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Chapter 2 Pins and Connections
Figure 2-4.  Basic System Connections
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Chapter 4 Memory
Table 4-2. Direct-Page Register Summary (Sheet 1 of 3)

Address Register Name Bit 7 6 5 4 3 2 1 Bit 0

$0000 PTAD PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0

$0001 PTADD PTADD7 PTADD6 PTADD5 PTADD4 PTADD3 PTADD2 PTADD1 PTADD0

$0002 PTBD PTBD7 PTBD6 PTBD5 PTBD4 PTBD3 PTBD2 PTBD1 PTBD0

$0003 PTBDD PTBDD7 PTBDD6 PTBDD5 PTBDD4 PTBDD3 PTBDD2 PTBDD1 PTBDD0

$0004 PTCD 0 PTCD6 PTCD5 PTCD4 PTCD3 PTCD2 PTCD1 PTCD0

$0005 PTCDD 0 PTCDD6 PTCDD5 PTCDD4 PTCDD3 PTCDD2 PTCDD1 PTCDD0

$0006 PTDD PTDD7 PTDD6 PTDD5 PTDD4 PTDD3 PTDD2 PTDD1 PTDD0

$0007 PTDDD PTDDD7 PTDDD6 PTDDD5 PTDDD4 PTDDD3 PTDDD2 PTDDD1 PTDDD0

$0008 PTED PTED7 PTED6 PTED5 PTED4 PTED3 PTED2 PTED1 PTED0

$0009 PTEDD PTEDD7 PTEDD6 PTEDD5 PTEDD4 PTEDD3 PTEDD2 PTEDD1 PTEDD0

$000A PTFD PTFD7 PTFD6 PTFD5 PTFD4 PTFD3 PTFD2 PTFD1 PTFD0

$000B PTFDD PTFDD7 PTFDD6 PTFDD5 PTFDD4 PTFDD3 PTFDD2 PTFDD1 PTFDD0

$000C PTGD 0 PTGD6 PTGD5 PTGD4 PTGD3 PTGD2 PTGD1 PTGD0

$000D PTGDD 0 PTGDD6 PTGDD5 PTGDD4 PTGDD3 PTGDD2 PTGDD1 PTGDD0

$000E–
$000F

Reserved —
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

$0010 ADC1SC1 COCO AIEN ADCO ADCH

$0011 ADC1SC2 ADACT ADTRG ACFE ACFGT 0 0 R R

$0012 ADC1RH 0 0 0 0 0 0 ADR9 ADR8

$0013 ADC1RL ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0

$0014 ADC1CVH 0 0 0 0 0 0 ADCV9 ADCV8

$0015 ADC1CVL ADCV7 ADCV6 ADCV5 ADCV4 ADCV3 ADCV2 ADCV1 ADCV0

$0016 ADC1CFG ADLPC ADIV ADLSMP MODE ADICLK

$0017 APCTL1 ADPC7 ADPC6 ADPC5 ADPC4 ADPC3 ADPC2 ADPC1 ADPC0

$0018 APCTL2 ADPC15 ADPC14 ADPC13 ADPC12 ADPC11 ADPC10 ADPC9 ADPC8

$0019 APCTL3 ADPC23 ADPC22 ADPC21 ADPC20 ADPC19 ADPC18 ADPC17 ADPC16

$001A–
$001B

Reserved —
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

$001C IRQSC 0 0 IRQEDG IRQPE IRQF IRQACK IRQIE IRQMOD

$001D Reserved — — — — — — — —

$001E KBI1SC KBEDG7 KBEDG6 KBEDG5 KBEDG4 KBF KBACK KBIE KBIMOD

$001F KBI1PE KBIPE7 KBIPE6 KBIPE5 KBIPE4 KBIPE3 KBIPE2 KBIPE1 KBIPE0

$0020 TPM1SC TOF TOIE CPWMS CLKSB CLKSA PS2 PS1 PS0

$0021 TPM1CNTH Bit 15 14 13 12 11 10 9 Bit 8

$0022 TPM1CNTL Bit 7 6 5 4 3 2 1 Bit 0

$0023 TPM1MODH Bit 15 14 13 12 11 10 9 Bit 8

$0024 TPM1MODL Bit 7 6 5 4 3 2 1 Bit 0

$0025 TPM1C0SC CH0F CH0IE MS0B MS0A ELS0B ELS0A 0 0

$0026 TPM1C0VH Bit 15 14 13 12 11 10 9 Bit 8

$0027 TPM1C0VL Bit 7 6 5 4 3 2 1 Bit 0
MC9S08AW60 Data Sheet, Rev 2
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Chapter 4 Memory
High-page registers, shown in Table 4-3, are accessed much less often than other I/O and control registers
so they have been located outside the direct addressable memory space, starting at $1800.

