

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=s9s08aw32e5mpue

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section Number

Title

Page

	8.4.4	FLL Engaged Internal Unlocked	143
	8.4.5	FLL Engaged Internal Locked	143
	8.4.6	FLL Bypassed, External Clock (FBE) Mode	143
	8.4.7	FLL Engaged, External Clock (FEE) Mode	143
	8.4.8	FLL Lock and Loss-of-Lock Detection	144
	8.4.9	FLL Loss-of-Clock Detection	145
	8.4.10	Clock Mode Requirements	
	8.4.11	Fixed Frequency Clock	147
	8.4.12	High Gain Oscillator	147
8.5	Initializa	tion/Application Information	147
	8.5.1	Introduction	147
	8.5.2	Example #1: External Crystal = 32 kHz, Bus Frequency = 4.19 MHz	
	8.5.3	Example #2: External Crystal = 4 MHz, Bus Frequency = 20 MHz	
	8.5.4	Example #3: No External Crystal Connection, 5.4 MHz Bus Frequency	
	8.5.5	Example #4: Internal Clock Generator Trim	
		1.	

Chapter 9 Keyboard Interrupt (S08KBIV1)

9.1	Introduct	ion	157
9.2	Keyboard	l Pin Sharing	157
9.3	Features	~	158
	9.3.1	KBI Block Diagram	160
9.4	Register 1	Definition	160
	9.4.1	KBI Status and Control Register (KBI1SC)	161
	9.4.2	KBI Pin Enable Register (KBI1PE)	162
9.5	Function	al Description	162
	9.5.1	Pin Enables	162
	9.5.2	Edge and Level Sensitivity	162
	9.5.3	KBI Interrupt Controls	163

Chapter 10 Timer/PWM (S08TPMV2)

10.1	Introduct	tion	165
10.2	Features		165
	10.2.1	Features	167
	10.2.2	Block Diagram	167
10.3	External	Signal Description	169
	10.3.1	External TPM Clock Sources	169
	10.3.2	TPMxCHn — TPMx Channel n I/O Pins	169
10.4	Register	Definition	169
	10.4.1	Timer x Status and Control Register (TPMxSC)	170
	10.4.2	Timer x Counter Registers (TPMxCNTH:TPMxCNTL)	171

MC9S08AW60 Data Sheet, Rev 2

Section Number

Title

Page

	10.4.3	Timer x Counter Modulo Registers (TPMxMODH:TPMxMODL)	172
	10.4.4	Timer x Channel n Status and Control Register (TPMxCnSC)	173
	10.4.5	Timer x Channel Value Registers (TPMxCnVH:TPMxCnVL)	174
10.5	Functiona	al Description	175
	10.5.1	Counter	175
	10.5.2	Channel Mode Selection	176
	10.5.3	Center-Aligned PWM Mode	178
10.6	TPM Inte	errupts	179
	10.6.1	Clearing Timer Interrupt Flags	179
	10.6.2	Timer Overflow Interrupt Description	179
	10.6.3	Channel Event Interrupt Description	180
	10.6.4	PWM End-of-Duty-Cycle Events	180

Chapter 11 Serial Communications Interface (S08SCIV2)

11.1	Introduct	ion	
	11.1.1	Features	
	11.1.2	Modes of Operation	
	11.1.3	Block Diagram	
11.2	Register 1	Definition	
	11.2.1	SCI Baud Rate Registers (SCIxBDH, SCIxBHL)	
	11.2.2	SCI Control Register 1 (SCIxC1)	
	11.2.3	SCI Control Register 2 (SCIxC2)	
	11.2.4	SCI Status Register 1 (SCIxS1)	
	11.2.5	SCI Status Register 2 (SCIxS2)	191
	11.2.6	SCI Control Register 3 (SCIxC3)	191
	11.2.7	SCI Data Register (SCIxD)	
11.3	Function	al Description	
	11.3.1	Baud Rate Generation	
	11.3.2	Transmitter Functional Description	
	11.3.3	Receiver Functional Description	194
	11.3.4	Interrupts and Status Flags	
	11.3.5	Additional SCI Functions	

Chapter 12 Serial Peripheral Interface (S08SPIV3)

12.0.1	Features	201
12.0.2	Block Diagrams	201
12.0.3	SPI Baud Rate Generation	203
External	Signal Description	204
12.1.1	SPSCK — SPI Serial Clock	204
12.1.2	MOSI — Master Data Out, Slave Data In	204
	12.0.1 12.0.2 12.0.3 External 12.1.1 12.1.2	 12.0.1 Features

NP

Chapter 3 Modes of Operation

After entering active background mode, the CPU is held in a suspended state waiting for serial background commands rather than executing instructions from the user's application program.

