routed to MOSI, and the shifter input is routed from the MISO pin.

When the SPI is configured as a slave, the SPSCK pin is routed to the clock input of the SPI, the shifter
output is routed to MISO, and the shifter input is routed from the MOSI pin.

In the external SPI system, simply connect all SPSCK pins to each other, all MISO pins together, and all
MOSI pins together. Peripheral devices often use slightly different names for these pins.
MC9S08AW60 Data Sheet, Rev 2
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Chapter 14 Analog-to-Digital Converter (S08ADC10V1)
NOTE
Selecting the internal bandgap channel requires BGBE =1 in SPMSC1 see
Section 5.9.8, “System Power Management Status and Control 1 Register
(SPMSC1).” For value of bandgap voltage reference see Section Table A-7.,
“DC Characteristics.”

14.2.1 Alternate Clock

The ADC module is capable of performing conversions using the MCU bus clock, the bus clock divided
by two, the local asynchronous clock (ADACK) within the module, or the alternate clock, ALTCLK. The
alternate clock for the MC9S08AW60 Series MCU devices is the external reference clock (ICGERCLK)
from the internal clock generator (ICG) module.

Because ICGERCLK is active only while an external clock source is enabled, the ICG must be configured
for either FBE or FEE mode (CLKS1 = 1). ICGERCLK must run at a frequency such that the ADC
conversion clock (ADCK) runs at a frequency within its specified range (fADCK) after being divided down
from the ALTCLK input as determined by the ADIV bits. For example, if the ADIV bits are set up to divide
by four, then the minimum frequency for ALTCLK (ICGERCLK) is four times the minimum value for
fADCK and the maximum frequency is four times the maximum value for fADCK. Because of the minimum
frequency requirement, when an oscillator circuit is used it must be configured for high range operation
(RANGE = 1).

ALTCLK is active while the MCU is in wait mode provided the conditions described above are met. This
allows ALTCLK to be used as the conversion clock source for the ADC while the MCU is in wait mode.

ALTCLK cannot be used as the ADC conversion clock source while the MCU is in stop3.

14.2.2 Hardware Trigger

The ADC hardware trigger, ADHWT, is output from the real time interrupt (RTI) counter. The RTI counter
can be clocked by either ICGERCLK or a nominal 1 kHz clock source within the RTI block. The 1-kHz
clock source can be used with the MCU in run, wait, or stop3. With the ICG configured for either FBE or
FEE mode, ICGERCLK can be used with the MCU in run or wait.

The period of the RTI is determined by the input clock frequency and the RTIS bits. When the ADC
hardware trigger is enabled, a conversion is initiated upon an RTI counter overflow. The RTI counter is a
free running counter that generates an overflow at the RTI rate determined by the RTIS bits.

01110 AD14 PTD6/ADC1P14/
TPM1CLK

ADPC14 11110 VREFL VREFL N/A

01111 AD15 PTD7ADC1P15/
KBI1P7

ADPC15 11111 Module
disabled

None N/A

1 For more information, see Section 14.2.3, “Temperature Sensor.”

Table 14-1. ADC Channel Assignment (continued)

ADCH Channel Input Pin Control ADCH Channel Input Pin Control
MC9S08AW60 Data Sheet, Rev 2
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Chapter 14 Analog-to-Digital Converter (S08ADC10V1)
14.4.3 Data Result High Register (ADC1RH)

ADC1RH contains the upper two bits of the result of a 10-bit conversion. When configured for 8-bit
conversions both ADR8 and ADR9 are equal to zero. ADC1RH is updated each time a conversion
completes except when automatic compare is enabled and the compare condition is not met. In 10-bit
MODE, reading ADC1RH prevents the ADC from transferring subsequent conversion results into the
result registers until ADC1RL is read. If ADC1RL is not read until after the next conversion is completed,
then the intermediate conversion result will be lost. In 8-bit mode there is no interlocking with ADC1RL.
In the case that the MODE bits are changed, any data in ADC1RH becomes invalid.

14.4.4 Data Result Low Register (ADC1RL)

ADC1RL contains the lower eight bits of the result of a 10-bit conversion, and all eight bits of an 8-bit
conversion. This register is updated each time a conversion completes except when automatic compare is
enabled and the compare condition is not met. In 10-bit mode, reading ADC1RH prevents the ADC from
transferring subsequent conversion results into the result registers until ADC1RL is read. If ADC1RL is
not read until the after next conversion is completed, then the intermediate conversion results will be lost.
In 8-bit mode, there is no interlocking with ADC1RH. In the case that the MODE bits are changed, any
data in ADC1RL becomes invalid.