Table 4-3. High-Page Register Summary (Sheet 1 of 2)

Address Register Name Bit 7 6 5 4 3 2 1 Bit 0

$1800 SRS POR PIN COP ILOP 0 ICG LVD 0

$1801 SBDFR 0 0 0 0 0 0 0 BDFR

$1802 SOPT COPE COPT STOPE — 0 0 — —

$1803 SMCLK 0 0 0 MPE 0 MCSEL

$1804 –
$1805

Reserved —
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

$1806 SDIDH REV3 REV2 REV1 REV0 ID11 ID10 ID9 ID8

$1807 SDIDL ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

$1808 SRTISC RTIF RTIACK RTICLKS RTIE 0 RTIS2 RTIS1 RTIS0

$1809 SPMSC1 LVDF LVDACK LVDIE LVDRE LVDSE LVDE 01 BGBE

$180A SPMSC2 LVWF LVWACK LVDV LVWV PPDF PPDACK — PPDC

$180B–
$180F

Reserved —
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

$1810 DBGCAH Bit 15 14 13 12 11 10 9 Bit 8

$1811 DBGCAL Bit 7 6 5 4 3 2 1 Bit 0

$1812 DBGCBH Bit 15 14 13 12 11 10 9 Bit 8

$1813 DBGCBL Bit 7 6 5 4 3 2 1 Bit 0

$1814 DBGFH Bit 15 14 13 12 11 10 9 Bit 8

$1815 DBGFL Bit 7 6 5 4 3 2 1 Bit 0

$1816 DBGC DBGEN ARM TAG BRKEN RWA RWAEN RWB RWBEN

$1817 DBGT TRGSEL BEGIN 0 0 TRG3 TRG2 TRG1 TRG0

$1818 DBGS AF BF ARMF 0 CNT3 CNT2 CNT1 CNT0

$1819–
$181F

Reserved —
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

$1820 FCDIV DIVLD PRDIV8 DIV5 DIV4 DIV3 DIV2 DIV1 DIV0

$1821 FOPT KEYEN FNORED 0 0 0 0 SEC01 SEC00

$1822 Reserved — — — — — — — —

$1823 FCNFG 0 0 KEYACC 0 0 0 0 0

$1824 FPROT FPS7 FPS6 FPS5 FPS4 FPS3 FPS2 FPS1 FPDIS

$1825 FSTAT FCBEF FCCF FPVIOL FACCERR 0 FBLANK 0 0

$1826 FCMD FCMD7 FCMD6 FCMD5 FCMD4 FCMD3 FCMD2 FCMD1 FCMD0

$1827–
$183F

Reserved —
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

$1840 PTAPE PTAPE7 PTAPE6 PTAPE5 PTAPE4 PTAPE3 PTAPE2 PTAPE1 PTAPE0

$1841 PTASE PTASE7 PTASE6 PTASE5 PTASE4 PTASE3 PTASE2 PTASE1 PTASE0

$1842 PTADS PTADS7 PTADS6 PTADS5 PTADS4 PTADS3 PTADS2 PTADS1 PTADS0

$1843 Reserved — — — — — — — —

$1844 PTBPE PTBPE7 PTBPE6 PTBPE5 PTBPE4 PTBPE3 PTBPE2 PTBPE1 PTBPE0

$1845 PTBSE PTBSE7 PTBSE6 PTBSE5 PTBSE4 PTBSE3 PTBSE2 PTBSE1 PTBSE0
MC9S08AW60 Data Sheet, Rev 2
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Chapter 4 Memory
Table 4-12. FSTAT Register Field Descriptions

Field Description

7
FCBEF

FLASH Command Buffer Empty Flag — The FCBEF bit is used to launch commands. It also indicates that the
command buffer is empty so that a new command sequence can be executed when performing burst
programming. The FCBEF bit is cleared by writing a one to it or when a burst program command is transferred
to the array for programming. Only burst program commands can be buffered.
0 Command buffer is full (not ready for additional commands).
1 A new burst program command may be written to the command buffer.