Background commands are of two types:

- Non-intrusive commands, defined as commands that can be issued while the user program is running. Non-intrusive commands can be issued through the BKGD pin while the MCU is in run mode; non-intrusive commands can also be executed when the MCU is in the active background mode. Non-intrusive commands include:
 - Memory access commands
 - Memory-access-with-status commands
 - BDC register access commands
 - The BACKGROUND command
- Active background commands, which can only be executed while the MCU is in active background mode. Active background commands include commands to:
 - Read or write CPU registers
 - Trace one user program instruction at a time
 - Leave active background mode to return to the user's application program (GO)

The active background mode is used to program a bootloader or user application program into the FLASH program memory before the MCU is operated in run mode for the first time. When the MC9S08AW60 Series is shipped from the Freescale Semiconductor factory, the FLASH program memory is erased by default unless specifically noted so there is no program that could be executed in run mode until the FLASH memory is initially programmed. The active background mode can also be used to erase and reprogram the FLASH memory after it has been previously programmed.

For additional information about the active background mode, refer to Chapter 15, "Development Support."

3.5 Wait Mode

Wait mode is entered by executing a WAIT instruction. Upon execution of the WAIT instruction, the CPU enters a low-power state in which it is not clocked. The I bit in CCR is cleared when the CPU enters the wait mode, enabling interrupts. When an interrupt request occurs, the CPU exits the wait mode and resumes processing, beginning with the stacking operations leading to the interrupt service routine.

While the MCU is in wait mode, there are some restrictions on which background debug commands can be used. Only the BACKGROUND command and memory-access-with-status commands are available when the MCU is in wait mode. The memory-access-with-status commands do not allow memory access, but they report an error indicating that the MCU is in either stop or wait mode. The BACKGROUND command can be used to wake the MCU from wait mode and enter active background mode.

3.6 Stop Modes

One of two stop modes is entered upon execution of a STOP instruction when the STOPE bit in the system option register is set. In both stop modes, all internal clocks are halted. If the STOPE bit is not set when

High-page registers, shown in Table 4-3, are accessed much less often than other I/O and control registers so they have been located outside the direct addressable memory space, starting at \$1800.

Address	Register Name	Bit 7	6	5	4	3	2	1	Bit 0
\$1800	SRS	POR	PIN	COP	ILOP	0	ICG	LVD	0
\$1801	SBDFR	0	0	0	0	0	0	0	BDFR
\$1802	SOPT	COPE	COPT	STOPE	—	0	0	—	—
\$1803	SMCLK	0	0	0	MPE	0		MCSEL	
\$1804 — \$1805	Reserved	_	_	_	_	_	_	_	_
\$1806	SDIDH	REV3	REV2	REV1	REV0	ID11	ID10	ID9	ID8
\$1807	SDIDL	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
\$1808	SRTISC	RTIF	RTIACK	RTICLKS	RTIE	0	RTIS2	RTIS1	RTIS0
\$1809	SPMSC1	LVDF	LVDACK	LVDIE	LVDRE	LVDSE	LVDE	0 ¹	BGBE
\$180A	SPMSC2	LVWF	LVWACK	LVDV	LVWV	PPDF	PPDACK	_	PPDC
\$180B– \$180F	Reserved	_	_		_	_	_	_	_
\$1810	DBGCAH	Bit 15	14	13	12	11	10	9	Bit 8
\$1811	DBGCAL	Bit 7	6	5	4	3	2	1	Bit 0
\$1812	DBGCBH	Bit 15	14	13	12	11	10	9	Bit 8
\$1813	DBGCBL	Bit 7	6	5	4	3	2	1	Bit 0
\$1814	DBGFH	Bit 15	14	13	12	11	10	9	Bit 8
\$1815	DBGFL	Bit 7	6	5	4	3	2	1	Bit 0
\$1816	DBGC	DBGEN	ARM	TAG	BRKEN	RWA	RWAEN	RWB	RWBEN
\$1817	DBGT	TRGSEL	BEGIN	0	0	TRG3	TRG2	TRG1	TRG0
\$1818	DBGS	AF	BF	ARMF	0	CNT3	CNT2	CNT1	CNT0
\$1819– \$181F	Reserved	_	_		_	_	_	_	_
\$1820	FCDIV	DIVLD	PRDIV8	DIV5	DIV4	DIV3	DIV2	DIV1	DIV0
\$1821	FOPT	KEYEN	FNORED	0	0	0	0	SEC01	SEC00
\$1822	Reserved		—	_	—	—		—	—
\$1823	FCNFG	0	0	KEYACC	0	0	0	0	0
\$1824	FPROT	FPS7	FPS6	FPS5	FPS4	FPS3	FPS2	FPS1	FPDIS
\$1825	FSTAT	FCBEF	FCCF	FPVIOL	FACCERR	0	FBLANK	0	0
\$1826	FCMD	FCMD7	FCMD6	FCMD5	FCMD4	FCMD3	FCMD2	FCMD1	FCMD0
\$1827– \$183F	Reserved	_	_		_	_	_	_	_
\$1840	PTAPE	PTAPE7	PTAPE6	PTAPE5	PTAPE4	PTAPE3	PTAPE2	PTAPE1	PTAPE0
\$1841	PTASE	PTASE7	PTASE6	PTASE5	PTASE4	PTASE3	PTASE2	PTASE1	PTASE0
\$1842	PTADS	PTADS7	PTADS6	PTADS5	PTADS4	PTADS3	PTADS2	PTADS1	PTADS0
\$1843	Reserved	—	—	—	—	—	—	—	—
\$1844	PTBPE	PTBPE7	PTBPE6	PTBPE5	PTBPE4	PTBPE3	PTBPE2	PTBPE1	PTBPE0
\$1845	PTBSE	PTBSE7	PTBSE6	PTBSE5	PTBSE4	PTBSE3	PTBSE2	PTBSE1	PTBSE0