5
ACFE

Compare Function Enable — ACFE is used to enable the compare function.
0 Compare function disabled
1 Compare function enabled

4
ACFGT

Compare Function Greater Than Enable — ACFGT is used to configure the compare function to trigger when
the result of the conversion of the input being monitored is greater than or equal to the compare value. The
compare function defaults to triggering when the result of the compare of the input being monitored is less than
the compare value.
0 Compare triggers when input is less than compare level
1 Compare triggers when input is greater than or equal to compare level

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 ADR9 ADR8

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 14-6.  Data Result High Register (ADC1RH)

Table 14-4. ADC1SC2 Register Field Descriptions (continued)

Field Description
MC9S08AW60 Data Sheet, Rev 2
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Chapter 14 Analog-to-Digital Converter (S08ADC10V1)
14.4.5 Compare Value High Register (ADC1CVH)

This register holds the upper two bits of the 10-bit compare value. These bits are compared to the upper
two bits of the result following a conversion in 10-bit mode when the compare function is enabled.In 8-bit
operation, ADC1CVH is not used during compare.

14.4.6 Compare Value Low Register (ADC1CVL)

This register holds the lower 8 bits of the 10-bit compare value, or all 8 bits of the 8-bit compare value.
Bits ADCV7:ADCV0 are compared to the lower 8 bits of the result following a conversion in either 10-bit
or 8-bit mode.

14.4.7 Configuration Register (ADC1CFG)

ADC1CFG is used to select the mode of operation, clock source, clock divide, and configure for low power
or long sample time.

7 6 5 4 3 2 1 0

R ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 14-7.  Data Result Low Register (ADC1RL)

7 6 5 4 3 2 1 0

R 0 0 0 0
ADCV9 ADCV8

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 14-8.  Compare Value High Register (ADC1CVH)

7 6 5 4 3 2 1 0

R
ADCV7 ADCV6 ADCV5 ADCV4 ADCV3 ADCV2 ADCV1 ADCV0

W

Reset: 0 0 0 0 0 0 0 0

Figure 14-9.  Compare Value Low Register(ADC1CVL)
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Chapter 15 Development Support
15.3 On-Chip Debug System (DBG)
Because HCS08 devices do not have external address and data buses, the most important functions of an
in-circuit emulator have been built onto the chip with the MCU. The debug system consists of an 8-stage
FIFO that can store address or data bus information, and a flexible trigger system to decide when to capture
bus information and what information to capture. The system relies on the single-wire background debug
system to access debug control registers and to read results out of the eight stage FIFO.

The debug module includes control and status registers that are accessible in the user’s memory map.
These registers are located in the high register space to avoid using valuable direct page memory space.

Most of the debug module’s functions are used during development, and user programs rarely access any
of the control and status registers for the debug module. The one exception is that the debug system can
provide the means to implement a form of ROM patching. This topic is discussed in greater detail in
Section 15.3.6, “Hardware Breakpoints.”

15.3.1 Comparators A and B

Two 16-bit comparators (A and B) can optionally be qualified with the R/W signal and an opcode tracking
circuit. Separate control bits allow you to ignore R/W for each comparator. The opcode tracking circuitry
optionally allows you to specify that a trigger will occur only if the opcode at the specified address is
actually executed as opposed to only being read from memory into the instruction queue. The comparators
are also capable of magnitude comparisons to support the inside range and outside range trigger modes.
Comparators are disabled temporarily during all BDC accesses.

The A comparator is always associated with the 16-bit CPU address. The B comparator compares to the
CPU address or the 8-bit CPU data bus, depending on the trigger mode selected. Because the CPU data
bus is separated into a read data bus and a write data bus, the RWAEN and RWA control bits have an
additional purpose, in full address plus data comparisons they are used to decide which of these buses to
use in the comparator B data bus comparisons. If RWAEN = 1 (enabled) and RWA = 0 (write), the CPU’s
write data bus is used. Otherwise, the CPU’s read data bus is used.

The currently selected trigger mode determines what the debugger logic does when a comparator detects
a qualified match condition. A match can cause:

• Generation of a breakpoint to the CPU

• Storage of data bus values into the FIFO

• Starting to store change-of-flow addresses into the FIFO (begin type trace)

• Stopping the storage of change-of-flow addresses into the FIFO (end type trace)

15.3.2 Bus Capture Information and FIFO Operation

The usual way to use the FIFO is to setup the trigger mode and other control options, then arm the
debugger. When the FIFO has filled or the debugger has stopped storing data into the FIFO, you would
read the information out of it in the order it was stored into the FIFO. Status bits indicate the number of
words of valid information that are in the FIFO as data is stored into it. If a trace run is manually halted by
writing 0 to ARM before the FIFO is full (CNT = 1:0:0:0), the information is shifted by one position and
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Chapter 15 Development Support
15.4.3.9 Debug Status Register (DBGS)

This is a read-only status register.