6
FCCF

FLASH Command Complete Flag — FCCF is set automatically when the command buffer is empty and no
command is being processed. FCCF is cleared automatically when a new command is started (by writing 1 to
FCBEF to register a command). Writing to FCCF has no meaning or effect.
0 Command in progress
1 All commands complete

5
FPVIOL

Protection Violation Flag — FPVIOL is set automatically when FCBEF is cleared to register a command that
attempts to erase or program a location in a protected block (the erroneous command is ignored). FPVIOL is
cleared by writing a 1 to FPVIOL.
0 No protection violation.
1 An attempt was made to erase or program a protected location.

4
FACCERR

Access Error Flag — FACCERR is set automatically when the proper command sequence is not obeyed exactly
(the erroneous command is ignored), if a program or erase operation is attempted before the FCDIV register has
been initialized, or if the MCU enters stop while a command was in progress. For a more detailed discussion of
the exact actions that are considered access errors, see Section 4.4.5, “Access Errors.” FACCERR is cleared by
writing a 1 to FACCERR. Writing a 0 to FACCERR has no meaning or effect.
0 No access error.
1 An access error has occurred.

2
FBLANK

FLASH Verified as All Blank (erased) Flag — FBLANK is set automatically at the conclusion of a blank check
command if the entire FLASH array was verified to be erased. FBLANK is cleared by clearing FCBEF to write a
new valid command. Writing to FBLANK has no meaning or effect.
0 After a blank check command is completed and FCCF = 1, FBLANK = 0 indicates the FLASH array is not

completely erased.
1 After a blank check command is completed and FCCF = 1, FBLANK = 1 indicates the FLASH array is

completely erased (all $FF).
MC9S08AW60 Data Sheet, Rev 2
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Chapter 6 Parallel Input/Output
6.4 Parallel I/O Control
Reading and writing of parallel I/O is done through the port data registers. The direction, input or output,
is controlled through the port data direction registers. The parallel I/O port function for an individual pin
is illustrated in the block diagram below.

Figure 6-8. Parallel I/O Block Diagram

The data direction control bits determine whether the pin output driver is enabled, and they control what
is read for port data register reads. Each port pin has a data direction register bit. When PTxDDn = 0, the
corresponding pin is an input and reads of PTxD return the pin value. When PTxDDn = 1, the
corresponding pin is an output and reads of PTxD return the last value written to the port data register.
When a peripheral module or system function is in control of a port pin, the data direction register bit still
controls what is returned for reads of the port data register, even though the peripheral system has
overriding control of the actual pin direction.

When a shared analog function is enabled for a pin, all digital pin functions are disabled. A read of the port
data register returns a value of 0 for any bits which have shared analog functions enabled. In general,
whenever a pin is shared with both an alternate digital function and an analog function, the analog function
has priority such that if both the digital and analog functions are enabled, the analog function controls the
pin.

It is a good programming practice to write to the port data register before changing the direction of a port
pin to become an output. This ensures that the pin will not be driven momentarily with an old data value
that happened to be in the port data register.
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Chapter 6 Parallel Input/Output
7 6 5 4 3 2 1 0

R
PTCDS6 PTCDS5 PTCDS4 PTCDS3 PTCDS2 PTCDS1 PTCDS0

W

Reset 0 0 0 0 0 0 0 0

Figure 6-23. Output Drive Strength Selection for Port C (PTCDS)

Table 6-16. PTCDS Register Field Descriptions

Field Description

6:0
PTCDS[6:0]

Output Drive Strength Selection for Port C Bits — Each of these control bits selects between low and high
output drive for the associated PTC pin.
0 Low output drive enabled for port C bit n.
1 High output drive enabled for port C bit n.
MC9S08AW60 Data Sheet, Rev 2
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Chapter 6 Parallel Input/Output
7 6 5 4 3 2 1 0