Table 4-3. High-Page Register Summary (Sheet 1 of 2)

MC9S08AW60 Data Sheet, Rev 2

Chapter 4 Memory

5.9.6 System Device Identification Register (SDIDH, SDIDL)

This read-only register is included so host development systems can identify the HCS08 derivative. This allows the development software to recognize where specific memory blocks, registers, and control bits are located in a target MCU.

Figure 5-7. System Device Identification Register — High (SDIDH)

Field	Description
7:4 Reserved	Bits 7:4 are reserved. Reading these bits will result in an indeterminate value; writes have no effect.
3:0 ID[11:8]	Part Identification Number — Each derivative in the HCS08 family has a unique identification number. The MC9S08AW60 Series is hard coded to the value \$008. See also ID bits in Table 5-8.

Table 5-7. SDIDH Register Field Descriptions

	7	6	5	4	3	2	1	0
R	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
W								
Reset	0	0	0	0	1	0	0	0

= Unimplemented or Reserved

Figure 5-8. System Device Identification Register — Low (SDIDL)

Table 5-8. SDIDL Register Field Descriptions

Field	Description
7:0 ID[7:0]	Part Identification Number — Each derivative in the HCS08 family has a unique identification number. The MC9S08AW60 Series is hard coded to the value \$008. See also ID bits in Table 5-7.

5.9.8 System Power Management Status and Control 1 Register (SPMSC1)

¹ Bit 1 is a reserved bit that must always be written to 0.

² This bit can be written only one time after reset. Additional writes are ignored.

Figure 5-10. System Power Management Status and Control 1 Register (SPMSC1)

Field	Description
7 LVDF	Low-Voltage Detect Flag — Provided LVDE = 1, this read-only status bit indicates a low-voltage detect event.
6 LVDACK	Low-Voltage Detect Acknowledge — This write-only bit is used to acknowledge low voltage detection errors (write 1 to clear LVDF). Reads always return 0.
5 LVDIE	 Low-Voltage Detect Interrupt Enable — This read/write bit enables hardware interrupt requests for LVDF. 0 Hardware interrupt disabled (use polling). 1 Request a hardware interrupt when LVDF = 1.
4 LVDRE	 Low-Voltage Detect Reset Enable — This read/write bit enables LVDF events to generate a hardware reset (provided LVDE = 1). 0 LVDF does not generate hardware resets. 1 Force an MCU reset when LVDF = 1.
3 LVDSE	 Low-Voltage Detect Stop Enable — Provided LVDE = 1, this read/write bit determines whether the low-voltage detect function operates when the MCU is in stop mode. 0 Low-voltage detect disabled during stop mode. 1 Low-voltage detect enabled during stop mode.
2 LVDE	 Low-Voltage Detect Enable — This read/write bit enables low-voltage detect logic and qualifies the operation of other bits in this register. 0 LVD logic disabled. 1 LVD logic enabled.
0 BGBE	 Bandgap Buffer Enable — The BGBE bit is used to enable an internal buffer for the bandgap voltage reference for use by the ADC module on one of its internal channels. 0 Bandgap buffer disabled. 1 Bandgap buffer enabled.

Table 5-11. SPMSC1 Register Field Descriptions

6.7.7 Port D I/O Registers (PTDD and PTDDD)

Port D parallel I/O function is controlled by the registers listed below.