7 6 5 4 3 2 1 0

R AF BF ARMF 0 CNT3 CNT2 CNT1 CNT0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 15-9. Debug Status Register (DBGS)

Table 15-6. DBGS Register Field Descriptions

Field Description

7
AF

Trigger Match A Flag — AF is cleared at the start of a debug run and indicates whether a trigger match A
condition was met since arming.
0 Comparator A has not matched
1 Comparator A match

6
BF

Trigger Match B Flag — BF is cleared at the start of a debug run and indicates whether a trigger match B
condition was met since arming.
0 Comparator B has not matched
1 Comparator B match

5
ARMF

Arm Flag — While DBGEN = 1, this status bit is a read-only image of ARM in DBGC. This bit is set by writing 1
to the ARM control bit in DBGC (while DBGEN = 1) and is automatically cleared at the end of a debug run. A
debug run is completed when the FIFO is full (begin trace) or when a trigger event is detected (end trace). A
debug run can also be ended manually by writing 0 to ARM or DBGEN in DBGC.
0 Debugger not armed
1 Debugger armed

3:0
CNT[3:0]

FIFO Valid Count — These bits are cleared at the start of a debug run and indicate the number of words of valid
data in the FIFO at the end of a debug run. The value in CNT does not decrement as data is read out of the FIFO.
The external debug host is responsible for keeping track of the count as information is read out of the FIFO.
0000 Number of valid words in FIFO = No valid data
0001 Number of valid words in FIFO = 1
0010 Number of valid words in FIFO = 2
0011 Number of valid words in FIFO = 3
0100 Number of valid words in FIFO = 4
0101 Number of valid words in FIFO = 5
0110 Number of valid words in FIFO = 6
0111 Number of valid words in FIFO = 7
1000 Number of valid words in FIFO = 8
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Appendix A Electrical Characteristics and Timing Specifications
A.10 AC Characteristics
This section describes ac timing characteristics for each peripheral system. For detailed information about
how clocks for the bus are generated, see Chapter 8, “Internal Clock Generator (S08ICGV4).”

A.10.1 Control Timing

Table A-13. Control Timing

Num C Parameter Symbol Min Typ1

1 Typical values are based on characterization data at VDD = 5.0V, 25°C unless otherwise stated.

Max Unit

1 Bus frequency (tcyc = 1/fBus) fBus dc — 20 MHz

2 P Real-time interrupt internal oscillator period tRTI 700 1300 μs

3 External reset pulse width2

(tcyc = 1/fSelf_reset)

2 This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to
override reset requests from internal sources.

textrst
1.5 x

tSelf_reset
— ns

4 Reset low drive3

3 When any reset is initiated, internal circuitry drives the reset pin low for about 34 bus cycles and then samples the level on
the reset pin about 38 bus cycles later to distinguish external reset requests from internal requests.

trstdrv 34 x tcyc — ns

5 Active background debug mode latch setup time tMSSU 25 — ns

6 Active background debug mode latch hold time tMSH 25 — ns

7
IRQ pulse width

Asynchronous path2

Synchronous path4

4 This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

tILIH, tIHIL 100
1.5 x tcyc

— — ns

8 KBIPx pulse width
Asynchronous path2

Synchronous path3
tILIH, tIHIL 100

1.5 x tcyc

— — ns

9 T

Port rise and fall time —

Low output drive (PTxDS = 0) (load = 50 pF)5

    Slew rate control disabled (PTxSE = 0)
    Slew rate control enabled (PTxSE = 1)

5 Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40°C to 125°C.

tRise, tFall —
—

40
75

—
—

ns

Port rise and fall time —
High output drive (PTxDS = 1) (load = 50 pF)

 Slew rate control disabled (PTxSE = 0)
    Slew rate control enabled (PTxSE = 1)

tRise, tFall —
—

11
35

—
—

ns
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Appendix A Electrical Characteristics and Timing Specifications
Figure A-10. Typical RTI Clock Period vs. Temperature

Figure A-11. Reset Timing

Figure A-12. Active Background Debug Mode Latch Timing

Figure A-13. IRQ/KBIPx Timing
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Appendix B Ordering Information and Mechanical Drawings
B.2 Orderable Part Numbering System

B.2.1 Consumer and Industrial Orderable Part Numbering System

B.2.2 Automotive Orderable Part Numbering System

B.3 Mechanical Drawings
This following pages contain mechanical specifications for MC9S08AW60 Series package options. See
Table B-3 for the document numbers that correspond to each package type.

Table B-3. Package Information

Pin Count Type Designator Document No.

44 LQFP FG 98ASS23225W

48 QFN FD 98ARH99048A

64 LQFP PU 98ASS23234W

64 QFP FU 98ASB42844B

Package designator

Temperature range

Family

Memory

Core

Pb free indicator

(C = –40°C to 85°C)
(M = –40°C to 125°C)

(9 = FLASH-based)

MC 9 S08 AW 60 C XX E

Memory size designator

(See Table B-3)
Status (MC =Consumer &
Industrial Fully Qualified)

Package designator

Temperature range

Family

Memory

Status (S = Automotive

Core

Pb free indicator

(C = –40°C to 85°C)

(M = –40°C to 125°C)

Fully Qualified)

(9 = FLASH-based)

S 9 S08 AW 60 C XX E

(See Table B-3)

(V = –40°C to 105°C)

Memory size designator
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