R
PTGDS6 PTGDS5 PTGDS4 PTGDS3 PTGDS2 PTGDS1 PTGDS0

W

Reset 0 0 0 0 0 0 0 0

Figure 6-43. Output Drive Strength Selection for Port G (PTGDS)

Table 6-36. PTGDS Register Field Descriptions

Field Description

6:0
PTGDS[6:0]

Output Drive Strength Selection for Port G Bits — Each of these control bits selects between low and high
output drive for the associated PTG pin.
0 Low output drive enabled for port G bit n.
1 High output drive enabled for port G bit n.
MC9S08AW60 Data Sheet, Rev 2
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Chapter 7
Central Processor Unit (S08CPUV2)

7.1 Introduction
This section provides summary information about the registers, addressing modes, and instruction set of
the CPU of the HCS08 family. For a more detailed discussion, refer to the HCS08 Family Reference
Manual, volume 1, Freescale Semiconductor document order number HCS08RMV1/D.

The HCS08 CPU is fully source- and object-code-compatible with the M68HC08 CPU. Several
instructions and enhanced addressing modes were added to improve C compiler efficiency and to support
a new background debug system which replaces the monitor mode of earlier M68HC08 microcontrollers
(MCU).

7.1.1 Features

Features of the HCS08 CPU include:

• Object code fully upward-compatible with M68HC05 and M68HC08 Families

• All registers and memory are mapped to a single 64-Kbyte address space

• 16-bit stack pointer (any size stack anywhere in 64-Kbyte address space)

• 16-bit index register (H:X) with powerful indexed addressing modes

• 8-bit accumulator (A)

• Many instructions treat X as a second general-purpose 8-bit register

• Seven addressing modes:

— Inherent — Operands in internal registers

— Relative — 8-bit signed offset to branch destination

— Immediate — Operand in next object code byte(s)

— Direct — Operand in memory at 0x0000–0x00FF

— Extended — Operand anywhere in 64-Kbyte address space

— Indexed relative to H:X — Five submodes including auto increment

— Indexed relative to SP — Improves C efficiency dramatically

• Memory-to-memory data move instructions with four address mode combinations

• Overflow, half-carry, negative, zero, and carry condition codes support conditional branching on
the results of signed, unsigned, and binary-coded decimal (BCD) operations

• Efficient bit manipulation instructions

• Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions

• STOP and WAIT instructions to invoke low-power operating modes
MC9S08AW60 Data Sheet, Rev 2
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Chapter 7 Central Processor Unit (S08CPUV2)
7.3.6.7 SP-Relative, 16-Bit Offset (SP2)

This variation of indexed addressing uses the 16-bit value in the stack pointer (SP) plus a 16-bit offset
included in the instruction as the address of the operand needed to complete the instruction.

7.4 Special Operations
The CPU performs a few special operations that are similar to instructions but do not have opcodes like
other CPU instructions. In addition, a few instructions such as STOP and WAIT directly affect other MCU
circuitry. This section provides additional information about these operations.

7.4.1 Reset Sequence

Reset can be caused by a power-on-reset (POR) event, internal conditions such as the COP (computer
operating properly) watchdog, or by assertion of an external active-low reset pin. When a reset event
occurs, the CPU immediately stops whatever it is doing (the MCU does not wait for an instruction
boundary before responding to a reset event). For a more detailed discussion about how the MCU
recognizes resets and determines the source, refer to the Resets, Interrupts, and System Configuration
chapter.

The reset event is considered concluded when the sequence to determine whether the reset came from an
internal source is done and when the reset pin is no longer asserted. At the conclusion of a reset event, the
CPU performs a 6-cycle sequence to fetch the reset vector from 0xFFFE and 0xFFFF and to fill the
instruction queue in preparation for execution of the first program instruction.

7.4.2 Interrupt Sequence

When an interrupt is requested, the CPU completes the current instruction before responding to the
interrupt. At this point, the program counter is pointing at the start of the next instruction, which is where
the CPU should return after servicing the interrupt. The CPU responds to an interrupt by performing the
same sequence of operations as for a software interrupt (SWI) instruction, except the address used for the
vector fetch is determined by the highest priority interrupt that is pending when the interrupt sequence
started.