Figure 6-24. Port D Data Register (PTDD)

Table 6-17	PTDD	Register	Field	Descriptions
------------	------	----------	-------	--------------

Field	Description
7:0 PTDD[7:0]	Port D Data Register Bits — For port D pins that are inputs, reads return the logic level on the pin. For port D pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port D pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTDD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pullups disabled.

_	7	6	5	4	3	2	1	0
R W	PTDDD7	PTDDD6	PTDDD5	PTDDD4	PTDDD3	PTDDD2	PTDDD1	PTDDD0
Reset	0	0	0	0	0	0	0	0

Figure 6-25. Data Direction for Port D (PTDDD)

Table 6-18. PTDDD Register Field Descriptions

Field	Description
7:0 PTDDD[7:0]	Data Direction for Port D Bits — These read/write bits control the direction of port D pins and what is read for PTDD reads.
	 0 Input (output driver disabled) and reads return the pin value. 1 Output driver enabled for port D bit n and PTDD reads return the contents of PTDDn.

6.7.11 Port F I/O Registers (PTFD and PTFDD)

Port F parallel I/O function is controlled by the registers listed below.

Figure 6-34. Port F Data Register (PTFD)

Table 6-27.	PTFD	Register	Field	Descriptions
-------------	------	----------	-------	--------------

Field	Description
7:0 PTFD[7:0]	Port F Data Register Bits— For port F pins that are inputs, reads return the logic level on the pin. For port F pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port F pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTFD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pullups disabled.

_	7	6	5	4	3	2	1	0
R W	PTFDD7	PTFDD6	PTFDD5	PTFDD4	PTFDD3	PTFDD2	PTFDD1	PTFDD0
Reset	0	0	0	0	0	0	0	0

Figure 6-35. Data Direction for Port F (PTFDD)

Table 6-28. PTFDD Register Field Descriptions

Field	Description
7:0	Data Direction for Port F Bits — These read/write bits control the direction of port F pins and what is read for
PTFDD[7:0]	PTFD reads.
	0 Input (output driver disabled) and reads return the pin value.
	1 Output driver enabled for port F bit n and PTFD reads return the contents of PTFDn.

Chapter 7 Central Processor Unit (S08CPUV2)

Source	On creation	Description		c	Eff	ec CC	t R		ess de	ode	and	/cles ¹
Form	Operation	Description	v	н	I	N	z	с	Addr Mo	Opce	Oper	Bus Cy
LDX #opr8i LDX opr8a LDX opr16a LDX oprx16,X LDX oprx8,X LDX x LDX oprx16,SP LDX oprx8,SP	Load X (Index Register Low) from Memory	X ← (M)	0	_	_	\$	\$	_	IMM DIR EXT IX2 IX1 IX SP2 SP1	AE BE CE DE EE FE 9EDE 9EEE	ii dd hh II ee ff ff ee ff ff	2 3 4 3 3 5 4
LSL opr8a LSLA LSLX LSL oprx8,X LSL ,X LSL oprx8,SP	Logical Shift Left (Same as ASL)	⊂ b7 b0	\$	_	_	\$	\$	\$	DIR INH INH IX1 IX SP1	38 48 58 68 78 9E68	dd ff ff	5 1 5 4 6
LSR <i>opr8a</i> LSRA LSR <i>X</i> LSR <i>oprx8</i> ,X LSR ,X LSR <i>oprx8</i> ,SP	Logical Shift Right	$0 \xrightarrow{b7} b0$	¢	_	_	0	\$	¢	DIR INH INH IX1 IX SP1	34 44 54 64 74 9E64	dd ff ff	5 1 5 4 6
MOV opr8a,opr8a MOV opr8a,X+ MOV #opr8i,opr8a MOV ,X+,opr8a	Move	$(M)_{destination} \leftarrow (M)_{source}$ H:X \leftarrow (H:X) + 0x0001 in IX+/DIR and DIR/IX+ Modes	0	_	_	\$	\$	_	DIR/DIR DIR/IX+ IMM/DIR IX+/DIR	4E 5E 7E	dd dd dd ii dd dd	5 5 4 5
MUL	Unsigned multiply	$X:A \leftarrow (X) \times (A)$	-	0	-	-	-	0	INH	42		5
NEG opr8a NEGA NEGX NEG oprx8,X NEG oprx8,SP	Negate (Two's Complement)	$\begin{array}{l} M \leftarrow - (M) = 0x00 - (M) \\ A \leftarrow - (A) = 0x00 - (A) \\ X \leftarrow - (X) = 0x00 - (X) \\ M \leftarrow - (M) = 0x00 - (M) \\ M \leftarrow - (M) = 0x00 - (M) \\ M \leftarrow - (M) = 0x00 - (M) \end{array}$		_	_	\$	\$	\$	DIR INH INH IX1 IX SP1	30 40 50 60 70 9E60	dd ff ff	5 1 5 4 6
NOP	No Operation	Uses 1 Bus Cycle	-	-	-	-	_	-	INH	9D		1
NSA	Nibble Swap Accumulator	A ← (A[3:0]:A[7:4])	-	-	-	-	-	-	INH	62		1
ORA #opr8i ORA opr8a ORA opr16a ORA oprx16,X ORA oprx8,X ORA ,X ORA oprx16,SP ORA oprx8,SP	Inclusive OR Accumulator and Memory	A ← (A) (M)	0	_	_	\$	\$	_	IMM DIR EXT IX2 IX1 IX SP2 SP1	AA BA CA DA EA 9EDA 9EEA	ii dd hh II ee ff ff ee ff ff	2 3 4 3 3 5 4
PSHA	Push Accumulator onto Stack	Push (A); SP ← (SP) – 0x0001	-	-	-	-	-	-	INH	87		2
PSHH	Push H (Index Register High) onto Stack	$Push(H);SP\leftarrow(SP)-0x0001$	-	-	-	-	-	-	INH	8B		2
PSHX	Push X (Index Register Low) onto Stack	$Push\ (X); SP \leftarrow (SP) - 0x0001$	-	-	-	-	-	-	INH	89		2
PULA	Pull Accumulator from Stack	$SP \gets (SP + 0x0001); Pull (A)$	-	-	-	-	-	-	INH	86		3
PULH	Pull H (Index Register High) from Stack	$SP \leftarrow (SP + 0x0001); Pull (H)$	-	-	-	-	-	-	INH	8A		3
PULX	Pull X (Index Register Low) from Stack	$SP \gets (SP + 0x0001); Pull (X)$	-	-	-	-	-	-	INH	88		3
ROL opr8a ROLA ROLX ROL oprx8,X ROL ,X ROL oprx8,SP	Rotate Left through Carry	C-C	¢	_	_	¢	¢	€	DIR INH INH IX1 IX SP1	39 49 59 69 79 9E69	dd ff ff	5 1 5 4 6

Table 7-2. HCS08 Instru	uction Set Summar	y (Sheet 5 of 7)
-------------------------	-------------------	------------------

MC9S08AW60 Data Sheet, Rev 2

Bit-Mani	nulation	Branch		Por	d-Modify-W	/rito			atrol	Berister/Memory					
DIL-IVIAII		Branch	00 5				70 4			40 0	D0 0			50 0	50 0
			30 NEC 5		50 I			80 51 9	90 3						
										2 100		SUB	300		
J DIN	2 DIN		2 DIR	44 4	F1 4	2 1/1	71 5			2 11/11/1			5 1/2		
								° oto °			CMP				
3 DIR					3 IMM										
02 5	10 5	2 1122	30 E	40 5	5 11/11/1	60 1	70 1	00 5.	00 0	A0 0					E0 0
BBSET1	BSET1	22 BHI 3		42 5 MIII		NGA		BGND	BGT	^{A2} SBC ²	¹² SBC	SBC 4		¹ ² ⁸ ⁸	^r sbc ³
3 DIR		2 BEI	3 FXT						2 BEI	2 IMM	2 DIR	3 EXT	3 182	2 181	
03 5	13 5	23 3	33 5	43 1	53 1	63 5	73 /	83 11	03 3	A3 2	B3 3	C3 4	D3 /	E3 3	F3 3
BBCI B1	BCIBI	L BIS	мор	COMA	сомх	MOJ	[™] NO3	Swill	BIE	CPX	СРХ	CPX	СРХ	СРХ	CPX
3 DIR	2 DIR	2 BEL	2 DIR	1 INH	1 INH	2 IX1		1 INH	2 BEL	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	
04 5	14 5	24 3	34 5	44 1	54 1	64 5	74 4	84 1	94 2	A4 2	B4 3			F4 3	F4 3
BBSFT2	BSFT2	BCC	Ĩ SR	I SBA	I SBX	I SR	Í I SR	TAP	TXS		AND				
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
05 5	15 5	25 3	35 4	45 3	55 4	65 3	75 5	85 1	95 2	A5 2	B5 3	C5 4	D5 4	E5 3	F5 3
BRCLR2	BCLR2	BCS	STHX	LDHX	LDHX	CPHX	CPHX	TPA	TSX	BIT	BIT	BIT	BIT	BIT	BIT
3 DIR	2 DIR	2 REL	2 DIR	3 IMM	2 DIR	3 IMM	2 DIR	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
06 5	16 5	26 3	36 5	46 1	56 1	66 5	76 4	86 3	96 5	A6 2	B6 3	C6 4	D6 4	E6 3	F6 3
BRSET3	BSET3	BNE	ROR	RORA	RORX	ROR	ROR	PULA	STHX	LDA	LDA	LDA	LDA	LDA	LDA
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	3 EXT	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
07 5	17 5	27 3	37 5	47 1	57 1	67 5	77 4	87 2	97 1	A7 2	B7 3	C7 4	D7 4	E7 3	F7 2
BRCLR3	BCLR3	BEQ	ASR	ASRA	ASRX	ASR	ASR	PSHA	TAX	AIS	STA	STA	STA	STA	STA
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXI	3 IX2	2 IX1	1 IX
	18 5	28 3	38 5	48 1	58 1	68 5	78 4	88 3	98 1	A82	^{B8}				F83
BRSE14	BSE14	BHCC	LSL			LSL		PULX		EOR	EOR	EOR	EOR	EOR	EOR
	2 DIN					2 1/1				2 11/11/1			3 1/2		
			3900						99 CC						
3 DIR						2 111						ADC	3 122	2 181	
	10 5	2 1122	2 0111	1 1	5 1	64 5		9.4 2	0 1						
BBSETS	BSET5	E BPI	DEC		DECX	DEC		PIIIH	°	OBA	OBA				1 OBA
3 DIR	2 DIR	2 BEL	2 DIR	1 INH	1 INH	2 IX1		1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 1X2	2 IX1	1 IX