The CPU sequence for an interrupt is:

1. Store the contents of PCL, PCH, X, A, and CCR on the stack, in that order.

2. Set the I bit in the CCR.

3. Fetch the high-order half of the interrupt vector.

4. Fetch the low-order half of the interrupt vector.

5. Delay for one free bus cycle.

6. Fetch three bytes of program information starting at the address indicated by the interrupt vector
to fill the instruction queue in preparation for execution of the first instruction in the interrupt
service routine.

After the CCR contents are pushed onto the stack, the I bit in the CCR is set to prevent other interrupts
while in the interrupt service routine. Although it is possible to clear the I bit with an instruction in the
MC9S08AW60 Data Sheet, Rev 2

Freescale Semiconductor 115



Chapter 8 Internal Clock Generator (S08ICGV4)
8.3.2 ICG Control Register 2 (ICGC2)

7 6 5 4 3 2 1 0

R
LOLRE MFD LOCRE RFD

W

Reset 0 0 0 0 0 0 0 0

Figure 8-7. ICG Control Register 2 (ICGC2)

Table 8-2. ICGC2 Register Field Descriptions

Field Description

7
LOLRE

Loss of Lock Reset Enable — The LOLRE bit determines what type of request is made by the ICG following a
loss of lock indication. The LOLRE bit only has an effect when LOLS is set.
0 Generate an interrupt request on loss of lock.
1 Generate a reset request on loss of lock.

6:4
MFD

Multiplication Factor — The MFD bits control the programmable multiplication factor in the FLL loop. The value
specified by the MFD bits establishes the multiplication factor (N) applied to the reference frequency. Writes to
the MFD bits will not take effect if a previous write is not complete. Select a low enough value for N such that
fICGDCLK does not exceed its maximum specified value.
000 Multiplication factor = 4
001 Multiplication factor = 6
010 Multiplication factor = 8
011 Multiplication factor = 10
100 Multiplication factor = 12
101 Multiplication factor = 14
110 Multiplication factor = 16
111 Multiplication factor = 18

3
LOCRE

Loss of Clock Reset Enable — The LOCRE bit determines how the system manages a loss of clock condition.
0 Generate an interrupt request on loss of clock.
1 Generate a reset request on loss of clock.

2:0
RFD

Reduced Frequency Divider — The RFD bits control the value of the divider following the clock select circuitry.
The value specified by the RFD bits establishes the division factor (R) applied to the selected output clock source.
Writes to the RFD bits will not take effect if a previous write is not complete.
000 Division factor = 1
001 Division factor = 2
010 Division factor = 4
011 Division factor = 8
100 Division factor = 16
101 Division factor = 32
110 Division factor = 64
111 Division factor = 128
MC9S08AW60 Data Sheet, Rev 2
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Chapter 8 Internal Clock Generator (S08ICGV4)
entering off mode. If CLKS bits are set to 01 or 11 coming out of the Off state, the ICG enters this mode
until ICGDCLK is stable as determined by the DCOS bit. After ICGDCLK is considered stable, the ICG
automatically closes the loop by switching to FLL engaged (internal or external) as selected by the CLKS
bits.

Figure 8-13. Detailed Frequency-Locked Loop Block Diagram

8.4.3 FLL Engaged, Internal Clock (FEI) Mode

FLL engaged internal (FEI) is entered when any of the following conditions occur:

• CLKS bits are written to 01

• The DCO clock stabilizes (DCOS = 1) while in SCM upon exiting the off state with CLKS = 01

In FLL engaged internal mode, the reference clock is derived from the internal reference clock
ICGIRCLK, and the FLL loop will attempt to lock the ICGDCLK frequency to the desired value, as
selected by the MFD bits.
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Chapter 8 Internal Clock Generator (S08ICGV4)
ICGTRM = $xx

Bit 7:0 TRIM Only need to write when trimming internal oscillator; done in separate
operation (see example #4)

Figure 8-16. ICG Initialization and Stop Recovery for Example #3
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NO

YES

FLL LOCK STATUS.

INITIALIZE ICG
ICGC1 = $28
ICGC2 = $31

RECOVERY
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NO

YES
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NOTE: THIS WILL REQUIRE THE INTERAL REFERENCE CLOCK TO START AND
STABILIZE.