0B 5	1B 5	2B 3	3B 7	4B 4	5B 4	6B 7	7B 6	8B 2	9B 1	AB 2	BB 3	CB 4	DB 4	FB 3	FB 3
BRCLR5	BCLR5	BMI	DBNZ	DBNZA	DBNZX	DBNZ	DBNZ	PSHH	SEI	ADD	ADD	ADD	ADD	ADD	ADD
3 DIR	2 DIR	2 REL	3 DIR	2 INH	2 INH	3 IX1	2 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
0C 5	1C 5	2C 3	3C 5	4C 1	5C 1	6C 5	7C 4	8C 1	9C 1		BC 3	CC 4	DC 4	EC 3	FC 3
BRSET6	BSET6	BMC	INC	INCA	INCX	INC	INC	CLRH	RSP		JMP	JMP	JMP	JMP	JMP
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH		2 DIR	3 EXT	3 IX2	2 IX1	1 IX
0D 5	1D 5	2D 3	3D4	4D 1	5D 1	6D 4	7D3		9D 1	AD 5	BD 5	CD 6	DD 6	ED 5	FD 5
BRCLR6	BCLR6	BMS	TST	TSTA	TSTX	TST	TST		NOP	BSR	JSR	JSR	JSR	JSR	JSR
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX		1 INH	2 REL	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
0E 5	1E 5	2E 3	3E 6	4E 5	5E 5	6E 4	7E 5	8E 2+	19E	AE 2	BE 3	CE 5 4	DE V	IEE 3	IFE 3
BRSE 17	BSE17	BIL .			MOV	MOV		SIOP	Page 2						
J DIR			3 EXI			IS IND						IS EXT	3 1X2		
		2F BIL 3	³			⁶ 00 ⁵		8F 2+	⁹ TVA		^{BF} eTV ³			EF OTV 3	^r etv ²
														2 1/1	
		ie nee			Li IIN∐		Li 1A						10 1/2		

Table 7-3 O	ncode Man	(Sheet 1	of 2)
	peoue map		012)

	Inhoront
INANA	Immediate
	Immediate
DIR	Direct
EXT	Extended
DD	DIR to DIR
IX+D	IX+ to DIR

REL IX IX1 IX2 IMD DIX+ Relative Indexed, No Offset Indexed, 8-Bit Offset Indexed, 16-Bit Offset IMM to DIR DIR to IX+

Stack Pointer, 8-Bit Offset Stack Pointer, 16-Bit Offset Indexed, No Offset with Post Increment Indexed, 1-Byte Offset with Post Increment

SP1 SP2 IX+

IX1+

Opcode in Hexadecimal SUB 1 IX Addressing Mode

Chapter 11 Serial Communications Interface (S08SCIV2)

Figure 11-2. SCI Transmitter Block Diagram

Chapter 12 Serial Peripheral Interface (S08SPIV3)

in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms applies for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output pin from a master and the MISO waveform applies to the MISO output from a slave. The \overline{SS} OUT waveform applies to the slave select output from a master (provided MODFEN and SSOE = 1). The master \overline{SS} output goes to active low at the start of the first bit time of the transfer and goes back high one-half SPSCK cycle after the end of the eighth bit time of the transfer. The \overline{SS} IN waveform applies to the slave select input of a slave.

When CPHA = 0, the slave begins to drive its MISO output with the first data bit value (MSB or LSB depending on LSBFE) when \overline{SS} goes to active low. The first SPSCK edge causes both the master and the slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the second SPSCK edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled and shifts the second data bit value out the other end of the shifter to the MOSI and MISO outputs of the master and slave, respectively. When CPHA = 0, the slave's \overline{SS} input must go to its inactive high level between transfers.

Chapter 13 Inter-Integrated Circuit (S08IICV1)

13.1.3 Block Diagram

Figure 13-2 is a block diagram of the IIC.

Figure 13-2. IIC Functional Block Diagram

13.2 External Signal Description

This section describes each user-accessible pin signal.

13.2.1 SCL — Serial Clock Line

The bidirectional SCL is the serial clock line of the IIC system.

13.2.2 SDA — Serial Data Line

The bidirectional SDA is the serial data line of the IIC system.

13.3 Register Definition

This section consists of the IIC register descriptions in address order.

Field	Description
5 ACFE	 Compare Function Enable — ACFE is used to enable the compare function. 0 Compare function disabled 1 Compare function enabled
4 ACFGT	 Compare Function Greater Than Enable — ACFGT is used to configure the compare function to trigger when the result of the conversion of the input being monitored is greater than or equal to the compare value. The compare function defaults to triggering when the result of the compare of the input being monitored is less than the compare value. 0 Compare triggers when input is less than compare level 1 Compare triggers when input is greater than or equal to compare level

Table 14-4. ADC1SC2 Register Field Descriptions (continued)

14.4.3 Data Result High Register (ADC1RH)

ADC1RH contains the upper two bits of the result of a 10-bit conversion. When configured for 8-bit conversions both ADR8 and ADR9 are equal to zero. ADC1RH is updated each time a conversion completes except when automatic compare is enabled and the compare condition is not met. In 10-bit MODE, reading ADC1RH prevents the ADC from transferring subsequent conversion results into the result registers until ADC1RL is read. If ADC1RL is not read until after the next conversion is completed, then the intermediate conversion result will be lost. In 8-bit mode there is no interlocking with ADC1RL. In the case that the MODE bits are changed, any data in ADC1RH becomes invalid.

Figure 14-6. Data Result High Register (ADC1RH)

14.4.4 Data Result Low Register (ADC1RL)

ADC1RL contains the lower eight bits of the result of a 10-bit conversion, and all eight bits of an 8-bit conversion. This register is updated each time a conversion completes except when automatic compare is enabled and the compare condition is not met. In 10-bit mode, reading ADC1RH prevents the ADC from transferring subsequent conversion results into the result registers until ADC1RL is read. If ADC1RL is not read until the after next conversion is completed, then the intermediate conversion results will be lost. In 8-bit mode, there is no interlocking with ADC1RH. In the case that the MODE bits are changed, any data in ADC1RL becomes invalid.

Chapter 14 Analog-to-Digital Converter (S08ADC10V1)

- Average the result by converting the analog input many times in succession and dividing the sum of the results. Four samples are required to eliminate the effect of a 1LSB, one-time error.
- Reduce the effect of synchronous noise by operating off the asynchronous clock (ADACK) and averaging. Noise that is synchronous to ADCK cannot be averaged out.

14.7.2.4 Code Width and Quantization Error

The ADC quantizes the ideal straight-line transfer function into 1024 steps (in 10-bit mode). Each step ideally has the same height (1 code) and width. The width is defined as the delta between the transition points to one code and the next. The ideal code width for an N bit converter (in this case N can be 8 or 10), defined as 1LSB, is:

$1LSB = (V_{REFH} - V_{REFL}) / 2^{N}$ Eqn. 14-2

There is an inherent quantization error due to the digitization of the result. For 8-bit or 10-bit conversions the code will transition when the voltage is at the midpoint between the points where the straight line transfer function is exactly represented by the actual transfer function. Therefore, the quantization error will be $\pm 1/2$ LSB in 8- or 10-bit mode. As a consequence, however, the code width of the first (\$000) conversion is only 1/2LSB and the code width of the last (\$FF or \$3FF) is 1.5LSB.