FROM STOP
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Chapter 9 Keyboard Interrupt (S08KBIV1)
9.4.1 KBI Status and Control Register (KBI1SC)

7 6 5 4 3 2 1 0

R
KBEDG7 KBEDG6 KBEDG5 KBEDG4

KBF 0
KBIE KBIMOD

W KBACK

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 9-3. KBI Status and Control Register (KBI1SC)

Table 9-2. KBI1SC Register Field Descriptions

Field Description

7:4
KBEDG[7:4]

Keyboard Edge Select for KBI Port Bits — Each of these read/write bits selects the polarity of the edges and/or
levels that are recognized as trigger events on the corresponding KBI port pin when it is configured as a keyboard
interrupt input (KBIPEn = 1). Also see the KBIMOD control bit, which determines whether the pin is sensitive to
edges-only or edges and levels.
0 Falling edges/low levels
1 Rising edges/high levels

3
KBF

Keyboard Interrupt Flag — This read-only status flag is set whenever the selected edge event has been
detected on any of the enabled KBI port pins. This flag is cleared by writing a 1 to the KBACK control bit. The
flag will remain set if KBIMOD = 1 to select edge-and-level operation and any enabled KBI port pin remains at
the asserted level.
KBF can be used as a software pollable flag (KBIE = 0) or it can generate a hardware interrupt request to the
CPU (KBIE = 1).
0 No KBI interrupt pending
1 KBI interrupt pending

2
KBACK

Keyboard Interrupt Acknowledge — This write-only bit (reads always return 0) is used to clear the KBF status
flag by writing a 1 to KBACK. When KBIMOD = 1 to select edge-and-level operation and any enabled KBI port
pin remains at the asserted level, KBF is being continuously set so writing 1 to KBACK does not clear the KBF
flag.

1
KBIE

Keyboard Interrupt Enable — This read/write control bit determines whether hardware interrupts are generated
when the KBF status flag equals 1. When KBIE = 0, no hardware interrupts are generated, but KBF can still be
used for software polling.
0 KBF does not generate hardware interrupts (use polling)
1 KBI hardware interrupt requested when KBF = 1

KBIMOD Keyboard Detection Mode — This read/write control bit selects either edge-only detection or edge-and-level
detection. KBI port bits 3 through 0 can detect falling edges-only or falling edges and low levels. KBI port bits 7
through 4 can be configured to detect either:

• Rising edges-only or rising edges and high levels (KBEDGn = 1)
• Falling edges-only or falling edges and low levels (KBEDGn = 0)

0 Edge-only detection
1 Edge-and-level detection
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Chapter 10 Timer/Pulse-Width Modulator (S08TPMV2)
transferred to the corresponding timer channel registers only after both 8-bit bytes of a 16-bit register have
been written and the timer counter overflows (reverses direction from up-counting to down-counting at the
end of the terminal count in the modulus register). This TPMxCNT overflow requirement only applies to
PWM channels, not output compares.

Optionally, when TPMxCNTH:TPMxCNTL = TPMxMODH:TPMxMODL, the TPM can generate a TOF
interrupt at the end of this count. The user can choose to reload any number of the PWM buffers, and they
will all update simultaneously at the start of a new period.

Writing to TPMxSC cancels any values written to TPMxMODH and/or TPMxMODL and resets the
coherency mechanism for the modulo registers. Writing to TPMxCnSC cancels any values written to the
channel value registers and resets the coherency mechanism for TPMxCnVH:TPMxCnVL.

10.6 TPM Interrupts
The TPM generates an optional interrupt for the main counter overflow and an interrupt for each channel.
The meaning of channel interrupts depends on the mode of operation for each channel. If the channel is
configured for input capture, the interrupt flag is set each time the selected input capture edge is
recognized. If the channel is configured for output compare or PWM modes, the interrupt flag is set each
time the main timer counter matches the value in the 16-bit channel value register. See the Resets,
Interrupts, and System Configuration chapter for absolute interrupt vector addresses, priority, and local
interrupt mask control bits.

For each interrupt source in the TPM, a flag bit is set on recognition of the interrupt condition such as timer
overflow, channel input capture, or output compare events. This flag may be read (polled) by software to
verify that the action has occurred, or an associated enable bit (TOIE or CHnIE) can be set to enable
hardware interrupt generation. While the interrupt enable bit is set, a static interrupt will be generated
whenever the associated interrupt flag equals 1. It is the responsibility of user software to perform a
sequence of steps to clear the interrupt flag before returning from the interrupt service routine.

10.6.1 Clearing Timer Interrupt Flags

TPM interrupt flags are cleared by a 2-step process that includes a read of the flag bit while it is set (1)
followed by a write of 0 to the bit. If a new event is detected between these two steps, the sequence is reset
and the interrupt flag remains set after the second step to avoid the possibility of missing the new event.

10.6.2 Timer Overflow Interrupt Description

The conditions that cause TOF to become set depend on the counting mode (up or up/down). In
up-counting mode, the 16-bit timer counter counts from 0x0000 through 0xFFFF and overflows to 0x0000
on the next counting clock. TOF becomes set at the transition from 0xFFFF to 0x0000. When a modulus
limit is set, TOF becomes set at the transition from the value set in the modulus register to 0x0000. When
the counter is operating in up-/down-counting mode, the TOF flag gets set as the counter changes direction
at the transition from the value set in the modulus register and the next lower count value. This corresponds
to the end of a PWM period. (The 0x0000 count value corresponds to the center of a period.)
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Chapter 11 Serial Communications Interface (S08SCIV2)
systems with modems to determine when it is safe to turn off the modem. If the transmit complete interrupt
enable (TCIE) bit is set, a hardware interrupt will be requested whenever TC = 1. Instead of hardware
interrupts, software polling may be used to monitor the TDRE and TC status flags if the corresponding TIE
or TCIE local interrupt masks are 0s.

When a program detects that the receive data register is full (RDRF = 1), it gets the data from the receive
data register by reading SCIxD. The RDRF flag is cleared by reading SCIxS1 while RDRF = 1 and then
reading SCIxD. If the SCI is configured to operate in 9-bit mode, an additional read to the SCIxC3 register
is required to clear RDRF

When polling is used, this sequence is naturally satisfied in the normal course of the user program. If
hardware interrupts are used, SCIxS1 must be read in the interrupt service routine (ISR). Normally, this is
done in the ISR anyway to check for receive errors, so the sequence is automatically satisfied.

The IDLE status flag includes logic that prevents it from getting set repeatedly when the RxD line remains
idle for an extended period of time. IDLE is cleared by reading SCIxS1 while IDLE = 1 and then reading
SCIxD. After IDLE has been cleared, it cannot become set again until the receiver has received at least one
new character and has set RDRF.

If the associated error was detected in the received character that caused RDRF to be set, the error flags —
noise flag (NF), framing error (FE), and parity error flag (PF) — get set at the same time as RDRF. These
flags are not set in overrun cases.

If RDRF was already set when a new character is ready to be transferred from the receive shifter to the
receive data buffer, the overrun (OR) flag gets set instead and the data and any associated NF, FE, or PF
condition is lost.

11.3.5 Additional SCI Functions

The following sections describe additional SCI functions.

11.3.5.1 8- and 9-Bit Data Modes

The SCI system (transmitter and receiver) can be configured to operate in 9-bit data mode by setting the
M control bit in SCIxC1. In 9-bit mode, there is a ninth data bit to the left of the MSB of the SCI data
register. For the transmit data buffer, this bit is stored in T8 in SCIxC3. For the receiver, the ninth bit is
held in R8 in SCIxC3.

When transmitting 9-bit data, write to the T8 bit before writing to SCIxD for coherent writes to the transmit
data buffer. If the bit value to be transmitted as the ninth bit of a new character is the same as for the
previous character, it is not necessary to write to T8 again. When data is transferred from the transmit data
buffer to the transmit shifter, the value in T8 is copied at the same time data is transferred from SCIxD to
the shifter.

When receiving 9-bit data, clear the RDRF bit by reading both R8 and SCIxD. R8 and SCIxD can be read
in either order.
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Chapter 12 Serial Peripheral Interface (S08SPIV3)
12.4 Functional Description
An SPI transfer is initiated by checking for the SPI transmit buffer empty flag (SPTEF = 1) and then
writing a byte of data to the SPI data register (SPI1D) in the master SPI device. When the SPI shift register
is available, this byte of data is moved from the transmit data buffer to the shifter, SPTEF is set to indicate
there is room in the buffer to queue another transmit character if desired, and the SPI serial transfer starts.