14.7.2.5 Linearity Errors

The ADC may also exhibit non-linearity of several forms. Every effort has been made to reduce these errors but the system should be aware of them because they affect overall accuracy. These errors are:

- Zero-scale error (E_{ZS}) (sometimes called offset) This error is defined as the difference between the actual code width of the first conversion and the ideal code width (1/2LSB). Note, if the first conversion is \$001, then the difference between the actual \$001 code width and its ideal (1LSB) is used.
- Full-scale error (E_{FS}) This error is defined as the difference between the actual code width of the last conversion and the ideal code width (1.5LSB). Note, if the last conversion is \$3FE, then the difference between the actual \$3FE code width and its ideal (1LSB) is used.
- Differential non-linearity (DNL) This error is defined as the worst-case difference between the actual code width and the ideal code width for all conversions.
- Integral non-linearity (INL) This error is defined as the highest-value the (absolute value of the) running sum of DNL achieves. More simply, this is the worst-case difference of the actual transition voltage to a given code and its corresponding ideal transition voltage, for all codes.
- Total unadjusted error (TUE) This error is defined as the difference between the actual transfer function and the ideal straight-line transfer function, and therefore includes all forms of error.

14.7.2.6 Code Jitter, Non-Monotonicity and Missing Codes

Analog-to-digital converters are susceptible to three special forms of error. These are code jitter, non-monotonicity, and missing codes.

Code jitter is when, at certain points, a given input voltage converts to one of two values when sampled repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition voltage, the

Chapter 15 Development Support

15.1 Introduction

Development support systems in the HCS08 include the background debug controller (BDC) and the on-chip debug module (DBG). The BDC provides a single-wire debug interface to the target MCU that provides a convenient interface for programming the on-chip FLASH and other nonvolatile memories. The BDC is also the primary debug interface for development and allows non-intrusive access to memory data and traditional debug features such as CPU register modify, breakpoints, and single instruction trace commands.

In the HCS08 family, address and data bus signals are not available on external pins (not even in test modes). Debug is done through commands fed into the target MCU via the single-wire background debug interface. The debug module provides a means to selectively trigger and capture bus information so an external development system can reconstruct what happened inside the MCU on a cycle-by-cycle basis without having external access to the address and data signals.

The alternate BDC clock source for MC9S08AW60 Series is the ICGLCLK. See Chapter 8, "Internal Clock Generator (S08ICGV4)" for more information about ICGCLK and how to select clock sources.

Chapter 15 Development Support

A-Only — Trigger when the address matches the value in comparator A

A OR B — Trigger when the address matches either the value in comparator A or the value in comparator B

A Then B — Trigger when the address matches the value in comparator B but only after the address for another cycle matched the value in comparator A. There can be any number of cycles after the A match and before the B match.

A AND B Data (Full Mode) — This is called a full mode because address, data, and R/W (optionally) must match within the same bus cycle to cause a trigger event. Comparator A checks address, the low byte of comparator B checks data, and R/W is checked against RWA if RWAEN = 1. The high-order half of comparator B is not used.

In full trigger modes it is not useful to specify a tag-type CPU breakpoint (BRKEN = TAG = 1), but if you do, the comparator B data match is ignored for the purpose of issuing the tag request to the CPU and the CPU breakpoint is issued when the comparator A address matches.

A AND NOT B Data (Full Mode) — Address must match comparator A, data must not match the low half of comparator B, and R/W must match RWA if RWAEN = 1. All three conditions must be met within the same bus cycle to cause a trigger.

In full trigger modes it is not useful to specify a tag-type CPU breakpoint (BRKEN = TAG = 1), but if you do, the comparator B data match is ignored for the purpose of issuing the tag request to the CPU and the CPU breakpoint is issued when the comparator A address matches.

Event-Only B (Store Data) — Trigger events occur each time the address matches the value in comparator B. Trigger events cause the data to be captured into the FIFO. The debug run ends when the FIFO becomes full.

A Then Event-Only B (Store Data) — After the address has matched the value in comparator A, a trigger event occurs each time the address matches the value in comparator B. Trigger events cause the data to be captured into the FIFO. The debug run ends when the FIFO becomes full.

Inside Range ($A \le Address \le B$ **)** — A trigger occurs when the address is greater than or equal to the value in comparator A and less than or equal to the value in comparator B at the same time.

Outside Range (Address < A or Address > B) — A trigger occurs when the address is either less than the value in comparator A or greater than the value in comparator B.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to + 5.8	V
Input voltage	V _{In}	- 0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ¹ , ² , ³	۱ _D	± 25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to +150	°C
Maximum junction temperature	TJ	150	°C

Table A-2. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

 $^{8}\,$ IRQ does not have a clamp diode to V_{DD} Do not drive IRQ above V_{DD}

Figure A-1. Typical Low-Side Driver (Sink) Characteristics — Low Drive (PTxDS_n = 0)

Figure A-2. Typical Low-Side Driver (Sink) Characteristics — High Drive ($PTxDS_n = 1$)