During the SPI transfer, data is sampled (read) on the MISO pin at one SPSCK edge and shifted, changing
the bit value on the MOSI pin, one-half SPSCK cycle later. After eight SPSCK cycles, the data that was in
the shift register of the master has been shifted out the MOSI pin to the slave while eight bits of data were
shifted in the MISO pin into the master’s shift register. At the end of this transfer, the received data byte is
moved from the shifter into the receive data buffer and SPRF is set to indicate the data can be read by
reading SPI1D. If another byte of data is waiting in the transmit buffer at the end of a transfer, it is moved
into the shifter, SPTEF is set, and a new transfer is started.

Normally, SPI data is transferred most significant bit (MSB) first. If the least significant bit first enable
(LSBFE) bit is set, SPI data is shifted LSB first.

When the SPI is configured as a slave, its SS pin must be driven low before a transfer starts and SS must
stay low throughout the transfer. If a clock format where CPHA = 0 is selected, SS must be driven to a
logic 1 between successive transfers. If CPHA = 1, SS may remain low between successive transfers. See
Section 12.4.1, “SPI Clock Formats” for more details.

Because the transmitter and receiver are double buffered, a second byte, in addition to the byte currently
being shifted out, can be queued into the transmit data buffer, and a previously received character can be
in the receive data buffer while a new character is being shifted in. The SPTEF flag indicates when the
transmit buffer has room for a new character. The SPRF flag indicates when a received character is
available in the receive data buffer. The received character must be read out of the receive buffer (read
SPI1D) before the next transfer is finished or a receive overrun error results.

In the case of a receive overrun, the new data is lost because the receive buffer still held the previous
character and was not ready to accept the new data. There is no indication for such an overrun condition
so the application system designer must ensure that previous data has been read from the receive buffer
before a new transfer is initiated.

12.4.1 SPI Clock Formats

To accommodate a wide variety of synchronous serial peripherals from different manufacturers, the SPI
system has a clock polarity (CPOL) bit and a clock phase (CPHA) control bit to select one of four clock
formats for data transfers. CPOL selectively inserts an inverter in series with the clock. CPHA chooses
between two different clock phase relationships between the clock and data.

Figure 12-10 shows the clock formats when CPHA = 1. At the top of the figure, the eight bit times are
shown for reference with bit 1 starting at the first SPSCK edge and bit 8 ending one-half SPSCK cycle after
the sixteenth SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits depending
on the setting in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms
applies for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the
MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output
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Chapter 13 Inter-Integrated Circuit (S08IICV1)
13.1.1 Features

The IIC includes these distinctive features:

• Compatible with IIC bus standard

• Multi-master operation

• Software programmable for one of 64 different serial clock frequencies

• Software selectable acknowledge bit

• Interrupt driven byte-by-byte data transfer

• Arbitration lost interrupt with automatic mode switching from master to slave

• Calling address identification interrupt

• START and STOP signal generation/detection

• Repeated START signal generation

• Acknowledge bit generation/detection

• Bus busy detection

13.1.2 Modes of Operation

The IIC functions the same in normal and monitor modes. A brief description of the IIC in the various
MCU modes is given here.

• Run mode — This is the basic mode of operation. To conserve power in this mode, disable the
module.

• Wait mode — The module will continue to operate while the MCU is in wait mode and can provide
a wake-up interrupt.

• Stop mode — The IIC is inactive in stop3 mode for reduced power consumption. The STOP
instruction does not affect IIC register states. Stop2 will reset the register contents.
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Chapter 14 Analog-to-Digital Converter (S08ADC10V1)
converter yields the lower code (and vice-versa). However, even very small amounts of system noise can
cause the converter to be indeterminate (between two codes) for a range of input voltages around the
transition voltage. This range is normally around 1/2LSB and will increase with noise. This error may be
reduced by repeatedly sampling the input and averaging the result. Additionally the techniques discussed
in Section 14.7.2.3 will reduce this error.

Non-monotonicity is defined as when, except for code jitter, the converter converts to a lower code for a
higher input voltage. Missing codes are those values which are never converted for any input value.

In 8-bit or 10-bit mode, the ADC is guaranteed to be monotonic and to have no missing codes.
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